Skip to main content

Classification of Multi-UAV Architectures

  • Reference work entry
  • First Online:

Abstract

This chapter presents a classification of different schemes for the cooperation of multiple UAVs, taking into account the coupling between the vehicles and the type of cooperation. Then, the research and development activities in load transportation, formation control, swarm approaches, and intentional cooperation architectures are revised. The chapter also considers UAVs networked with other elements in the environment to support their navigation and, in general, their operation. The chapter refers theoretical work but also emphasizes practical field outdoor demonstrations involving aerial vehicles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Y. Altshuler, V. Yanovsky, I. Wagner, A. Bruckstein, Efficient cooperative search of smart targets using UAV swarms. Robotica 26(4), 551–557 (2008)

    Article  Google Scholar 

  • D. Barnes, J. Gray, Behaviour synthesis for co-operant mobile robot control, inInternational Conference on Control, Edinburgh, 1991, vol. 2, pp. 1135–1140

    Google Scholar 

  • S. Bayraktar, G.E. Fainekos, G.J. Pappas, Experimental cooperative control of fixed-wing unmanned aerial vehicles, inProceedings of the IEEE Conference on Decision and Control, Atlantis, Paradise Island, the Bahamas, 2004

    Google Scholar 

  • M. Bernard, K. Kondak, Generic slung load transportation system using small size helicopters, inProceedings of the International Conference on Robotics and Automation, Kobe, Japan (IEEE, 2009), pp. 3258–3264

    Google Scholar 

  • M. Bernard, K. Kondak, I. Maza, A. Ollero, Autonomous transportation and deployment with aerial robots for search and rescue missions. J. Field Robot. 28(6), 914–931 (2011)

    Article  Google Scholar 

  • J. Bom, B. Thuilot, F. Marmoiton, P. Martinet, Nonlinear control for urban vehicles platooning, relying upon a unique kinematic GPS, inProceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, pp. 4138–4143

    Google Scholar 

  • J. Borenstein, The OmniMate: a guidewire- and beacon-free AGV for highly reconfigurable applications. Int. J. Prod. Res. 38(9), 1993–2010 (2000)

    Article  MATH  Google Scholar 

  • S.C. Botelho, R. Alami, M+: a scheme for multi-robot cooperation through negotiated task allocation and achievement, inProceedings of the IEEE International Conference on Robotics and Automation, Detroit, 1999, vol. 2, pp. 1234–1239

    Google Scholar 

  • F. Caballero, L. Merino, P. Gil, I. Maza, A. Ollero, A probabilistic framework for entire WSN localization using a mobile robot. Robot. Auton. Syst. 56(10), 798–806 (2008)

    Article  Google Scholar 

  • G. Campa, Y. Gu, B. Seanor, M. Napolitano, L. Pollini, M. Fravolini, Design and flight-testing of non-linear formation control laws. Control Eng. Pract. 15(9), 1077–1092 (2007)

    Article  Google Scholar 

  • Y.U. Cao, A.S. Fukunaga, A. Kahng, Cooperative mobile robotics: antecedents and directions. Auton. Robots 4(1), 7–27 (1997)

    Article  Google Scholar 

  • L. Chaimowicz, V. Kumar, M.F.M. Campos, A paradigm for dynamic coordination of multiple robots. Auton. Robots 17(1), 7–21 (2004)

    Article  Google Scholar 

  • P. Corke, R. Peterson, D. Rus, Networked robots: flying robot navigation using a sensor net, inProceedings of the International Symposium of Robotic Research, Siena, 2003

    Google Scholar 

  • P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, G. Sukhatme, Autonomous deployment and repair of a sensor network using an unmanned aerial vehicle, in Proceedings of the IEEEInternational Conference on Robotics and Automation, New Orleans, LA, USA, 2004, pp. 3602–3608

    Google Scholar 

  • J.J. Corner, G.B. Lamont, Parallel simulation of UAV swarm scenarios, inProceedings of the 36th Conference on Winter Simulation, WSC'04, Washington, DC, USA, 2004, pp. 355–363

    Google Scholar 

  • P. Dasgupta, A multiagent swarming system for distributed automatic target recognition using unmanned aerial vehicles. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 38(3), 549–563 (2008)

    Article  Google Scholar 

  • J.P. Desai, J.P. Ostrowski, V. Kumar, Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Autom. 17(6), 905–908 (2001)

    Article  Google Scholar 

  • M.B. Dias, A. Stenz, Opportunistic optimization for market-based multirobot control, inProceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, 2002, pp. 2714–2720

    Chapter  Google Scholar 

  • A. Fagiolini, G. Valenti, L. Pallottino, G. Dini, A. Bicchi, Decentralized intrusion detection for secure cooperative multi-agent systems, inProceedings of the IEEE International Conference on Decision and Control, New Orleans, LA, USA, 2007, pp. 1553–1558

    Google Scholar 

  • R. Fierro, A. Das, J. Spletzer, J. Esposito, V. Kumar, J.P. Ostrowski, G. Pappas, C.J. Taylor, Y. Hur, R. Alur, I. Lee, G. Grudic, B. Southall, A framework and architecture for multi-robot coordination. Int. J. Robot. Res. 21(10–11), 977–995 (2002)

    Article  Google Scholar 

  • D. Galzi, Y. Shtessel, UAV formations control using high order sliding modes, inProceedings of the American Control Conference, Minneapolis, MN, USA, 2006, vol. 2006, pp. 4249–4254

    Google Scholar 

  • J. Gancet, G. Hattenberger, R. Alami, S. Lacroix, Task planning and control for a multi-UAV system: architecture and algorithms, inProceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada, 2005, pp. 1017–1022

    Google Scholar 

  • B. Gerkey, M. Matarić, Sold!: auction methods for multi-robot coordination. IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)

    Article  Google Scholar 

  • B. Gerkey, M. Matarić, A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23(9), 939–954 (2004)

    Article  Google Scholar 

  • F. Giulietti, L. Pollini, M. Innocenti, Autonomous formation flight. IEEE Control Syst. Mag. 20(6), 34–44 (2000)

    Article  Google Scholar 

  • M. Grossglauser, D.N.C. Tse, Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. Netw. 10(4), 477–486 (2002)

    Article  Google Scholar 

  • Y. Gu, B. Seanor, G. Campa, M. Napolitano, L. Rowe, S. Gururajan, S. Wan, Design and flight testing evaluation of formation control laws. IEEE Trans. Control Syst. Technol. 14(6), 1105–1112 (2006)

    Article  Google Scholar 

  • K. Han, J. Lee, Y. Kim, Unmanned aerial vehicle swarm control using potential functions and sliding mode control. Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng. 222(6), 721–730 (2008)

    Article  Google Scholar 

  • R. He, A. Bachrach, N. Roy, Efficient planning under uncertainty for a target-tracking micro-aerial vehicle, inIEEE International Conference on Robotics and Automation, 2010, Kobe, Japan, 2010

    Google Scholar 

  • J. How, E. King, Y. Kuwata, Flight demonstrations of cooperative control for UAV teams, inProceedings of the AIAA 3rd Unmanned-Unlimited Technical Conference, Workshop, and Exhibit, Chicago, 2004, vol. 1, pp. 505–513

    Google Scholar 

  • M.A. Hsieh, L. Chaimowicz, A. Cowley, B. Grocholsky, J.F. Keller, V. Kumar, C.J. Taylor, Y. Endo, R.C. Arkin, B. Jung, D.F. Wolf, G. Sukhatme, D.C. MacKenzie, Adaptive teams of autonomous aerial and ground robots for situational awareness. J. Field Robot. 24(11), 991–1014 (2007)

    Article  Google Scholar 

  • T.L. Huntsberger, A. Trebi-Ollennu, H. Aghazarian, P.S. Schenker, P. Pirjanian, H.D. Nayar, Distributed control of multi-robot systems engaged in tightly coupled tasks. Auton. Robots 17(1), 79–92 (2004)

    Article  Google Scholar 

  • S. Jain, R.C. Shah, W. Brunette, G. Borriello, S. Roy, Exploiting mobility for energy efficient data collection in wireless sensor networks. Mobile Netw. Appl. 11(3), 327–339 (2006)

    Article  Google Scholar 

  • K. Konolige, D. Fox, B. Limketkai, J. Ko, B. Stewart, Map merging for distributed robot navigation, inProceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, 2003, pp. 212–217

    Google Scholar 

  • K. Kosuge, M. Sato, Transportation of a single object by multiple decentralized-controlled non-holonomic mobile robots, inProceedings of the IEEE International Conference on Intelligent Robots and Systems, Kyongju, Korea, 1999, vol. 3, pp. 1681–1686

    Google Scholar 

  • M. Kovacina, D. Palmer, G. Yang, R. Vaidyanathan, Multi-agent control algorithms for chemical cloud detection and mapping using unmanned air vehicles, inProceedings of the IEEE International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 2002, vol. 3, pp. 2782–2788

    Chapter  Google Scholar 

  • C.R. Kube, H. Zhang, Collective robotics: from social insects to robots. Adapt. Behav. 2(2), 189–218 (1993)

    Article  Google Scholar 

  • J.C. Latombe,Robot Motion Planning (Kluwer, 1990)

    Google Scholar 

  • J.C. Latombe, Robot Motion Planning (Kluwer Academic Publishers, Boston, MA, 1991)

    Book  Google Scholar 

  • S.M. LaValle, Planning Algorithms (Cambridge University Press, Cambridge, 2006) Available at http://planning.cs.uiuc.edu/

    Book  MATH  Google Scholar 

  • H. Li, F. Karray, O. Basir, I. Song, A framework for coordinated control of multiagent systems and its applications. IEEE Trans. Syst. Man Cybern., Part A: Syst. Hum. 38(3), 534–548 (2008)

    Article  Google Scholar 

  • C. Lim, R.P. Metzger, A. Rodriguez, Interactive modeling, simulation, animation and real-time control (MoSART) twin lift helicopter system environment, inProceedings of the American Control Conference, San Diego, CA, USA, 1999, vol. 4, pp. 2747–2751

    Google Scholar 

  • M.J. Matarić, Designing emergent behaviors: from local interactions to collective intelligence, inFrom Animals to Animats 2, 2nd International Conference on Simulation of Adaptive Behavior (SAB-92), ed. by J.-A. Meyer, H. Roitblat, S. Wilson (MIT, Cambridge, Honolulu, Hawaii, USA, 1992), pp. 432–441

    Google Scholar 

  • I. Maza, A. Ollero, Multiple UAV cooperative searching operation using polygon area decomposition and efficient coverage algorithms, inDistributed Autonomous Robotic Systems 6, ed. by R. Alami, R. Chatila, H. Asama. Volume 6 of Distributed Autonomous Robotic Systems (Springer, Tokyo/New York, 2007), pp. 221–230

    Chapter  Google Scholar 

  • I. Maza, K. Kondak, M. Bernard, A. Ollero, Multi-UAV cooperation and control for load transportation and deployment. J. Intell. Robot. Syst. 57(1–4), 417–449 (2010)

    Article  MATH  Google Scholar 

  • I. Maza, F. Caballero, J. Capitan, J.M. de Dios, A. Ollero, A distributed architecture for a robotic platform with aerial sensor transportation and self-deployment capabilities. J. Field Robot. 28(3), 303–328 (2011)

    Article  Google Scholar 

  • L. Merino, Cooperative perception techniques for multiple unmanned aerial vehicles: applications to the cooperative detection, localization and monitoring of forest fires. PhD thesis, Dpto. Ingenieria de Sistemas y Automatica - University of Seville

    Google Scholar 

  • L. Merino, F. Caballero, J.M. de Dios, J. Ferruz, A. Ollero, A cooperative perception system for multiple UAVs: application to automatic detection of forest fires. J. Field Robot. 23(3–4), 165–184 (2006)

    Article  Google Scholar 

  • N. Michael, J. Fink, V. Kumar, Cooperative manipulation and transportation with aerial robots. Auton. Robots 30(1), 73–86 (2011)

    Article  Google Scholar 

  • M. Mittal, J.V.R. Prasad, D.P. Schrage, Nonlinear adaptive control of a twin lift helicopter system. IEEE Control Syst. Mag. 11(3), 39–45 (1991)

    Article  Google Scholar 

  • A. Ollero, I. Maza (eds.),Multiple Heterogeneous Unmanned Aerial Vehicles. Springer Tracts on Advanced Robotics (Springer, Berlin/New York, 2007)

    MATH  Google Scholar 

  • A. Ollero, L. Merino, Control and perception techniques for aerial robotics. Annu. Rev. Control 28(2), 167–178 (2004)

    Article  Google Scholar 

  • I. Palunko, P. Cruz, R. Fierro, Agile load transportation: safe and efficient load manipulation with aerial robots. IEEE Robot. Autom. Mag. 19(3), 69–79 (2012)

    Article  Google Scholar 

  • L. Parker, ALLIANCE: an architecture for fault-tolerant multi-robot cooperation. IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)

    Article  Google Scholar 

  • L. Parker, Distributed intelligence: overview of the field and its application in multi-robot systems. J. Phys. Agents 2(1), 5–14 (2008)

    Google Scholar 

  • T. Paul, T. Krogstad, J. Gravdahl, Modelling of UAV formation flight using 3D potential field. Simul. Model. Pract. Theory 16(9), 1453–1462 (2008)

    Article  Google Scholar 

  • H.K. Reynolds, A.A. Rodriguez, H control of a twin lift helicopter system, inProceedings of the 31st IEEE Conference on Decision and Control, Tucson, AZ, USA, 1992, pp. 2442–2447

    Google Scholar 

  • T. Schmitt, R. Hanek, M. Beetz, S. Buck, B. Radig, Cooperative probabilistic state estimation for vision-based autonomous mobile robots. IEEE Trans. Robot. Autom. 18, 670–684 (2002)

    Article  Google Scholar 

  • C. Schumacher, S. Singh, Nonlinear control of multiple UAVs in close-coupled formation flight, inProceedings of the AIAA Guidance, Navigation, and Control Conference, Denver, CO, USA, 2000, pp. 14–17

    Google Scholar 

  • A.J.C. Sharkey, Robots, insects and swarm intelligence. Artif. Intell. Rev. 26(4), 255–268 (2006)

    Article  Google Scholar 

  • G. Smith, The Contract Net Protocol: high-level communication and control in a distributed problem solver. IEEE Trans. Comput. 29(12), 1104–1113 (1980)

    Article  Google Scholar 

  • K. Sreenath, N. Michael, V. Kumar, Trajectory generation and control of a quadrotor with a cable-suspended load - a differentially-flat hybrid system, inProceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 2013

    Google Scholar 

  • T.G. Sugar, V. Kumar, Control of cooperating mobile manipulators. IEEE Trans. Robot. Autom. 18(1), 94–103 (2002)

    Article  Google Scholar 

  • S. Sukkarieh, E. Nettleton, J.-H. Kim, M. Ridley, A. Goktogan, H. Durrant-Whyte, The ANSER project: data fusion across multiple uninhabited air vehicles. Int. J. Robot. Res. 22(7–8), 505–539 (2003)

    Article  Google Scholar 

  • S. Thrun, A probabilistic online mapping algorithm for teams of mobile robots. Int. J. Robot. Res. 20(5), 335–363 (2001)

    Article  Google Scholar 

  • P. Venkitasubramaniam, S. Adireddy, L. Tong, Sensor networks with mobile agents: optimal random access and coding. IEEE J. Sel. Areas Commun. (Special issue on Sens. Netw.) 22(6), 1058–1068 (2004)

    Article  Google Scholar 

  • A. Viguria, I. Maza, A. Ollero, Distributed service-based cooperation in aerial/ground robot teams applied to fire detection and extinguishing missions. Adv. Robot. 24(1–2), 1–23 (2010)

    Article  Google Scholar 

  • B. Yun, B. Chen, K. Lum, T. Lee, Design and implementation of a leader-follower cooperative control system for unmanned helicopters. J. Control Theory Appl. 8(1), 61–68 (2010)

    Article  Google Scholar 

  • S. Zelinski, T.J. Koo, S. Sastry, Hybrid system design for formations of autonomous vehicles, inProceedings of the IEEE Conference on Decision and Control, Maui, HI, USA, 2003, vol. 1, pp. 1–6

    Google Scholar 

  • D. Zhang, G. Xie, J. Yu, L. Wang, Adaptive task assignment for multiple mobile robots via swarm intelligence approach. Robot. Auton. Syst. 55(7), 572–588 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Maza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Maza, I., Ollero, A., Casado, E., Scarlatti, D. (2015). Classification of Multi-UAV Architectures. In: Valavanis, K., Vachtsevanos, G. (eds) Handbook of Unmanned Aerial Vehicles. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9707-1_119

Download citation

Publish with us

Policies and ethics