Skip to main content

Adhesion in Wet Environments: Frogs

  • Reference work entry
Encyclopedia of Nanotechnology

Synonyms

Wet adhesion in tree frogs

Definition

Mechanisms of adhesion in climbing frogs.

Overview

Biomimetics of Animal Adhesion

Mankind’s understanding of the adhesive mechanisms of climbing animals has increased rapidly in recent years, in no small way due to advances in materials science providing both the tools and the theoretical background. This research has shown that, as a result of millions of years of evolution, the adhesive mechanisms of climbing animals are highly dynamic, showing many features that are the envy of materials scientists. Unlike most man-made adhesives, they (1) cope well with rough and antiadhesive substrates, (2) have self-cleaning mechanisms and so recover quickly following contamination, (3) can control attachment so that it only occurs when required, and (4) possess mechanisms for effortless detachment. Finally (5), since animals attach and detach their adhesive pads every time they take a step, sticking ability is not lost with repeated application,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorb, S.N.: Uncovering insect stickiness: structure and properties of hairy attachment devices. Am. Entomol. 51, 31–35 (2005)

    Google Scholar 

  2. Gorb, S.N.: Smooth attachment devices in insects. In: Casas, J., Simpson, S.J. (eds.) Advances in Insect Physiology: Insect Mechanics and Control. Adv. Insect Physiol. 34, 81–116 (2008)

    Google Scholar 

  3. Autumn, K., Sitti, M., Liang, Y.C.A., Peattie, A.M., Hansen, W.R., Sponberg, S., Kenny, T.W., Fearing, R., Israelachvili, J.N., Full, R.J.: Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. USA 99, 12252–12256 (2002)

    CAS  Google Scholar 

  4. Barnes, W.J.P.: Functional morphology and design constraints of smooth adhesive pads. Mater. Res. Soc. Bull. 32, 479–485 (2007)

    CAS  Google Scholar 

  5. Federle, W., Barnes, W.J.P., Baumgartner, W., Drechsler, P., Smith, J.M.: Wet but not slippery: boundary friction in tree frog adhesive toe pads. J. R. Soc. Interface 3, 689–697 (2006)

    CAS  Google Scholar 

  6. Bhushan, B.: Introduction to Tribology. Wiley, New York (2002)

    Google Scholar 

  7. Butt, H.-J., Barnes, W.J.P., del Campo, A., Kappl, M.: Capillary forces between soft, elastic spheres. Soft Matter. 6, 5930–5936 (2010)

    CAS  Google Scholar 

  8. Ernst, V.: The digital pads of the tree frog, Hyla cinerea. 1. The epidermis. Tissue Cell 5, 83–96 (1973)

    CAS  Google Scholar 

  9. Green, D.M.: Treefrog toe pads: comparative surface morphology using scanning electron microscopy. Can. J. Zool. 57, 2033–2046 (1979)

    Google Scholar 

  10. Emerson, S.B., Diehl, D.: Toe pad morphology and mechanisms of sticking in frogs. Biol. J. Linn. Soc. 13, 199–216 (1980)

    Google Scholar 

  11. Hanna, G., Barnes, W.J.P.: Adhesion and detachment of the toe pads of tree frogs. J. Exp. Biol. 155, 103–125 (1991)

    Google Scholar 

  12. Smith, J.M., Barnes, W.J.P., Downie, J.R., Ruxton, G.D.: Structural correlates of increased adhesive efficiency with adult size in the toe pads of hylid tree frogs. J. Comp. Physiol. A 192, 1193–1204 (2006)

    Google Scholar 

  13. Ghatak, A., Mahadevan, L., Chung, J.Y., Chaudhury, M.K., Shenoy, V.: Peeling from a biomimetically patterned thin elastic film. Proc. Roy. Soc. Lond. A 460, 2725–2735 (2004)

    Google Scholar 

  14. Persson, B.N.J.: Wet adhesion with application to tree frog adhesive toe pads and tires. J. Phys. Cond. Matter 19, 376110 (16 pp) (2007)

    Google Scholar 

  15. Scholz, I., Barnes, W.J.P., Smith, J.M., Baumgartner, W.: Ultrastructure and physical properties of an adhesive surface, the toe pad epithelium of the tree frog, Litoria caerulea White. J. Exp. Biol. 212, 155–162 (2009)

    Google Scholar 

  16. Barnes, W.J.P., Perez Goodwyn, P., Nokhbatolfoghahai, M., Gorb, S.N.: Elastic modulus of tree frog adhesive toe pads. J. Comp. Physiol. A 197, 969-978 (2011)

    Google Scholar 

  17. Samani, A., Zubovitz, J., Plewer, D.: Elastic moduli of normal and pathological human breast tissue: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 52, 1565–1576 (2007)

    Google Scholar 

  18. Vogel, S.: Comparative Biomechanics: Life’s Physical World. Princeton University Press, Princeton (2003)

    Google Scholar 

  19. Perez Goodwyn, P., Peressadko, A., Schwarz, H., Kastne, V., Gorb, S.: Material structure, stiffness, and adhesion: why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera). J. Comp. Physiol. A 192, 1233–1243 (2006)

    Google Scholar 

  20. Barnes, W.J.P., Oines, C., Smith, J.M.: Whole animal measurements of shear and adhesive forces in adult tree frogs: insights into underlying mechanisms of adhesion obtained from studying the effects of size and scale. J. Comp. Physiol. A 192, 1179–1191 (2006)

    Google Scholar 

  21. Smith, J.M., Barnes, W.J.P., Downie, J.R., Ruxton, G.D.: Adhesion and allometry from metamorphosis to maturation in hylid tree frogs – a sticky problem. J. Zool. 270, 372–383 (2006)

    Google Scholar 

  22. Arzt, E., Gorb, S., Spolenak, R.: From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 100, 10603–10606 (2003)

    CAS  Google Scholar 

  23. Autumn, K., Dittmore, A., Santos, D., Spenko, M., Cutkosky, M.: Frictional adhesion: a new angle on gecko attachment. J. Exp. Biol. 209, 3569–3579 (2006)

    CAS  Google Scholar 

  24. Majumder, A., Ghatak, A., Sharmer, A.: Microfluidic adhesion induced by subsurface microstructures. Science 318, 258–261 (2007)

    CAS  Google Scholar 

  25. Varenberg, M., Gorb, S.N.: Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 21, 483–486 (2009)

    CAS  Google Scholar 

  26. Varenberg, M., Gorb, S.N.: A beetle-inspired solution for underwater adhesion. J. R. Soc. Interface 5, 383–385 (2008)

    CAS  Google Scholar 

  27. Barnes, W.J.P.: Tree frogs and tire technology. Tire Technol. Int. March 42–47 (1999)

    Google Scholar 

  28. Barnes, W.J.P., Smith, J., Oines, C., Mundl, R.: Bionics and wet grip. Tire Technol. Int. Dec. 56–60 (2002)

    Google Scholar 

  29. Vogel, M.J., Steen, P.H.: Capillary-based switchable adhesion, beetle inspired. Proc. Natl. Acad. Sci. USA 107, 3377–3381 (2010)

    CAS  Google Scholar 

  30. Barnes, W.J.P., Pearman, J., Platter, J.: Application of peeling theory to tree frog adhesion, a biological system with biomimetic implications. Eur. Acad. Sci. E-Newsletter Sci. Technol. 1(1), 1–2 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Jon. P. Barnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Barnes, W.J.P. (2012). Adhesion in Wet Environments: Frogs. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9751-4_257

Download citation

Publish with us

Policies and ethics