Skip to main content

Better Yeast for Better Wine — Genetic Improvement of Saccharomyces Cerevisiae Wine Strains

  • Chapter
Progress in Mycology

Abstract

The yeast species Saccharomyces cerevisiae, commonly called ‘wine yeast’, ‘bakers yeast’, ‘brewers yeast’ or ‘distillers yeast’ is the main yeast responsible for alcoholic fermentation and has been used for centuries in wine making, baking, brewing and distilling. With the emergence of molecular genetics and genomics, the industrial importance of S. cerevisiae continuously extended, providing a tremendous future potential for the development of genetically modified yeast strains (GMY) for the biofuel, bakery and beverage industries or for the production of enzymes and pharmaceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Aa, E., J. P. Townsend, R. I. Adams, K. M. Nielsen and J. W. Taylor (2006). Population structure and gene evolution in Saccharomyces cerevisiae, FEMS Yeast Research 6(5): 702–15.

    Article  PubMed  CAS  Google Scholar 

  • Akada, R. (2002). Genetically modified industrial yeast ready for application, Journal of Bioscience and Bioengineering 94(6): 536–44.

    CAS  PubMed  Google Scholar 

  • Akada, R., K. Matsuo, K. Aritomi and Y. Nishizawa (1999). Construction of recombinant sake yeast containing a dominant FAS2 mutation without extraneous sequences by a two-step gene replacement protocol, Journal of Bioscience and Bioengineering 87(1): 43–8.

    Article  CAS  PubMed  Google Scholar 

  • Alexandre, H., V. Ansanay-Galeote, S. Dequin and B. Blondin (2001). Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae, FEBS Letters 498(1): 98–103.

    Article  CAS  PubMed  Google Scholar 

  • Alper, H., J. Moxley, E. Nevoigt, G. R. Fink and G. Stephanopoulos (2006). Engineering yeast transcription machinery for improved ethanol tolerance and production, Science 314(5805): 1565–8.

    Article  CAS  PubMed  Google Scholar 

  • Alper, H. and G. Stephanopoulos (2007). Global transcription machinery engineering: a new approach for improving cellular phenotype, Metabolic Engineering 9(3): 258–67.

    Article  CAS  PubMed  Google Scholar 

  • Arensdorf, J.J., A.K. Loomis, P.M. DiGrazia, D.J. Monticello and P.T. Pienkos (2002). Chemostat approach for the directed evolution of biodesulfurization gain-of-function mutants, Applied and Environmental Micro-biology 68(2): 691–8.

    Article  CAS  Google Scholar 

  • Aritomi, K., I. Hirosawa, H. Hoshida, M. Shiigi, Y. Nishizawa, S. Kashiwagi and R. Akada (2004). Self-cloning yeast strains containing novel FAS2 mutations produce a higher amount of ethyl caproate in Japanese sake, Bioscience Biotechnology and Biochemistry 68(1): 206–14.

    Article  CAS  Google Scholar 

  • Ayoub, M. J., J. L. Legras, R. Saliba and C. Gaillardin (2006). Application of multi locus sequence typing to the analysis of the biodiversity of indigenous Saccharomyces cerevisiae wine yeasts from Lebanon, Journal of Applied Microbiology 100(4): 699–711.

    Article  CAS  PubMed  Google Scholar 

  • Azumi, M. and N. Goto-Yamamoto (2001). AFLP analysis of type strains and laboratory and industrial strains of Saccharomyces sensu stricto and its application to phenetic clustering, Yeast 18(12): 1145–54.

    Article  CAS  PubMed  Google Scholar 

  • Backhus, L.E., J. DeRisi, P.O. Brown and L.F. Bisson (2001). Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions, FEMS Yeast Research 1: 111–25.

    Article  CAS  PubMed  Google Scholar 

  • Bakalinsky, A.T. and R. Snow (1990). The chromosomal constitution of wine strains of Saccharomyces cerevisiae, Yeast 6: 367–82.

    Article  CAS  PubMed  Google Scholar 

  • Baleiras Couto, M.M., B. Eijsma, H. Hofstra, J.H.J. HuisintVeld and J. van der Vossen (1996). Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains, Applied and Environmental Microbiology 62(1): 41–6.

    CAS  PubMed  Google Scholar 

  • Barre, P., F. Vezinhet, S. Dequin and B. Blondin (1992). Genetic improvement of wine yeasts. In: Wine microbiology and Biotechnology, Fleet, G.H. Ed., Harwood Academic Publishers, London, 265–89.

    Google Scholar 

  • Bauer, F., S. Dequin, I. Pretorius, H. Shoeman, M. B. Wolfaardt, M.B. Schroeder and M. K. Grossmann (2003). The assessment of the environmental impact of genetically modified wine yeast strains, Proceedings of the “Actes de 83ème Assemblée Générate de l’O.IV”.

    Google Scholar 

  • Becker, J.V.W., G.O. Armstrong, M.J. Van der Merwe, M.G. Lambrechts, M.A. Vivier and I. S. Pretorius (2003). Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol, FEMS Yeast Research 4(1): 79–85.

    Article  CAS  PubMed  Google Scholar 

  • Beltran, G., M. Novo, V. Leberre, S. Sokol, D. Labourdette, J. M. Guillamon, A. Mas, J. Francois and N. Rozes (2006). Integration of transcriptomic and metabolic analyses for understanding the global responses of low-temperature winemaking fermentations, FEMS Yeast Research 6(8): 1167–83.

    Article  CAS  PubMed  Google Scholar 

  • Beltran, G., M. J. Torija, M. Novo, N. Ferrer, M. Poblet, J. M. Guillamon, N. Rozes and A. Mas (2002). Analysis of yeast populations during alcoholic fermentation: A six year follow-up study, Systematic and Applied Microbiology 25(2): 287–93.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ari, G., D. Zenvirth, A. Sherman, G. Simchen, U. Lavi and J. Hillel (2005). Application of SNPs for assessing biodiversity and phylogeny among yeast strains, Heredity 95(6): 493–501.

    Article  CAS  PubMed  Google Scholar 

  • Bendoni, B., D. Cavalieri, E. Casalone, M. Polsinelli and C. Barberio (1999). Trifluoroleucine resistance as a dominant molecular marker in transformation of strains of Saccharomyces cerevisiae isolated from wine, FEMS Microbiology Letters 180(2): 229–33.

    Article  CAS  PubMed  Google Scholar 

  • Bidenne, C., B. Blondin, S. Dequin and F. Vezinhet (1992). Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae, Current Genetics 22(1): 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Bisson, L. F. (1999). Stuck and sluggish fermentations, American Journal of Enology and Viticulture 50(1): 107–19.

    CAS  Google Scholar 

  • Blondin, B. and S. Dequin (1998). Yeast, wine and genetic engineering, Biofutur 182: 16–20.

    Article  Google Scholar 

  • Blondin, B. and F. Vezinhet (1988). Identification de souches de levures oenologiques par leurs caryotypes obtenus en électrophorèse en champs pulsée, Revue Française d’ Oenologic 28: 7–11.

    Google Scholar 

  • Bony, M., F. Bidart, C. Camarasa, V. Ansanay, L. Dulau, P. Barre and S. Dequin (1997). Metabolic analysis of S. cerevisiae strains engineered for malolactic fermentation, FEBS Letters 410(2-3): 452–6.

    Article  CAS  PubMed  Google Scholar 

  • Brandolini, V., P. Tedeschi, A. Capece, A. Maietti, D. Mazzotta, G. Salzano, A. Paparella and P. Romano (2002). Saccharomyces cerevisiae wine strains differing in copper resistance exhibit different capability to reduce copper content in wine, World Journal of Microbiology & Biotechnology 18(6): 499–503.

    Article  CAS  Google Scholar 

  • Cakar, Z.P., U.O.S. Seker, C. Tamerler, M. Sonderegger and U. Sauer (2005). Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae, FEMS Yeast Research 5(6-7): 569–78.

    Article  CAS  PubMed  Google Scholar 

  • Cambon, B., V. Monteil, F. Remize, C. Camarasa and S. Dequin (2006). Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes, Applied and Environmental Microbiology 72(7): 4688–94.

    Article  CAS  PubMed  Google Scholar 

  • Caridi, A., A. Cufari and D. Ramondino (2002). Isolation and clonal pre-selection of enological Saccharomyces, Journal of General and Applied Microbiology 48(5): 261–7.

    Article  CAS  PubMed  Google Scholar 

  • Carle, G.F. and M.W. Olson (1985). An electrophoretic karyotype for yeast, Proceedings of the National Academy of Sciences of the United States of America 81: 2965–9.

    Google Scholar 

  • Cairo, D., J. Garcia-Martinez, J. E. Pérez-Ortin and B. Pina (2003). Structural characterization of chromosome I size variants from a natural yeast strain, Yeast 20(2): 171–83.

    Article  CAS  Google Scholar 

  • Carstens, M., M. A. Vivier, P. Van Rensburg and I. S. Pretorius (2003). Overexpression, secretion and antifungal activity of the Saccharomyces cerevisiae chitinase, Annals of Microbiology 53(1): 15–28.

    CAS  Google Scholar 

  • Cavalieri, D., P.E. McGovern, D.L. Haiti, R. Mortimer and M. Polsinelli (2003). Evidence for S. cerevisiae fermentation in ancient wine, Journal of Molecular Evolution 57: S226–32.

    Article  CAS  PubMed  Google Scholar 

  • Cavalieri, D., J.P. Townsend and D.L. Hartl (2000). Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis, Proceedings of the National Academy of Sciences of the United States of America 91(22): 12369–74.

    Article  Google Scholar 

  • Ciani, M. and F. Maccarelli (1998). Oenological properties of non-Saccharomyces yeasts associated with wine-making, World Journal of Microbiology & Biotechnology 14(2): 199–203.

    Article  CAS  Google Scholar 

  • Clemente-Jimenez, J.M., L. Mingorance-Cazorla, S. Martinez-Rodriguez, F.J. Las Heras-Vazquez and F. Rodriguez-Vico (2004). Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must, Food Microbiology 21: 149–55.

    Article  CAS  Google Scholar 

  • Codon, A.C., T. Benitez and M. Korhola (1997). Chromosomal reorganization during meiosis of Saccharomyces cerevisiae baker’s yeast, Current Genetics 32: 247–59.

    Article  CAS  PubMed  Google Scholar 

  • Coloretti, F., C. Zambonelli and V. Tini (2006). Characterization of flocculent Saccharomyces interspecific hybrids for the production of sparkling wines, Food Microbiology 23(7): 672–6.

    Article  CAS  PubMed  Google Scholar 

  • Constanti, M., M. Poblet, L. Arola, A. Mas and J.M. Guillamon (1997). Analysis of yeast populations during alcoholic fermentation in a newly established winery, American Journal of Enology and Viticulture 48(3): 339–44.

    Google Scholar 

  • Cordente, A.G., J.H. Swiegers, F.G. Hegardt and I.S. Pretorius (2007). Modulating aroma compounds during wine fermentation by manipulating carnitine acetyltran-sferases in Saccharomyces cerevisiae, FEMS Microbiology Letters 267(2): 159–66.

    Article  CAS  PubMed  Google Scholar 

  • Corpillo, D., G. Gardini, A.M. Vaira, M. Basso, S. Aime, G. R. Accotto and M. Fasano (2004). Proteomics as a tool to improve investigation of substantial equivalence in genetically modified organisms: The case of a virus-resistant tomato, Proteomics 4(1): 193–200.

    Article  CAS  PubMed  Google Scholar 

  • Coulon, J., J.I. Husnik, D. L. Inglis, G. K. van der Merwe, A. Lonvaud, D. J. Erasmus and H.J.J. van Vuuren (2006). Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine, American Journal of Enology and Viticulture 57(2): 113–24.

    CAS  Google Scholar 

  • Daran-Lapujade, P., J. M. Daran, P. Kotter, T. Petit, M. D. Piper and J. T. Pronk (2003). Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays, FEMS Yeast Research 4(3): 259–69.

    Article  CAS  PubMed  Google Scholar 

  • de Barros Lopes, M., J. R. Bellon, N. J. Shirley and P. F. Ganter (2002). Evidence for multiple interspecific hybridization in Saccharomyces sensu stricto species, FEMS Yeast Research 1(4): 323–31.

    Article  PubMed  Google Scholar 

  • Dequin, S. (2001). The potential of genetic engineering for improving brewing, winemaking and baking yeasts, Applied Microbiology and Biotechnology 56(5-6): 577–88.

    Article  CAS  PubMed  Google Scholar 

  • Dequin, S., E. Baptista and P. Barre (1999). Acidification of grape musts by Saccharomyces cerevisiae wine yeast strains genetically engineered to produce lactic acid, American Journal of Enology and Viticulture 50(1): 45–50.

    CAS  Google Scholar 

  • Dequin, S., J. M. Salmon, H. V. Nguyen and B. Blondin (2003). Wine yeast’s. In: Yeasts in food, beneficial and detrimental aspects, Boekhout, T. and B. Robert Eds., Berhr’s Verlag GmbH and Co Hamburg, Germany, 389–412.

    Google Scholar 

  • DeRisi, J., L. Penland, P. O. Brown, M. L. Bittner, P. S. Meltzer, M. Ray, Y. Chen, Y. A. Su and J. M. Trent (1996). Use of a cDNA microarray to analyse gene expression patterns in human cancer, Nature Genetics 14(4): 457–60.

    Article  CAS  PubMed  Google Scholar 

  • du Toit, C. and I. Pretorius (2000). Microbial spoilage and preservation of wine: using new weapons from nature’s own arsenal — a review, South African Journal of Enology and Viticulture 21: 74–96.

    Google Scholar 

  • Dubourdieu, D., A. Sokol, J. Zucca, P. Thalouarn, A. Datte and M. Aigle (1984). Identification des souches de levures isolées de vins par l’analyse de leur ADN mitochondrial, Connaisance Vigne et Vin 21: 267–78.

    Google Scholar 

  • Dunn, B., R. P. Levine and G. Sherlock (2005). Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures BMC Genomics 6(1): 53.

    Article  PubMed  CAS  Google Scholar 

  • EC (1990). Directive 90/220/EEC of the European Council of 23 April 1990 on the deliberate release into the environment of genetically modified organisms, Official Journal of the European Communities L117, 08.05.1990: 15–27.

    Google Scholar 

  • EC (1997). Regulation (EC) No 258/97 of the European Parliament and of the Council of 27 January 1997 concerning novel foods and novel food ingredients, Official Journal of the European Communities L43, 14.02.1997: 1–6.

    Google Scholar 

  • EC (2001). Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EC, Official Journal of the European Communities L106, 12.3.2001: 1–38.

    Google Scholar 

  • EC (2002). Commission Decision 2002/623/EC of 24 July 2002 establishing guidance noted supplementing Annex II to Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EC, Official Journal of the European Communities L200, 30.7.2002: 20–32.

    Google Scholar 

  • EC (2003a). Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 on genetically modified food and feed, Official Journal of the European Communities L268, 18.10.2003: 1–23.

    Google Scholar 

  • EC (2003b). Regulation (EC) No 1830/2003 of the European Parliament and of the Council of 22 September 2003 concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms and amending Directive 2001/18/EC, Official Journal of the European Communities L268, 18.10.2003: 24–8.

    Google Scholar 

  • EC (2004). Regulation (EC) No 65/2004 of 14 January 2004 establishing a system for the development and assignment of unique identifiers for genetically modified organisms, Official Journal of the European Communities L10, 16.1.2004: 5–10.

    Google Scholar 

  • Erasmus, DJ., G.K. van der Merwe and H.J.J. van Vuuren (2003). Genome-wide expression analyses: Metabolic adaptation of Saccharomyces cerevisiae to high sugar stress, FEMS Yeast Research 3(4): 375–99.

    Article  CAS  PubMed  Google Scholar 

  • Eschenbruch, R., K. J. Cresswell and B. M. Fisher (1982). Selective hybridisation of pure culture wine yeasts I. Elimination of undesirable wine-making properties., Applied Microbiology and Biotechnology 14: 155–8.

    Article  Google Scholar 

  • Esteve-Zarzoso, B., A. Gostincar, R. Bobet, F. Uruburu and A. Querol (2000). Selection and molecular characterization of wine yeasts isolated from the ‘El Penedes’ area (Spain), Food Microbiology 17(5): 553–62.

    Article  CAS  Google Scholar 

  • Esteve-Zarzoso, B., P. Manzanares, D. Ramon and A. Querol (1998). The role of non-Saccharomyces yeasts in industrial winemaking, International Microbiology 1: 143–8.

    CAS  PubMed  Google Scholar 

  • Farris, G. A., M. Budroni, T. Vodret and P. Deiana (1990). SuH’originr dei lieviti vinari i lieviti dei terreni, delle foglie e degli acini di alcun vigneti sardi, L’Enotecnico 6: 99–108.

    Google Scholar 

  • Fay, J. C. and J. A. Benavides (2005). Evidence for domesticated and wild populations of Saccharomyces cerevisiae, PLoS Genetics 1(1): 66–71.

    Article  CAS  PubMed  Google Scholar 

  • Ferea, T. L., D. Botstein, P. O. Brown and R. F. Rosenzweig (1999). Systematic changes in gene expression patterns following adaptive evolution in yeast, Proceedings of the National Academy of Sciences of the United States of America 96(17): 9721–6.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, M., J. F. Ubeda and A. I. Briones (2000). Typing of non-Saccharomyces yeasts with enzymatic activities of interest in wine-making, International Journal of Food Microbiology 59(1-2): 29–36.

    Article  CAS  PubMed  Google Scholar 

  • Fleet, G. H. and G. M. Heard (1993). Yeasts: growth during fermentation. In: Wine Microbiology and Biotechnology, Fleet, G. H. Ed., Harwood Academic Publishers, Amsterdam, 27–55.

    Google Scholar 

  • Frezier, V. and D. Dubourdieu (1992). Ecology of yeast strain Saccharomyces cerevisiae during spontaneous fermentation in a Bordeaux winery, American Journal of Enology and Viticulture 43(4): 375–80.

    Google Scholar 

  • Gallego, F. J., M. A. Perez, I. Martinez and P. Hidalgo (1998). Microsatellites obtained from database sequences are useful to characterize Saccharomyces cerevisiae strains, American Journal of Enology and Viticulture 49(3): 350–1.

    CAS  Google Scholar 

  • Ganga, M. A., F. Pinaga, S. Valles, D. Ramon and A. Querol (1999). Aroma improving in microvinification processes by the use of a recombinant wine yeast strain expressing the Aspergillus nidulans xlnA gene, International Journal of Food Microbiology 47(3): 171–8.

    Article  CAS  PubMed  Google Scholar 

  • Gaskell, G., A. Allansdottir, N. Allum, C. Corchero, C. Fischler, J. Hampel, J. Jackson, N. Kronberger, N. Mejlgaard, G. Revueita, C. Schreiner, S. Stares, H. Torgersen and W. Wagner (2006). Europeans and Biotechnology in 2005: Patterns and Trends — A report to the European Commission’s Directorate-General for Research — Eurobarometer 64.3 http://www.ec.europa.eu/research/press/2006/pdf/prl906_eb_64_3_final_report-may2006_en.pdf (30.10.2007).

    Google Scholar 

  • Giovani, G. and I. Rosi (2007). Release of cell wall polysaccharides from Saccharomyces cerevisiae thermosensitive autolytic mutants during alcoholic fermentation, International Journal of Food Microbiology 116(1): 19–24.

    Article  CAS  PubMed  Google Scholar 

  • Giudici, P., L. Solieri, A.M. Pulvirenti and S. Cassanelli (2005). Strategies and perspectives for genetic improvement of wine yeasts, Applied Microbiology and Biotechnology 66(6): 622–8.

    Article  CAS  PubMed  Google Scholar 

  • Goffeau, A., B.G. Barrell, H. Bussey, R.W. Davis, B. Dujon, H. Feldmann, F. Galibert, J.D. Hoheisel, C. Jacq, M. Johnston, E.J. Louis, H.W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin and S.G. Oliver (1996). Life with 6000 genes, Science 274(5287): 563–7.

    Article  Google Scholar 

  • Gonzalez-Candelas, L., A. Cortell and D. Ramon (1995). Construction of a recombinant wine yeast strain expressing a fungal pectate lyase gene, FEMS Microbiology Letters 126(3): 263–9.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Candelas, L., J. V. Gil, R. M. Lamuela-Raventos and D. Ramon (2000). The use of transgenic yeasts expressing a gene encoding a glycosyl-hydrolase as a tool to increase resveratrol content in wine, International Journal of Food Microbiology 59(3): 179–83.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, R., A. J. Martinez-Rodriguez and A. V. Carrascosa (2003). Yeast autolytic mutants potentially useful for sparkling wine production, International Journal of Food Microbiology 84(1): 21–6.

    CAS  PubMed  Google Scholar 

  • Gonzalez, S. S., E. Barrio, J. Gafner and A. Querol (2006). Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations, FEMS Yeast Res 6(8): 1221–34.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, S. S., L. Gallo, M. D. Climent, E. Barrio and A. Querol (2007). Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii, International Journal of Food Microbiology 116(1): 11–8.

    Article  CAS  PubMed  Google Scholar 

  • Goto-Yamamoto, N., K. Kitano, K. Shiki, Y. Yoshida, T. Suzuki, T. Iwata, Y. Yamane and S. Hara (1998). SSU1-R, a sulfite resistance gene of wine yeast, is an allele of SSU1 with a different upstream sequence, Journal of Fermentation and Bioengineering 86(5): 427–33.

    Article  CAS  Google Scholar 

  • Granchi, L., D. Ganucci, A. Messini and M. Vincenzini (2002). Oenological properties of Hanseniaspora osmophila and Kloeckera corticis from wines produced by spontaneous fermentations of normal and dried grapes, FEMS Yeast Research 2(3): 403–7.

    CAS  PubMed  Google Scholar 

  • Guerra, E., I. Mannazzu, G. Sordi, M. Tangherlini, F. Clementi and F. Fatichenti (1999). Characterization of indigenous Saccharomyces cerevisiae from the Italian region of Marche: hunting for new strains for local wine quality improvement, Annali Di Microbiologia Ed Enzimologia 49: 79–88.

    Google Scholar 

  • Guijo, S., J. C. Mauricio, J. M. Salmon and J. M. Ortega (1997). Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and flor film ageing of dry sherry-type strains, Yeast 13: 101–17.

    Article  CAS  PubMed  Google Scholar 

  • Hauser, N. C., K. Fellenberg, R. Gil, S. Bastuck, J. D. Hoheisel and J. E. Perez-Ortin (2001). Whole genome analysis of a wine yeast strain, Comparative and Functional Genomics 2(2): 69–79.

    Article  CAS  PubMed  Google Scholar 

  • Hennequin, C., A. Thierry, G. F. Richard, G. Lecointre, H. V. Nguyen, C. Gaillardin and B. Dujon (2001). Microsatellite typing as a new tool for identification of Saccharomyces cerevisiae strains, Journal of Clinical Microbiology 39(2): 551–9.

    Article  CAS  PubMed  Google Scholar 

  • Heux, S., S. Cachon and S. Dequin (2006a). Cofactor engineering in Saccharomyces cerevisiae expression of a H2O-forming NADH oxidase and impact on redox metabolism, Metabolic Engineering 8: 303–14.

    Article  CAS  PubMed  Google Scholar 

  • Heux, S., J. M. Sablayrolles, R. Cachon and S. Dequin (2006b). Engineering a Saccharomyces cerevisiae wine yeast that exhibits reduced ethanol production during fermentation under controlled microoxygenation conditions, Applied and Environmental Microbiology 72(9): 5822–8.

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa, T., Y. Nakakura, K. Yoshikawa, K. Ashitani, K. Nagahisa, C. Furusawa, Y. Katakura, H. Shimizu and S. Shioya (2006). Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray, Applied Microbiology and Biotechnology 70(3): 346–57.

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa, T., K. Yoshikawa, Y. Nakakura, K. Nagahisa, C. Furusawa, Y. Katakura, H. Shimizu and S. Shioya (2007). Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis, Journal of Biotechnology 131(1): 34–44.

    Article  CAS  PubMed  Google Scholar 

  • Howell, K. S., J. H. Swiegers, G. M. Elsey, T. E. Siebert, E. J. Bartowsky, G. H. Fleet, I. S. Pretorius and M. A. de Barros Lopes (2004). Variation in 4-mercapto-4-methyl-pentan-2-one release by Saccharomyces cerevisiae commercial wine strains, FEMS Microbiology Letters 240(2): 125–9.

    Article  CAS  PubMed  Google Scholar 

  • Husnik, J. L, H. Volschenk, J. Bauer, D. Colavizza, Z. Luo and H. J. van Vuuren (2006). Metabolic engineering of malolacttc wine yeast, Metabolic Engineering 8(4): 315–23.

    Article  CAS  PubMed  Google Scholar 

  • ILSI (1999). Safety assessment of viable genetically modified microorganisms used in food — Consensus guidelines reached at a workshop held in April 1999. Brussels International Life Science Institute Europe, Novel Food Task Force.

    Google Scholar 

  • Infante, J. J., K. M. Dombek, L. Rebordinos, J. M. Cantoral and E. T. Young (2003). Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution o.f natural yeast, Genetics 165(4): 1745–59.

    CAS  PubMed  Google Scholar 

  • Jeffries, T. W. (2006). Engineering yeasts for xylose metabolism, Current Opinion in Biotechnology 17(3): 320–6.

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto, M. and S. Goto (1995). Growth temperatures and electrophoretic karyotyping as tools for practical discrimination of Saccharomyces bayanus and Saccharomyces cerevisiae, Journal of General and Applied Microbiology 41: 239–47.

    Article  CAS  Google Scholar 

  • Kishimoto, M., T. Shinohara, E. Soma and S. Goto (1993). Identification and enological characteristics of cryophilic wine yeasts, Journal of the Brewing Society of Japan 88: 708–13.

    CAS  Google Scholar 

  • Kuiper, H. A. and G. A. Kleter (2003). The scientific basis for risk assessment and regulation of genetically modified foods, Trends in Food Science & Technology 14(5-8): 277–93.

    Article  CAS  Google Scholar 

  • Kuiper, H. A., G. A. Kleter, H. Noteborn and E. J. Kok (2002). Substantial equivalence — an appropriate paradigm for the safety assessment of genetically modified foods?, Toxicology 181: 427–31.

    Article  PubMed  Google Scholar 

  • Kuyper, M., M. J. Toirkens, J. A. Diderich, A. A. Winkler, J. P. van Dijken and J. T. Pronk (2005). Evolutionary engineering of mixed-sugar utilization by a xylosefermenting Saccharomyces cerevisiae strain, FEMS Yeast Research 5(10): 925–34.

    Article  CAS  PubMed  Google Scholar 

  • Kuyper, M., A. A. Winkler, J. P. van Dijken and J. T. Pronk (2004). Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle, FEMS Yeast Res 4(6): 655–64.

    Article  CAS  PubMed  Google Scholar 

  • Lambrechts, M. and S. Pretorius (2000). Yeast and its importance to wine aroma South African Journal of Enology and Viticulture 27: 97–129.

    Google Scholar 

  • le Jeune, C., M. Lollier, C. Demuyter, C. Erny, J.-L. Legras, M. Aigle and I. Masneuf-Pomarede (2007). Characterization of natural hybrids of Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum, Ferns Yeast Research 7(4): 540–9.

    Article  CAS  Google Scholar 

  • Legras, J. L. and F. Karst (2003). Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation, FEMS Microbiology Letters 221(2): 249–55.

    Article  CAS  PubMed  Google Scholar 

  • Legras, J. L., D. Merdinoglu, J. M. Cornuet and F. Karst (2007). Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history, Molecular Ecology 16(10): 2091–102.

    Article  CAS  PubMed  Google Scholar 

  • Lilly, M., F. F. Bauer, M. G. Lambrechts, J. H. Swiegers, D. Cozzolino and I. S. Pretorius (2006a). The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates, Yeast 23(9): 641–59.

    Article  CAS  PubMed  Google Scholar 

  • Lilly, M., F. F. Bauer, G. Styger, M. G. Lambrechts and I. S. Pretorius (2006b). The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates, FEMS Yeast Research 6(5): 726–43.

    Article  CAS  PubMed  Google Scholar 

  • Lilly, M., M. G. Lambrechts and I. S. Pretorius (2000). Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates, Applied and Environmental Microbiology 66(2): 744–53.

    Article  CAS  PubMed  Google Scholar 

  • Longo, E., J. Cansado, D. Agrelo and T. G. Villa (1991). Effect of climatic conditions on yeast diversity in grape musts from northwest Spain, American Journal of Enology and Viticulture 42: 141–4.

    Google Scholar 

  • Longo, E. and F. Vezinhet (1993). Chromosomal rearrangements during vegetative growth of a wild strain of Saccharomyces cerevisiae, Applied and Environmental Microbiology 59(1): 322–6.

    CAS  PubMed  Google Scholar 

  • Lopes, C. A., M. van Broock, A. Querol and A. C. Caballero (2002). Saccharomyces cerevisiae wine yeast populations in a cold region in Argentinean Patagonia. A study at different fermentation scales, Journal of Applied Microbiology 93(4): 608–15.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, V., A. Querol, D. Ramon and M. T. Fernandez-Espinar (2001). A simplified procedure to analyse mitochondrial DNA from industrial yeasts, International Journal of Food Microbiology 68(1-2): 75–81.

    Article  CAS  PubMed  Google Scholar 

  • Louw, C., D. La Grange, I. S. Pretorius and P. van Rensburg (2006). The effect of polysaccharide-degrading wine yeast transformants on the efficiency of wine processing and wine flavour, Journal of Biotechnology 125(4): 447–61.

    Article  CAS  PubMed  Google Scholar 

  • Maifreni, M., G. Comi and G. Rondinini (1999). Selection and oenological characterisation of Saccharomyces cerevisiae strains isolated from Tocai, Pinot and Malvasia grapes and musts of the Collio area, Annali Di Microbiologia Ed Enzimologia 49: 33–43.

    Google Scholar 

  • Malherbe, D. F., M. du Toit, R. R. C. Otero, P. van Rensburg and I. S. Pretorius (2003). Expression of the Aspergillus niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applications in wine production, Applied Microbiology and Biotechnology 61(5-6): 502–11.

    CAS  PubMed  Google Scholar 

  • Mannazzu, I., F. Clementi and M. Ciani (2002). Strategies and criteria for the isolation and selection of autochthonous starters. In: Biodiversity and biotechnology of wine yeasts, Ciani, M. Ed., Research Signpost, Trivandrum, 19–35.

    Google Scholar 

  • Manzanares, P., M. Orejas, J. V. Gil, L. H. de Graaff, J. Visser and D. Ramon (2003). Construction of a genetically modified wine yeast strain expressing the Aspergillus aculeatus rhaA gene, encoding an alpha-L-rhamnosidase of enological interest, Applied and Environmental Microbiology 69(12): 7558–62.

    Article  CAS  PubMed  Google Scholar 

  • Marks, V. D., G. K. van der Merwe and H. J. J. van Vuuren (2003). Transcriptional profiling of wine yeast in fermenting grape juice: regulatory effect of diammonium phosphate, FEMS Yeast Research 3(3): 269–87.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Rodriguez, A., A. V. Carrascosa, J. M. Barcenilla, M. A. Pozo-Bayon and M. C. Polo (2001). Autolytic capacity and foam analysis as additional criteria for the selection of yeast strains for sparkling wine production, Food Microbiology 18(2): 183–91.

    Article  CAS  Google Scholar 

  • Martini, A., M. Ciani and G. Scorzetti(1996). Direct enumeration and isolation of wine yeasts from grape surfaces, American Journal of Enology and Viticulture 47: 435–40.

    Google Scholar 

  • Martini, A., F. Frederichi and G. Rosini (1980). A new approach to the study of yeast ecology on natural substrates, Canadian Journal of Microbiology 26: 856–9.

    Article  Google Scholar 

  • Marullo, P., M. Bely, I. Masneuf-Pomarede, M. Aigle and D. Dubourdieu (2004). Inheritable nature of enological quantitative traits is demonstrated by meiotic segregation of industrial wine yeast strains FEMS Yeast Research 4(7): 711–9.

    Article  CAS  PubMed  Google Scholar 

  • Marullo, P., M. Bely, I. Masneuf-Pomarede, M. Pons, M. Aigle and D. Dubourdieu (2006). Breeding strategies for combining fermentative qualities and reducing offflavor production in a wine yeast model, Ferns Yeast Research 6(2): 268–79.

    Article  CAS  Google Scholar 

  • Masneuf, I., J. Hansen, C. Groth, J. Piskur and D. Dubourdieu(1998). New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains, Applied and Environmental Microbiology 64(10): 3887–92.

    CAS  PubMed  Google Scholar 

  • Masneuf, I., M. L. Murat, G. I. Naumov, T. Tominaga and D. Dubourdieu (2002). Hybrids Saccharomyces cerevisiae x Saccharomyces bayanus var. uvarum having a high liberating ability of some sulfur varietal aromas of Vitis vinifera Sauvignon blanc wines, Journal International Des Sciences De La Vigne Et Du Vin 36(4): 205–12.

    CAS  Google Scholar 

  • McBryde, C., J. M. Gardner, M. D. Lopes and V. Jiranek (2006). Generation of novel wine yeast strains by adaptive evolution, American Journal of Enology and Viticulture 57(4): 423–30.

    CAS  Google Scholar 

  • Mendes-Ferreira, A., M. Del Olmo, J. Garcia-Martinez, E. Jimenez-Marti, C. Leão, A. Mendes-Faia and J. E. Perez-Ortin (2007a). Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation, Applied and Environmental Microbiology 73(16): 5363–9.

    Article  CAS  PubMed  Google Scholar 

  • Mendes-Ferreira, A., M. del Olmo, J. Garcia-Martinez, E. Jimenez-Marti, A. Mendes-Faia, J. E. Perez-Ortin and C. Leao (2007b). Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation, Applied and Environmental Microbiology 73(9): 3049–60.

    Article  CAS  PubMed  Google Scholar 

  • Mendes-Ferreira, A., A. Mendes-Faia and C. Leão (2002). Survey of hydrogen sulphide production by wine yeasts, Journal of Food Protection 65(6): 1033–7.

    CAS  PubMed  Google Scholar 

  • Michnick, S., J. L. Roustan, F. Remize, P. Barre and S. Dequin (1997). Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase, Yeast 13(9): 783–93.

    Article  CAS  PubMed  Google Scholar 

  • Mingorance-Cazorla, L., J. M. Clemente-Jimenez, S. Martinez-Rodriguez, F. J. Las Heras-Vazquez and F. Rodriguez-Vico (2003). Contribution of different natural yeasts to the aroma of two alcoholic beverages, World Journal of Microbiology & Biotechnology 19(3): 297–304.

    Article  CAS  Google Scholar 

  • Monteil, H., F. Blazy-Mangen and G. Michel (1986). Influence des pesticides sur la croissance des levures des raisins et des vins, Science des Aliments 6: 349–60.

    CAS  Google Scholar 

  • Mortimer, R. and M. Polsinelli (1999). On the origins of wine yeast, Research in Microbiology 150: 199–204.

    Article  CAS  PubMed  Google Scholar 

  • Mortimer, R. K. (2000). Evolution and variation of the yeast (Saccharomyces) genome, Genome Research 10(4): 403–9.

    Article  CAS  PubMed  Google Scholar 

  • Moseley, B. E. B. (1999). The safety and social acceptance of novel foods, International Journal of Food Microbiology 50(1-2): 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Nadal, D., D. Cairo, J. Fernandez-Larrea and B. Pina (1999). Analysis and dynamics of the chromosomal complements of wild sparkling-wine yeast strains, Applied and Environmental Microbiology 65(4): 1688–95.

    CAS  PubMed  Google Scholar 

  • Naumov, G. I., E. S. Naumova and P. D. Sniegowski (1998). Saccharomyces paradoxus and Saccharomyces cerevisiae are associated with exudates of North American oaks, Canadian Journal of Microbiology 44(11): 1045–50.

    Article  CAS  PubMed  Google Scholar 

  • Naumova, E. S., G. I. Naumov, I. Masneuf-Pomarede, M. Aigle and D. Dubourdieu (2005a). Molecular genetic study of introgression between Saccharomyces bayanus and S cerevisiae Yeast 22(14): 1099–115.

    CAS  Google Scholar 

  • Naumova, E. S., M. V. Zholudeva, N. N. Martynenko and G. I. Naumov (2005b). The molecular genetic differentiation of cultured Saccharomyces strains, Microbiology 74(2): 179–87.

    Article  CAS  Google Scholar 

  • Ness, F., F. Lavallee, D. Dubourdieu, M. Aigle and L. Dulau (1993). Identification of yeast strains using the polymerase chain reaction, Journal of the Science of Food and Agriculture 62(1): 89–94.

    Article  CAS  Google Scholar 

  • Neuveglise, C., F. Solano-Serena, P. Brignon, F. Gendre, C. Gaillardin and S. Casaregola (2000). Homologous recombination and transposition generate chromosome I neoploymorphism during meiosis in Saccharomyces cerevisiae, Molecular and General Genetics 263: 722–32.

    CAS  Google Scholar 

  • Nevoigt, E., J. Kohnke, C. R. Fischer, H. Alper, U. Stahl and G. Stephanopoulos (2006). Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae, Applied and Environmental Microbiology 72(8): 5266–73.

    Article  CAS  PubMed  Google Scholar 

  • Novo, M., G. Beltran, N. Rozes, J. M. Guillamon, S. Sokol, V. Leberre, J. Francois and A. Mas (2007). Early transcriptional response of wine yeast after rehydration: osmotic shock and metabolic activation, FEMS Yeast Research 7(2): 304–16.

    Article  CAS  PubMed  Google Scholar 

  • Nunez, Y. P., A. V. Carrascosa, R. Gonzalez, M. C. Polo and A. J. Martinez-Rodriguez (2005). Effect of accelerated autolysis of yeast on the composition and foaming properties of sparkling wines elaborated by a champenoise method, Journal of Agricultural and Food Chemistry 53(18): 7232–7.

    Article  CAS  PubMed  Google Scholar 

  • Otero, R. R. C., J. F. U. Iranzo, A. I. Briones-Perez, N. Potgieter, M. A. Villena, I. S. Pretorius and P. van Rensburg (2003). Characterization of the beta-glucosidase activity produced by enological strains of non-Saccharomyces yeasts, Journal of Food Science 68(8): 2564–9.

    Article  Google Scholar 

  • Parish, M. E. and D. E. Carroll (1985). Indigenous yeasts associated with muscadine (Vitis rotundifolia) grapes and musts, American Journal of Enology and Viticulture 36: 165–9.

    Google Scholar 

  • Patel, S. and T. Shibamoto (2003). Effect of 20 different yeast strains on the production of volatile components in Symphony wine, Journal of Food Composition and Analysis 16(4): 469–76.

    Article  CAS  Google Scholar 

  • Patnaik, R. (2007). Engineering complex phenotypes in industrial strains, Biotechnology Progress Biotechnol Prog. 2007 Oct 3; [Epub ahead of print] (PMID: 17914860 [PubMed — as supplied by publisher]).

    Google Scholar 

  • Patnaik, R., S. Louie, V. Gavrilovic, K. Perry, W. P. Stemmer, C. M. Ryan and S. del Cardayre (2002). Genome shuffling of Lactobacillus for improved acid tolerance, Nat Biotechnol 20(7): 707–12.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Coello, M. S., A. I. B. Perez, J. F. U. Iranzo and P. J. M. Alvarez (1999). Characteristics of wines fermented with different Saccharomyces cerevisiae strains isolated from the La Mancha region, Food Microbiology 16(6): 563–73.

    Article  CAS  Google Scholar 

  • Perez-Gonzalez, J. A., R. Gonzalez, A. Querol, J. Sendra and D. Ramon (1993). Construction of a recombinant wine yeast strain expressing ß-(1,4)-endoglucanase and its use in microvinification processes, Applied and Environmental Microbiology 59(9): 2801–6.

    CAS  PubMed  Google Scholar 

  • Perez-Ortin, J. E., A. Querol, S. Puig and E. Barrio (2002). Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains, Genome Research 12(10): 1533–39.

    Article  CAS  PubMed  Google Scholar 

  • Perez, M. A., F. J. Gallego and P. Hidalgo (2001). Evaluation of molecular techniques for the genetic characterization of Saccharomyces cerevisiae strains, Ferns Microbiology Letters 205(2): 375–8.

    Article  CAS  Google Scholar 

  • Plahuta, B., B. Tivadar and P. Raspor (2007). Slovenian public opinion regarding genetically modified organisms in winemaking Acta Alimentaria 36(1): 61–73.

    Article  Google Scholar 

  • Plata, C., C. Millan, J. C. Mauricio and J. M. Ortega (2003). Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts, Food Microbiology 20(2): 217–24.

    Article  CAS  Google Scholar 

  • Pretorius, I. S. (2000). Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking, Yeast 16(8): 675–729.

    Article  CAS  PubMed  Google Scholar 

  • Pretorius, I. S. and F. F. Bauer (2002). Meeting the consumer challenge through genetically customized wine-yeast strains, Trends in Biotechnology 20(10): 426–432.

    Article  CAS  PubMed  Google Scholar 

  • Pretorius, I. S., M. du Toit and P. van Rensburg (2003). Designer yeasts for the fermentation industry of the 21st century, Food Technology and Biotechnology 41(1): 3–10.

    CAS  Google Scholar 

  • Pretorius, I. S., T. J. van der Westhuizen and O. H. P. Augustyn (1999). Yeast biodiversity in vineyards and wineries and its importance to the South African wine industry, South African Journal of Enology and Viticulture 20: 61–74.

    Google Scholar 

  • Puig, S., A. Querol, E. Barrio and J. E. Perez-Ortin (2000). Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation, Applied and Environmental Microbiology 66(5): 2057–61.

    Article  CAS  PubMed  Google Scholar 

  • Querol, A., E. Barrio, T. Huerta and D. Ramon (1992). Molecular monitoring of wine fermentations conducted by active dry yeast strains, Applied and Environmental Microbiology 58(9): 2948–53.

    CAS  PubMed  Google Scholar 

  • Rachidi, N., P. Barre and B. Blondin (1999). Multiple Ty-mediated chromosomal translocations lead to karyotype changes in a wine strain of Saccharomyces cerevisiae, Molecular and General Genetics 261(4-5): 841–50.

    Article  CAS  PubMed  Google Scholar 

  • Rainieri, S. and I. S. Pretorius (2000). Selection and improvement of wine yeasts, Annals of Microbiology 50(1): 15–31.

    CAS  Google Scholar 

  • Rainieri, S., C. Zambonelli, P. Giudici and L. Castella (1998). Characterisation of ther-motolerant Saccharomyces cerevisiae hybrids, Biotechnology Letters 20(6): 543–7.

    Article  CAS  Google Scholar 

  • Regodon, J. A., F. Perez, M. E. Valdes, C. DeMiguel and M. Ramirez(1997). A simple and effective procedure for selection of wine yeast strains, Food Microbiology 14(3): 247–54.

    Article  Google Scholar 

  • Remize, F., E. Andrieu and S. Dequin (2000a). Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: Role of the cytosolic Mg2+ and mitocho-ndrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation, Applied and Environmental Microbiology 66(8): 3151–59.

    Article  CAS  PubMed  Google Scholar 

  • Remize, F., J. L. Roustan, J. M. Sablayrolles, P. Barre and S. Dequin (1999). Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase, Applied and Environmental Microbiology 65(1): 143–9.

    CAS  PubMed  Google Scholar 

  • Remize, F., J. M. Sablayrolles and S. Dequin (2000b). Re-assessment of the influence of yeast strain and environmental factors on glycerol production in wine, Journal of Applied Microbiology 88(3): 371–8.

    Article  CAS  PubMed  Google Scholar 

  • Restuccia, C., A. Pulvirenti, C. Caggia and P. Giudici (2002). A beta-glucosidase positive strain of Saccharomyces cerevisiae isolated from grape must, Annals of Microbiology 52(1): 47–53.

    CAS  Google Scholar 

  • Ribereau-Gayon, P., D. Dubordieu, B. Donèche and A. Lonvaud (2000). Handbook of enology — The microbiology of wine and vinifications, John Wiley & Sons Ltd, England.

    Google Scholar 

  • Rodriguez, M. E., C. A. Lopes, M. Broock, S. Valles, D. Ramon and A. C. Caballero (2004). Screening and typing of Patagonian wine yeasts for glycosidase activities, Journal of Applied Microbiology 96(1): 84–95.

    Article  CAS  PubMed  Google Scholar 

  • Romano, P., M. Caruso, A. Capece, G. Lipani, M. Paraggio and C. Fiore (2003a). Metabolic diversity of Saccharomyces cerevisiae strains from spontaneously fermented grape musts, World Journal of Microbiology & Biotechnology 19(3): 311–5.

    Article  CAS  Google Scholar 

  • Romano, P., C. Fiore, M. Paraggio, M. Caruso and A. Capece (2003b). Function of yeast species and strains in wine flavour, International Journal of Food Microbiology 86(1-2): 169–80.

    Article  CAS  PubMed  Google Scholar 

  • Romano, P., L. Granchi, M. Caruso, G. Borra, G. Palla, C. Fiore, D. Ganucci, A. Caligiani and V. Brandolini (2003c). The species-specific ratios of 2,3-butanediol and acetoin isomers as a tool to evaluate wine yeast performance, International Journal of Food Microbiology 86(1-2): 163–8.

    Article  CAS  PubMed  Google Scholar 

  • Romano, P., E. Monteleone, M. Paraggio, R. Marchese, G. Caporale and A. Carlucci (1998). A methodological approach to the selection of Saccharomyces cerevisiae wine strains, Food Technology and Biotechnology 36(1): 69–74.

    CAS  Google Scholar 

  • Romano, P., M. G. Soli, G. Suzzi, L. Grazia and C. Zambonelli (1985). Improvement of a wine Saccharomyces cerevisiae strain by a breeding program, Applied and Environmental Microbiology 50(4): 1064–7.

    CAS  PubMed  Google Scholar 

  • Rosini, G. (1982). Influenza della microflora saccaromicetico della cantina sulla fermentazione del mosto d’uva, Vigne Vini 9: 43–6.

    Google Scholar 

  • Rossignol, T., L. Dulau, A. Julien and B. Blondin (2003). Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation, Yeast 20(16): 1369–85.

    Article  CAS  PubMed  Google Scholar 

  • Rossignol, T., O. Postaire, J. Storai and B. Blondin (2006). Analysis of the genomic response of a wine yeast to rehydration and inoculation, Applied Microbiology and Biotechnology 71:699–712

    Article  CAS  PubMed  Google Scholar 

  • Sabate, J., J. Cano, B. Esteve-Zarzoso and J. M. Guillamon (2002). Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA, Microbiological Research 157(4): 261–74.

    Article  Google Scholar 

  • Sabate, J., J. Cano, A. Querol and J. M. Guillamon (1998). Diversity of Saccharomyces strains in wine fermentations: analysis for two consecutive years, Letters in Applied Microbiology 26(6): 452–5.

    Article  CAS  PubMed  Google Scholar 

  • Salmon, J. M. and P. Barre (1998). Improvement of nitrogen assimilation and fermentation kinetics under enological conditions by derepression of alternative nitrogen-assimilatory pathways in an industrial Saccharomyces cerevisiae strain, Applied and Environmental Microbiology 64(10): 3831–7.

    CAS  PubMed  Google Scholar 

  • Sanchez-Torres, P., L. Gonzalez-Candelas and D. Ramon(1996). Expression in a wine yeast strain of the Aspergillus niger abfB gene, FEMS Microbiology Letters 145(2): 189–94.

    CAS  PubMed  Google Scholar 

  • Schena, M., D. Shalon, R. W. Davis and P. O. Brown (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science 270(5235): 467–70.

    Article  CAS  PubMed  Google Scholar 

  • Schoeman, H., M. A. Vivier, M. Du Toit, L. M. T. Dicks and I. S. Pretorius (1999). The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiae, Yeast 15(8): 647–56.

    Article  CAS  PubMed  Google Scholar 

  • Schuller, D., H. Alves, S. Dequin and M. Casal (2005). Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde Region of Portugal, FEMS Microbiology Ecology 51:167–77.

    Article  CAS  PubMed  Google Scholar 

  • Schuller, D. and M. Casal (2007). The genetic structure of fermentative vineyard-associated Saccharomyces cerevisiae populations revealed by microsatellite analysis, Antonie Van Leeuwenhoek 91(2): 137–150.

    Article  CAS  PubMed  Google Scholar 

  • Schuller, D., E. Valero, S. Dequin and M. Casal (2004). Survey of molecular methods for the typing of wine yeast strains, FEMS Microbiology Letters 231(1): 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Silva, S., F. Ramon-Portugal, P. Andrade, S. Abreu, M. D. Texeira and P. Strehaiano (2003). Malic acid consumption by dry immobilized cells of Schizosaccharomyces pombe, American Journal of Enology and Viticulture 54(1): 50–5.

    CAS  Google Scholar 

  • Slavikova, E. and R. Vadkertiova (1997). Seasonal occurrence of yeasts and yeast-like organisms in the river Danube, Antonie Van Leeuwenhoek 72: 77–80.

    Article  CAS  PubMed  Google Scholar 

  • Smit, A., R. R. C. Otero, M. G. Lambrechts, I. S. Pretòrius and P. Van Rensburg (2003). Enhancing volatile phenol concentrations in wine by expressing various phenolic acid decarboxylase genes in Saccharomyces cerevisiae, Journal of Agricultural and Food Chemistry 51(17): 4909–15.

    Article  CAS  PubMed  Google Scholar 

  • Sniegowski, P. D., P. G. Dombrowski and E. Fingerman (2002). Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics, FEMS Yeast Research 1(4): 299–306.

    CAS  PubMed  Google Scholar 

  • Sonderegger, M. and U. Sauer (2003). Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose, Applied and Environmental Microbiology 69(4): 1990–8.

    Article  CAS  PubMed  Google Scholar 

  • Steger, C. L. C. and M. G. Lambrechts (2000). The selection of yeast strains for the production of premium quality South African brandy base products, Journal of Industrial Microbiology & Biotechnology 24(6): 431–40.

    Article  CAS  Google Scholar 

  • Subden, R. E., A. Krizus, C. Osothsilp, M. Viljoen and H.J.J. van Vuuren (1998). Mutational analysis of malate pathways in Schizosaccharomyces pombe, Food Research International 31(1): 37–42.

    Article  CAS  Google Scholar 

  • Sutherland, C.M., P.A. Henschke, P. Langridge and M.D. Lopes (2003). Subunit and cofactor binding of Saccharomyces cerevisiae sulfite reductase — towards developing wine yeast with lowered ability to produce hydrogen sulfide, Australian Journal of Grape and Wine Research 9(3): 186–93.

    Article  CAS  Google Scholar 

  • Swiegers, J. H., E. J. Bartowsky, P. A. Henschke and I. S. Pretorius (2005). Yeast and bacterial modulation of wine aroma and flavour, Australian Journal of Grape and Wine Research 11: 139–73.

    Article  CAS  Google Scholar 

  • Swiegers, J. H., D. L. Capone, K. H. Pardon, G. M. Elsey, M. A. Sefton, I. L. Francis and I. S. Pretorius (2007). Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma, Yeast 24(7): 561–74.

    Article  CAS  PubMed  Google Scholar 

  • Techera, A. G., S. Jubany, F. M. Carrau and C. Gaggero (2001). Differentiation of industrial wine yeast strains using microsatellite markers, Letters in Applied Microbiology 33(1): 71–5.

    Article  CAS  Google Scholar 

  • Torija, M. J., G. Beltran, M. Novo, M. Poblet, J. M. Guillamon, A. Mas and N. Rozes (2003). Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine, International Journal of Food Microbiology 85(1-2): 127–36.

    Article  CAS  PubMed  Google Scholar 

  • Torija, M. J., N. Rozes, M. Poblet, J. M. Guillamon and A. Mas (2001). Yeast population dynamics in spontaneous fermentations: Comparison between two different wineproducing areas over a period of three years, Antonie Van Leeuwenhoek 79(3-4): 345–52.

    Article  CAS  PubMed  Google Scholar 

  • Toro, M. E. and F. Vazquez (2002). Fermentation behaviour of controlled mixed and sequential cultures of Candida cantarellii and Saccharomyces cerevisiae wine yeasts, World Journal of Microbiology & Biotechnology 18(4): 347–54.

    CAS  Google Scholar 

  • Townsend, J. P., D. Cavalieri and D. L. Hartl (2003). Population genetic variation in genome-wide gene expression, Molecular Biology and Evolution 20(6): 955–63.

    Article  CAS  PubMed  Google Scholar 

  • Tyo, K. E., H. S. Alper and G. N. Stephanopoulos (2007). Expanding the metabolic engineering toolbox: more options to engineer cells, Trends in Biotechnology 25(3): 132–7.

    Article  CAS  PubMed  Google Scholar 

  • Umezu, K., M. Hiraoka, M. Mori and H. Maki (2002). Structural analysis of aberrant chromosomes that occur spontaneously in diploid Saccharomyces cerevisiae: Retrotransposon Tyl plays a crucial role in chromosomal rearrangements, Genetics 160(1): 97–110.

    CAS  PubMed  Google Scholar 

  • Uzogara, S. G. (2000). The impact of genetic modification of human foods in the 21st century: A review, Biotechnology Advances 18(3): 179–206.

    Article  CAS  PubMed  Google Scholar 

  • Valero, E., B. Cambon, D. Schuller, M. Casal and S. Dequin (2007). Biodiversity of Saccharomyces yeast strains from grape berries of wine-producing areas using starter commercial yeasts, FEMS Yeast Res 7(2): 317–29.

    Article  CAS  PubMed  Google Scholar 

  • Valero, E., D. Schuller, B. Gambon, M. Casal and S. Dequin (2005). Dissemination and survival of commercial wine yeast in the vineyard: A large-scale, three-years study, FEMS Yeast Research 5: 959–69.

    Article  CAS  PubMed  Google Scholar 

  • van der Westhuizen, T. J., O. H. P. Augustyn and I. S. Pretorius (2000). Geographical distribution of indigenous Saccharomyces cerevisiae strains isolated from vineyards in the coastal regions of the western Cape in South Africa, South African Journal of Enology and Viticulture 21(1): 3–9.

    Google Scholar 

  • Vaughan-Martini, A. and A. Martini (1995). Facts, myths and legends on the prime industrial microorganism, Journal of Industrial Microbiology 14: 514–22.

    Article  CAS  PubMed  Google Scholar 

  • Versavaud, A., P. Courcoux, C. Roulland, L. Dulau and J.-N. Hallet (1995). Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France, Applied and Environmental Microbiology 61(10): 3521–9.

    CAS  PubMed  Google Scholar 

  • Verstrepen, K. J., P. J. Chambers and S. Pretorius (2006). The development of superior yeast strains for the food and beverage industries: challenges, opportunities and potential benefits. In: Yeasts in Food and Beverages Querol, A. and G. H. DFleet Eds., Springer, Berlin, 399–443.

    Chapter  Google Scholar 

  • Verstrepen, K. J., G. Derdelinckx, J.P. Dufour, J. Winderickx, J. M. Thevelein, F. F. Bauer and I. S. Pretorius (2001). Late fermentation expression of FLO1 in Saccharomyces cerevisiae, Journal of the American Society of Brewing Chemists 52: 69–76.

    Google Scholar 

  • Vezinhet, F., B. Blondin and J.N. Hallet (1990). Chromosomal DNA patterns and mitochondrial DNA polymorphisms as tools for identification of enological strains of Saccharomyces cerevisiae, Applied Microbiology and Biotechnology 32: 568–71.

    Article  CAS  Google Scholar 

  • Vezinhet, F., J.-N. Hallet, M. Valade and A. Poulard (1992). Ecological survey of wine yeast strains by molecular methods of identification, American Journal of Enology and Viticulture 43(1): 83–6.

    Google Scholar 

  • Vidal, S., L. Francis, P. Williams, M. Kwiatkowski, R. Gawel, W. Cheynier and E. Waters (2004). The mouth-feel properties of polysaccharides and anthocyanins in a wine like medium, Food Chemistry 85(4): 519–25.

    Article  CAS  Google Scholar 

  • Vilanova, M., P. Blanco, S. Cortes, M. Castro, T. G. Villa and C. Sieiro (2000). Use of a PGU1 recombinant Saccharomyces cerevisiae strain in oenological fermentations, Journal of Applied Microbiology 89(5): 876–83.

    Article  CAS  PubMed  Google Scholar 

  • Volschenk, H., M. Viljoen-Bloom, R. E. Subden and H. J. J. van Vuuren (2001). Maloethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae, Yeast 18(10): 963–70.

    Article  CAS  PubMed  Google Scholar 

  • Volschenk, H., M. Viljoen, J. Grobler, F. Bauer, A. LonvaudFunel, M. Denayrolles, R. E. Subden and H. J. J. Van Vuuren (1997a). Malolactic fermentation in grape musts by a genetically engineered strain of Saccharomyces cerevisiae, American Journal of Enology and Viticulture 48(2): 193–7.

    CAS  Google Scholar 

  • Volschenk, H., M. Viljoen, J. Grobler, B. Petzold, F. Bauer, R. E. Subden, R. A. Young, A. Lonvaud, M. Denayrolles and H. J. J. vanVuuren (1997b). Engineering pathways for malate degradation in Saccharomyces cerevisiae, Nature Biotechnology 15(3): 253–7.

    Article  CAS  PubMed  Google Scholar 

  • Winzeler, E. A., C. I. Castillo-Davis, G. Oshiro, D. Liang, D. R. Richards, Y. Zhou and D. L. Hartl (2003). Genetic diversity in yeast assessed with whole-genome oligonucleotide arrays, Genetics 163(1): 79–89.

    CAS  PubMed  Google Scholar 

  • Zambonelli, C., P. Passarelli, S. Rainieri, L. Bertolini, P. Giudici and L. Castellari(1997). Technological properties and temperature response of interspecific Saccharomyces hybrids, Journal of the Science of Food and Agriculture 74: 7–12.

    Article  CAS  Google Scholar 

  • Zeyl, C. (2005). The number of mutations selected during adaptation in a laboratory population of Saccharomyces cerevisiae, Genetics 169(4): 1825–31.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. X., K. Perry, V. A. Vinci, K. Powell, W. P. Stemmer and S. B. del Cardayre (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria, Nature 415(6872): 644–6.

    Article  CAS  PubMed  Google Scholar 

  • Zuzuarregui, A., P. Carrasco, A. Palacios, A. Julien and M. del Olmo (2005). Analysis of the expression of some stress induced genes in several commercial wine yeast strains at the beginning of vinification Journal of Applied Microbiology 98(2): 299–307.

    Article  CAS  PubMed  Google Scholar 

  • Zuzuarregui, A., L. Monteoliva, C. Gil and M. L. del Olmo (2006). Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation, Applied and Environmental Microbiology 72(1): 836–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Scientific Publishers (India)

About this chapter

Cite this chapter

Schuller, D. (2010). Better Yeast for Better Wine — Genetic Improvement of Saccharomyces Cerevisiae Wine Strains. In: Rai, M., Kövics, G. (eds) Progress in Mycology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3713-8_1

Download citation

Publish with us

Policies and ethics