Skip to main content

Biodegradable Materials

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

The ability of polymers to be degraded in physiological environments makes them interesting candidates for various medical applications. Degradation and metabolisation or excretion of polymeric implants can avoid a second surgery for the removal of an implant. Biodegradable materials can serve as a temporary substitute of the extracellular matrix or as matrix in controlled drug release systems, which both can be utilized in Regenerative Therapies.

This chapter gives an overview about polymeric materials established in clinical use such as polyesters, polyurethanes, polyanhydrides, or carbohydrates. It describes further their synthesis and exemplary applications such as surgical sutures. Finally the importance of a continuing development of novel materials for future applications is pointed out, since the number of potential applications in the medical field is expanding rapidly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Barker SA, Young NM (1966) Isolation of hyaluronic acid by gel filtration on agarose. Carbohydr Res 2: 363–370.

    Article  CAS  Google Scholar 

  • Behl M, Lendlein A (2007) Actively moving polymers. Soft Matter 3: 58–67.

    Article  CAS  Google Scholar 

  • Bera S, Jedlinski Z (1993) Block segmented polymers - a new method of synthesis of copoly(­amide-ester) ester polymer. J Polym Sci Pol Chem 31: 731–739.

    Article  CAS  Google Scholar 

  • Boas NF (1949) Isolation of hyaluronic acid from the cocks comb. J Biol Chem 181: 573–575.

    CAS  PubMed  Google Scholar 

  • Brannon-Peppas L (1997) Polymers in controlled drug delivery. Med Plast Biomat: 34.

    Google Scholar 

  • Bucher JE, Slade WC (1909) The anhydrides of isophthalic and terephthalic acids. J Am Chem Soc 31: 1319–1321.

    Article  Google Scholar 

  • Cardy RH (1979) Carcinogenicity and chronic toxicity of 2,4-toluenediamine in f344 rats. J Natl Cancer Inst 62: 1107–1116.

    CAS  PubMed  Google Scholar 

  • Chabot F, et al. (1983) Configurational structures of lactic-acid stereocopolymers as determined by 13C-labeled 1H-NMR. Polymer 24: 53–59.

    Article  CAS  Google Scholar 

  • Crivello JV, et al. (1996) Ketene acetal monomers: Synthesis and characterization. J Polym Sci Pol Chem 34: 3091–3102.

    Article  CAS  Google Scholar 

  • Deasy PB, et al. (1989) Preparation and characterization of lactic glycolic acid polymers and copolymers. J Microencapsulation 6: 369–378.

    Article  CAS  PubMed  Google Scholar 

  • Di Lullo GA, et al. (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277: 4223–4231.

    Article  PubMed  Google Scholar 

  • Domb AJ, et al. (1994). In: Shalaby SW, (Ed.), Biomedical polymers. Hanser Publishers, Munich, 1994, pp. 17–32.

    Google Scholar 

  • Feng YK, Guo JT (2009) Biodegradable polydepsipeptides. Int J Mol Sci 10: 589–615.

    Article  CAS  PubMed  Google Scholar 

  • Friedlaender GE, et al. (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions : A prospective, randomized clinical trial comparing rhop-1 with fresh bone autograft. J Bone Joint Surg 83: S151.

    PubMed  Google Scholar 

  • Govender S, et al. (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures - a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg 84A: 2123–2134.

    Google Scholar 

  • Grigat E, et al. (1998) Bak 1095 and bak 2195: Completely biodegradable synthetic thermoplastics. Polym Degrad Stab 59: 223–226.

    Article  CAS  Google Scholar 

  • Gunatillake P, et al. (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 12: 301–47.

    Article  CAS  PubMed  Google Scholar 

  • Guo K, Chu CC (2007) Synthesis, characterization, and biodegradation of copolymers of unsaturated and saturated poly(ester amide)s. J Polym Sci Pol Chem 45: 1595–1606.

    Article  CAS  Google Scholar 

  • Han MG, et al. (2008) Synthesis and degradation behavior of poly(ethyl cyanoacrylate). Polym Degrad Stab 93: 1243–1251.

    Article  CAS  Google Scholar 

  • Heller J, et al. (2002) Poly(ortho esters): Synthesis, characterization, properties and uses. Adv Drug Delivery Rev 54: 1015–1039.

    Article  CAS  Google Scholar 

  • Heller J, et al. (1992) Synthesis and characterization of a new family of poly(ortho ester)s. Macromolecules 25: 3362–3364.

    Article  CAS  Google Scholar 

  • Heller J, et al. (1983) Controlled release of contraceptive steroids from biodegradable poly(ortho esters). Contraceptive Delivery Systems 4: 43–53.

    CAS  Google Scholar 

  • Heller J, et al. (1995) Poly(ortho esters) for the pulsed and continuous delivery of peptides and proteins. In: Lee VHL, et al., (Eds.), Trends and future perspectives in peptide and protein drug delivery. Harwood Academic Publ Gmbh, Chur, 1995, Vol. 4, pp. 39–56.

    Google Scholar 

  • Hill JW, Carothers WH (1932) Studies of polymerization and ring formation. XIV. A linear ­superpolyanhydride and a cyclic dimeric anhydride from sebacic acid. J Am Chem Soc 54: 1569–1579

    Google Scholar 

  • Hodde J (2006) Extracellular matrix as a bioactive material for soft tissue reconstruction. Anz Journal of Surgery 76: 1096–1100.

    Article  PubMed  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Delivery Rev 54: 3–12.

    Article  CAS  Google Scholar 

  • Horton VL, et al. (1988) Comparison of bioabsorbable poly(ester-amide) monomers and polymers in vivo using radiolabeled homologs. In: Gebelijn CG, Dunn RL, (Eds.), Progress in biomedical polymers. Plenum Press, New York, 1988, pp. 263–282.

    Google Scholar 

  • Jain JP, et al. (2005) Role of polyanhydrides as localized drug carriers. J Controlled Release 103: 541–563.

    Article  CAS  PubMed  Google Scholar 

  • Konan S, Haddad FS (2009) A clinical review of bioabsorbable interference screws and their adverse effects in anterior cruciate ligament reconstruction surgery. Knee 16: 6–13.

    Article  CAS  PubMed  Google Scholar 

  • Kricheldorf HR, Serra A (1985) Polylactones. 6. Influence of various metal-salts on the optical purity of poly(l-lactide). Polymer Bulletin 14: 497–502.

    Article  CAS  Google Scholar 

  • Kricheldorf HR, Stricker A (2000) Macrocycles. 13. Stannylenated glucose glycosides as cyclic initiators of epsilon-caprolactone and the synthesis of biodegradable networks. Macromolecules 33: 696–701.

    Article  CAS  Google Scholar 

  • Kulkarni A, et al. (2007) Hydrolytic degradation of poly(rac-lactide) and poly[(rac-lactide)-co-­glycolide] at the air-water interface. Surf Interface Anal 39: 740–746.

    Article  CAS  Google Scholar 

  • Laurencin CT, et al. (1995). In: Hollinger JO, (Ed.), Biomedical applications of synthetic biodegradable polymers. CRC-Press, Boca Raton, 1995, pp. 59–101.

    Google Scholar 

  • Leenslag JW, et al. (1984) Resorbable materials of poly(l-lactide). 5. Influence of secondary structure on the mechanical-properties and hydrolyzability of poly(L-lactide) fibers produced by a dry-spinning method. J Appl Polym Sci 29: 2829–2842.

    Article  CAS  Google Scholar 

  • Leenslag JW, Pennings AJ (1987) Synthesis of high-molecular-weight poly(L-lactide) initiated with tin 2-ethylhexanoate. Makromol Chem, Macromol Chem Phys 188: 1809–1814.

    CAS  Google Scholar 

  • Lendlein A (1999) Polymere als Implantatwerkstoffe. Chem unserer Zeit 33: 279–295.

    Article  CAS  Google Scholar 

  • Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem, Int Ed 41: 2034–2057.

    Article  CAS  Google Scholar 

  • Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296: 1673–1676.

    Article  PubMed  Google Scholar 

  • Lendlein A, et al. (1998) Tissue-compatible multiblock copolymers for medical applications, controllable in degradation rate and mechanical properties. Macromol Chem Phys 199: 2785–2796.

    Article  CAS  Google Scholar 

  • Li LC, et al. (2002) Polyanhydride implant for antibiotic delivery - from the bench to the clinic. Adv Drug Delivery Rev 54: 963–986.

    Article  Google Scholar 

  • Li X, Jastri BR (2006) Biodegradable polymeric delivery systems. Design of controlled release drug delivery systems. McGraw-Hill, New York, 2006, pp. 271–304.

    Google Scholar 

  • Little U, et al. (2009) Accelerated degradation behaviour of poly(epsilon-caprolactone) via melt blending with poly(aspartic acid-co-lactide) (pal). Polym Degrad Stab 94: 213–220.

    Article  CAS  Google Scholar 

  • Martinez MB, et al. (1997) Hydrolytic degradation of poly(ester amides) derived from carbohydrates. Macromolecules 30: 3197–3203.

    Article  Google Scholar 

  • Meek MF, Coert JH (2008) US Food and Drug Administration/Conformit Europe-approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves. Annals of Plastic Surgery 60(4): 466–472.

    CAS  PubMed  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32: 762–798.

    Article  CAS  Google Scholar 

  • Ng SY, et al. (1997) Synthesis and erosion studies of self-catalyzed poly(ortho ester)s. Macromolecules 30: 770–772.

    Article  CAS  Google Scholar 

  • Nieuwenhuis J (1992) Synthesis of polylactides, polyglycolides and their copolymers. Clin Mater 10: 59–67.

    Article  CAS  PubMed  Google Scholar 

  • Paredes N, et al. (1998) Synthesis and characterization of a family of biodegradable poly(ester amide)s derived from glycine. J Polym Sci Pol Chem 36: 1271–1282.

    Article  CAS  Google Scholar 

  • Peppas NA (Ed.) 1987. Hydrogels in medicine and pharmacy. CRC-Press, Boca Raton.

    Google Scholar 

  • Piskin E (1995) Biodegradable polymers as biomaterials J Biomat Sci, Polym Ed 6: 775–795.

    CAS  Google Scholar 

  • Purcell DB, et al. (2004) Bioabsorbable interference screws in acl reconstruction. Oper Tech Sports Med 12: 180–187.

    Article  Google Scholar 

  • Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Delivery Rev 53: 321–339.

    Article  CAS  Google Scholar 

  • Shalaby SW, Johnson A (1994) Biomedical polymers. Designed-to-degrade systems. In: Shalaby SW, (Ed.). Hanser Publishers, Munich, 1994, pp. 1–34.

    Google Scholar 

  • Shih C, et al. (1993) Invivo and invitro release of ivermectin from poly(ortho ester) matrices. 1. Cross-linked matrix prepared from ketene acetal end-capped prepolymer. J Controlled Release 25: 155–162.

    Article  CAS  Google Scholar 

  • Spaans CJ, et al. (1998) High molecular weight polyurethanes and a polyurethane urea based on 1,4-butanediisocyanate. Polymer Bulletin 41: 131–138.

    Article  CAS  Google Scholar 

  • Spotnitz WD, Burks S (2008) Hemostats, sealants, and adhesives: Components of the surgical toolbox. Transfusion 48: 1502–1516.

    Article  PubMed  Google Scholar 

  • Syzcher M (Ed.) 1999. Syzcher’s handbook of polyurethanes. CRC-Press, Boca Raton.

    Google Scholar 

  • Tang RP, et al. (2009) Poly(ortho ester amides): Acid-labile temperature-responsive copolymers for potential biomedical applications. Biomacromolecules 10: 722–727.

    Article  CAS  PubMed  Google Scholar 

  • The European Society for Biomaterials (1991) 2nd consensus conference on definitions in biomaterials 7–8th september. J Mater Sci: Mater Med 2: 62.

    Article  Google Scholar 

  • Tsuji H, et al. (2003) Surface hydrophilicity and enzymatic hydrolyzability of biodegradable polyesters: 1. Effects of alkaline treatment. Polym Int 52: 843–852.

    Article  CAS  Google Scholar 

  • Ueda H, Tabata Y (2003) Polyhydroxyalkanonate derivatives in current clinical applications and trials. Adv Drug Delivery Rev 55(4): 501–518.

    Google Scholar 

  • Vaccaro AR, et al. (2002) Bone grafting alternatives in spinal surgery. Spine J 2: 206–15.

    Article  PubMed  Google Scholar 

  • Vera M, et al. (2006) Microspheres from new biodegradable poly(ester amide)s with different ratios of L- and D-alanine for controlled drug delivery. J Microencapsulation 23: 686–697.

    Article  CAS  PubMed  Google Scholar 

  • Vert M (1986) Biomedical polymers from chiral lactides and functional lactones - properties and applications. Makromol Chem, Macromol Symp 6: 109–122.

    CAS  Google Scholar 

  • Vert M (1989) Bioresorbable polymers for temporary therapeutic applications. Angew Makromol Chem 166: 155–168.

    Article  Google Scholar 

  • Weigel T, et al. (2006) Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Devices 3: 835–851.

    Article  CAS  PubMed  Google Scholar 

  • Wu XS (1995). In: D.L. Wise DJT, D.E. Altobelli, M.J. Yaszemski, D.J. Gresser and E.R. Schwartz, (Ed.), Encyclopaedic handbook of biomaterials and bioengineering. Marcel Decker, New York, 1995, pp. 1015–1054.

    Google Scholar 

  • Xiong X, et al. (2007) Isolated nature-identical collagen, WO 2007/137827 A1.

    Google Scholar 

  • Ye T, et al. (2008) Enhanced cell affinity of poly(l-lactide) film by immobilizing phosphonized chitosan. Appl Surf Sci 255: 446–448.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Deutsche Forschungsgemeinschaft (DFG, SFB 760) and the Bundesministerium für Bildung und Forschung (BMBF) for supporting the interdisciplinary research in the field of tissue regeneration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lendlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Schroeter, M., Wildemann, B., Lendlein, A. (2011). Biodegradable Materials. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9075-1_20

Download citation

Publish with us

Policies and ethics