Skip to main content

Auto-contractive Maps, the H Function, and the Maximally Regular Graph (MRG): A New Methodology for Data Mining

  • Chapter
  • First Online:
Applications of Mathematics in Models, Artificial Neural Networks and Arts

Abstract

In this chapter we introduce

  1. 1.

    a new artificial neural network (ANN) architecture, the auto-contractive map (auto-CM);

  2. 2.

    a new index to measure the complexity of a-directed graphs (the H index); and

  3. 3.

    a new method to translate the results of data mining into a graph representation (the maximally regular graph).

In particular, auto-CMs squash the nonlinear correlation among variables into an embedding space where a visually transparent and cognitively natural notion such as “closeness” among variables reflects accurately their associations.

Through suitable optimization techniques that will be introduced and discussed in detail in what follows, “closeness” can be converted into a compelling graph-theoretic representation that picks all and only the relevant correlations and organizes them into a coherent picture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The “B” matrix operator was ideated by Massimo Buscema at Semeion Research Center in 1999. The “B” operator is implemented in Buscema (2002).

Bibliography

Contractive Maps

  • Arcidiacono, G. (1984). The De Sitter universe and projective relativity. In V. De Sabbata and T. M. Karade (Eds.), Relativistic astrophisies and cosmology (pp. 64–88). Singapore: World Scientific.

    Google Scholar 

  • Arcidiacono, G. (1986). Projective relativity, cosmology and gravitation. Cambridge, USA: Hadronic Press.

    Google Scholar 

  • Beckman, B. (2006). Special relativity with geometry expression. J Symbolic Geometry 1, 51–56.

    Google Scholar 

  • Buscema, M. (2006). Sistemi ACM e imaging diagnostico. Le immagini mediche come matrici attive di connessioni. Italia, Milano: Springer-Verlag. [ACM Systems and Diagnostic Imaging. Medical Images as Active Connections Matrixes].

    Google Scholar 

  • Buscema, M. (1994). Self-reflexive networks. Theory, topology, applications. Quality & Quantity, n.29 (pp. 339–403). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Buscema, M., Didoné, D., and Pandin, M. (1994). Reti Neurali AutoRiflessive, Teoria, Metodi, Applicazioni e Confronti. Quaderni di Ricerca, Armando Editore, n.1. [Self-Reflexive Networks: Theory, Methods, Applications and Comparison, Semeion Research-book by Armando Publisher, Rome, n.1].

    Google Scholar 

  • Davies, P. (1989). The cosmic blueprint. New York: Simon and Schuster.

    Google Scholar 

  • Fantappiè, L. (1954). Su una Nuova Teoria di Relatività Finale, Rend. Accademia dei Lincei, Rome, November, 1954. [On a New Theory of Final Relativity].

    Google Scholar 

  • Fantappiè, L. (1991). Principi di una Teoria Unitaria del Mondo Fisico e Biologico, (1944, original), Di Rienzo, Rome, 1991. [Principles for an Unified Theory of the Physical and Biological World].

    Google Scholar 

  • Flandern, T. van. (2003). Lorentz contraction. Apeiron 10(4), 152–158, October.

    Google Scholar 

  • Hawking. S. W. and Hartle, J. B. (1983). Wave function of the universe. Phys. Rev. D XXVIII, 2960.

    Google Scholar 

  • Licata, I. (1991). Minkowski’s space-time and Dirac’s vacuum as ultrareferential fundamental reference frame. Hadronic J. 14, 225–250.

    Google Scholar 

  • Pardy, M. (1997). Cerenkov effect and the Lorentz contraction. Phys. Rev. A 55(3), 1647–1652, March.

    Google Scholar 

MST, Graphs, and Physical Networks

  • Barabasi, A-L. (2007). Network medicine – from obesity to the “diseasome”. N Engl J Med 357, 4 July 26.

    Google Scholar 

  • Bratislava, P. K. (2000). Graphs with same peripherical and center eccentric vertices. Mathematica Bohemica 3, 331–339, 125.

    Google Scholar 

  • Costa, L. da F., Rodriguez, F. A., Travieso, G., and Villas Boas, P. R. (2006). Characterization of complex networks. A survey of measurements. Istituto de Fisica de Sao Carlos, Universidade de Sao Paulo, May 17.

    Google Scholar 

  • Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to algorithms. MIT Press and McGraw-Hill (pp. 567–574). 2nd edition. ISBN 0-262-03293-7. Section 23.2: The algorithms of Kruskal and Prim.

    Google Scholar 

  • Fredman, M. L. and Willard, D. E. (1990). Trans-dichotomous algorithms for minimum spanning trees and shortest paths (pp. 719–725). 31st IEEE Symp. Foundations of Comp. Sci.

    Google Scholar 

  • Gabow, H. N., Galil, Z., Spencer, T., and Tarjan, R. E. (1986). Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6, 109–122.

    Article  Google Scholar 

  • Goodrich, M. T. and Tamassia, R. (2006). Data structures and algorithms in Java (p. 632). John Wiley & Sons Inc. 4th Edition. ISBN 0-471-73884-0. Section 13.7.1: Kruskal’s Algorithm.

    Google Scholar 

  • Karger, D. R., Klein, P. N., and Tarjan, R. E. (1995). A randomized linear-time algorithm to find minimum spanning trees. J. ACM. 42, 321–328.

    Article  Google Scholar 

  • Kruskal. J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1) (Feb), 48–50.

    Article  Google Scholar 

  • Reka Zsuzsanna, A. (2001). Statistical mechanics of complex networks. Dissertation, Department of Physics, Notre Dame Un, Indiana.

    Google Scholar 

Theory of Probability and Bayesian Networks

  • Berger, J. O. (1985). Statistical decision theory and Bayesian analysis. Springer-Verlag. 2nd edition. ISBN 0-387-96098-8.

    Google Scholar 

  • Berger, J. O. and Strawderman, W. E. (1996). Choice of hierarchical priors: admissibility in estimation of normal means. Ann. Stat. 24, 931–995.

    Article  Google Scholar 

  • Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. J. Royal Stat. Soc. Series B 41, 113–147.

    Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian data analysis. CRC Press. 2nd edition. . ISBN 1-58488-388-X.

    Google Scholar 

  • Jaynes, E. T. (1968). “Prior probabilities”. IEEE transactions on systems science and cybernetics. SSC-4, 227–241, Sept. Reprinted In Roger D. Rosenkrantz, Compiler, E. T. Jaynes: Papers on Probability, Statistics and Statistical Physics. Dordrecht, Holland: Reidel Publishing Company, (pp. 116–130), 1983. ISBN 90-277-1448-7.

    Google Scholar 

Euclidean Distance

  • Abdi, H. (1990). Additive-tree representations. Lecture Notes in Biomathematics, 84, 43–59.

    Article  Google Scholar 

  • Abdi, H. (2003). Multivariate analysis. In M. Lewis-Beck, A. Bryman, and T. Futing (Eds.), Encyclopedia for research methods for the social sciences. Thousand Oaks: Sage.

    Google Scholar 

  • Abdi, H. (2007). Distance. In N. J. Salkind (Ed.), Encyclopedia of measurement.

    Google Scholar 

  • Greenacre, M. J. (1984). Theory and applications of correspondence analysis. London: Academic Press.

    Google Scholar 

  • Rao, C. R. (1995). Use of Hellinger distance in graphical displays. In E.-M. Tiit, T. Kollo, and H. Niemi (Ed.), Multivariate statistics and matrices in statistics (pp. 143–161). Leiden, The Netherlands: Brill Academic Publisher.

    Google Scholar 

Back-Propagation Networks

  • AA.VV. (1991). Advanced in neural information processing. (Vol. 3). San Mateo, CA: Morgan Kaufman.

    Google Scholar 

  • Anderson, J. A. and Rosenfeld, E. (Eds.) (1988). Neurocomputing foundations of research. Cambridge, Massachusetts, London, England: The MIT Press.

    Google Scholar 

  • Bridle, J. S. (1989). Probabilistic interpretation of feed forward classification network outputs, with relationships to statistical pattern recognition. In F. Fogelman-Soulié and J. Hérault (Eds.), Neuro-computing: Algorithms, architectures (pp. 227–236). New York: Springer-Verlag.

    Google Scholar 

  • Buscema, M. and Massini, G. (1993). Il Modello MQ. Armando, Rome: Collana Semeion. [The MQ Model: Neural Networks and Interpersonal Perception, Semeion Collection by Armando Publisher].

    Google Scholar 

  • Buscema, M. (1994). Squashing theory. Modello a Reti Neurali per la Previsione dei Sistemi Complessi, Collana Semeion, Rome: Armando. [Squashing Theory: A Neural Network Model for Prediction of Complex Systems, Semeion Collection by Armando Publisher].

    Google Scholar 

  • Buscema, M., Matera, F., Nocentini, T., and Sacco, P. L. (1997). Reti Neurali e Finanza. Esercizi, Idee, Metodi, Applicazioni. Quaderni di Ricerca, Rome: Armando. n. 2 [Neural networks and finance. Exercises, ideas, methods, applications, semeion research-book by Armando Publisher, n.2].

    Google Scholar 

  • Chauvin, Y. and Rumelhart, D. E. (Eds.) (1995). Backpropagation: Theory, architectures, and applications. Hillsdale, New Jersey: Lawrence Erlbaum Associates, Inc. Publishers, 365 Brodway.

    Google Scholar 

  • Fahlman, S. E. (1988). An empirical study of learning speed in back-propagation networks. CMV Technical Report, CMV-CS-88-162.

    Google Scholar 

  • Freeman, J. A. and Skapura, D. M. (1991). Neural networks, algorithms, application and programming techniques. Addison Wesley, CNV Series.

    Google Scholar 

  • Gorman, R. and Sejnowski, T. J. (1988). Analysis of hidden units in layered networks trained to classify sonar targets. Neural Networks 1, 76–90.

    Article  Google Scholar 

  • Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural Network 1, 295–307.

    Article  Google Scholar 

  • Lapedes, A. and Farber, R. (1987). Nonlinear Signal Processing Using Neural Networks: Prediction and System Modeling, Los Alamos National Laboratory Report LA-UR-87-2662.

    Google Scholar 

  • Liu, Q., Hirono, S., and Moriguchi, I. (1992). Application of functional-link net in QSAR. 1. QSAR for activity data given by continuous variate. Quant. Struct. -Act. Relat. // 135–141, School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108, Japan.

    Google Scholar 

  • Liu, Q., Hirono, S., and Moriguchi, I. (1992). Application of functional-link net in QSAR. 2. QUSAR for Activity Data Given by Continuous Variate. Quant. Struct. -Act. Relat. // 318–324, School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108, Japan.

    Google Scholar 

  • McClelland, J. L. and Rumelhart, D. E., (1988). Explorations in parallel distributed processing. Cambridge MA: The MIT Press.

    Google Scholar 

  • Metzger, Y and Lehmann, D. (1990). Learning Temporal Sequence by Local Synaptic Changes. Network 1, 169–188.

    Article  Google Scholar 

  • Minai, A. A. and Williams, R. D. (1990). Acceleration of Backpropagation Through Learning Rate and Momentum Adaptation, International Joint Conference on Neural Networks, vol. 1, January, 676–679.

    Google Scholar 

  • Minsky, M. (1954). Neural nets and the brain-model problem. Doctoral Dissertation, Princeton University.

    Google Scholar 

  • Minsky, M and Papert, S. (1988). Perceptrons. Cambridge MA: MIT Press. (Expanded edition 1988).

    Google Scholar 

  • Mulsant, B. H. (1990). A neural network as an approach to clinical diagnosis. Neural Modeling 7(1), 25–36.

    Google Scholar 

  • McCord Nelson, M. and Illingworth, W. T. (1991). A practical guide to neural network. New York: Addison Wesley.

    Google Scholar 

  • NeuralWare.(1993). Neural computing. Pittsburgh, PA: NeuralWare Inc.

    Google Scholar 

  • NeuralWare (1995). Neural computing. Pittsburgh, PA: NeuralWare Inc.

    Google Scholar 

  • Rosenblatt, F. (1962). Principles of neurodynamics. New York: Spartan.

    Google Scholar 

  • Rumelhart, D. E and McClelland, J. L. (Eds.) (1986). Parallel distributed processing, Vol. 1 foundations, explorations in the microstructure of cognition, Vol. 2 psychological and biological models. Cambridge MA, London: The MIT Press, England..

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal representations by error propagation. In Rumelhart D. E. and McClelland J. L. (eds.), Parallel distributed processing (Vol. 1, Appendix 2), Cambridge, MA: MIT Press.

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Learning internal representations by back propagating errors, Nature 323, 533–536. In Anderson (1988).

    Article  Google Scholar 

  • Samad, T. (1988). Back-propagation is significantly. International Neural Network Society Conference Abstracts.

    Google Scholar 

  • Samad, T (1989). Back-propagation extension. Honeywell SSDC Technical Report, 1000 Bane Ave, N., Golden Valley, NN 55427, 1989.

    Google Scholar 

  • Smith, M. (1993). Neural networks for statistical modeling. New York: Van Nostrand Reihnold.

    Google Scholar 

  • Tawel, R. (1989). Does neuron learn like the synapse? In Touretzky D. S (ed). Neural information processing systems (NIPS) 1988, 169–176, SanMateo, CA, Morgan Kaufmann.

    Google Scholar 

  • Touretzky, D. S (Ed.) (1989). Advances in neural information processing systems. (Vol. 1). San Mateo CA: Morgan Kaufman.

    Google Scholar 

  • Touretzky, D. S (Ed.) (1990). Advances in neural information processing systems. (Vol. 2). San Mateo CA: Morgan Kaufman.

    Google Scholar 

  • Touretzky, D. S (Ed.) (1990). Connectionist models. Proceedings of the 1990 Summer School, San Mateo CA: Morgan Kaufman.

    Google Scholar 

  • Touretzky, D.S., Elman, J. L., Sejnowski, T. J., and Hinton, G. E. (1990). Connectionist models. Proceedings of the 1990 Summer School. San Mateo CA: Morgan Kaufmann.

    Google Scholar 

  • Weigend, A. S., Rumelhart, D. E., and Huberman, B. A. (1991). Back-propagation, weight-elimination and time series prediction. AA.VV, 857–882.

    Google Scholar 

  • Werbos, P. (1974). Beyond regression: new tools for prediction and analysis in behavioral sciences. Phd Thesis, Cambridge MA: Harvard.

    Google Scholar 

  • Widrow, B. and Steams, S. D. (1985). Adaptive signal processing. Signal Processing Series. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

Research Software

  • Buscema (2002): M Buscema, Contractive Maps, Ver 1.0, Semeion Software #15, Rome, 2000–2002.

    Google Scholar 

  • Buscema (2007): M Buscema, Constraints Satisfaction Networks, Ver 10.0, Semeion Software #14, Rome, 2001–2007.

    Google Scholar 

  • Buscema (2008): M Buscema, MST, Ver 5.0, Semeion Software #38, Rome, 2006–2008.

    Google Scholar 

  • Massini (2007a): G Massini, Trees Visualizer, Ver 3.0, Semeion Software #40, Rome, 2007.

    Google Scholar 

  • Massini (2007b): G Massini, Semantic Connection Map, Ver 1.0, Semeion Software #45, Rome, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Buscema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Buscema, M., Sacco, P.L. (2010). Auto-contractive Maps, the H Function, and the Maximally Regular Graph (MRG): A New Methodology for Data Mining. In: Capecchi, V., Buscema, M., Contucci, P., D'Amore, B. (eds) Applications of Mathematics in Models, Artificial Neural Networks and Arts. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8581-8_11

Download citation

Publish with us

Policies and ethics