Skip to main content

Nanoparticles for Photodynamic Therapy Applications

  • Chapter
  • First Online:
Intracellular Delivery

Abstract

Photodynamic therapy has emerged as an alternative to chemo- and radiotherapy for the treatment of certain types of cancer. Nanoparticles have been used to improve the delivery and the efficiency of the photosensitizer as they allow its encapsulation without loss of activity. Using targeting strategies, they can also allow the selective accumulation of the photosensitizer in the cancer tissues. In this review, based on the chemical nature of the nanoparticles, the different methods for their syntheses are described from the pioneering works to the latest achievements. Indeed the nanosystems can be conjugated to a biomolecule or an antibody to target receptors over-expressed in cancer cells and/or angiogenic vascular endothelial cells. Numerous in vivo and in vitro applications have been described. Multifunctional nanoplatforms combining several applications within the same nano-object emerge as potential important theranostic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA:

Ascorbic acid

ABDA:

9,10-Anthracenediyl-bis(methylene)dimalonic acid

ABMD:

Disodium 9,10-anthracenediyl-bis-(methylene)dimalonic acid

ADPA:

Anthracene-9,10-dipropionic acid

APTS:

3-(Aminopropyl)triethoxysilane

ALA:

5-Aminolevulinic acid

AOT:

Sodium bis-(2-ethylhexyl) sulfosuccinate

AuNPs:

Gold nanoparticles

BDSA:

9,10-bis (4′-(4″-Aminostyryl)styryl)anthracene

CLSM:

Confocal laser scanning microscopy

CMC:

Carboxymethylcellulose

DID:

Dioctadecyl tetramethyl indodicarbocyanine chloro benzene

DMSO:

Dimethylsulfoxide

DNA:

Deoxyribonucleic acid

DPBF:

1,3 Diphenylisobenzofuran

DXP:

(N,N′)-bis(2-6-dimethylphenyl)perylene-3,4,9,10-tetracarbodiimide

EPR:

Enhanced permeability and retention

FDA:

Food and Drug Administration

FITC:

Fluoresceine isothiocyanate

FRET:

Förster Resonance Energy Transfer

FTIR:

Fourier transform infrared spectroscopy

GM:

Göppert-Mayer

HB:

Hypocrellin B

HP:

Hematoporphyrin

HPPH:

2-Devinyl-2-(1-hexyloxyethyl)pyropheophorbide

IP:

Iodobenzylpyropheophorbide

IPS:

Iodobenzyl-pyro-silane

IR:

Infrared

MB:

Methylene blue

MPA:

Mercaptopropionic acid

MRSA:

Methicillin-resistant Staphylococcus aureus

MSN:

Mesoporous silica nanoparticles

MRI:

Magnetic resonance imaging

MTAP:

meso-Tetra (o-amino phenyl) porphyrin

m-THPC:

meso Meta-tetra(hydroxyphenyl)chlorin

mTHPP:

meso-Tetrahydroxyphenyl porphyrin

MTT:

(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

MWNTs:

Multiwalled carbon nanotubes

NIR:

Near Infrared

NPs:

Nanoparticles

ORMOSIL:

Organically modified silica

PBS:

Phosphate buffered saline

PC:

Phthalocyaninedihydroxyle

Pc :

Phthalocyanine

Pc 4:

Silicon phthalocyanine 4

Pc 19:

Silicon phthalocyanine 219

PDT:

Photodynamic therapy

PEG:

Polyethylene glycol

PFHA:

Perfluoroheptanoic acid

PpIX:

Protoporphyrin IX

PS:

Photosensitizer

PdTPP:

Pd-meso-Tetra(4-carboxyphenyl) porphyrin

PHPP:

2,7,12,18-Tetramethyl-3,8-di(1-propoxyethyl)-13,17-bis-(3-hydroxypropyl)porphyrin

PSS:

Polystyrene sulfonic acid

RB:

Rose Bengal

RNA:

Ribonucleic acid

ROS:

Reactive Oxygen Species

SWNTs:

Single walled carbon nanotubes

TPP:

Meso-tetraphenyl porphyrin

RNO:

N, N-dimethyl-4-nitrosoaniline

SEM:

Scanning Electron Microscopy

TEM:

Transmission electron microscopy

TPA:

Two-photon absorption

TEOS:

Tetraethoxysilane

UV-Vis:

Ultraviolet-visible

XRD:

X-ray diffraction

ZnPc:

Zinc(II) phthalocyanine

References

  • Allison, R. R., Mota, H. C., Bagnato, V. S. & Sibata, C. H. (2008) Bio-nanotechnology and photodynamic therapy – State of the art review. Photodiagnosis and Photodynamic Therapy, 5, 19–28.

    PubMed  CAS  Google Scholar 

  • Anas, A., Akita, H., Harashima, H., Itoh, T., Ishikawa, M. & Biju, V. (2008) Photosensitized breakage and damage of DNA by CdSe-ZnS quantum dots. J. Phys. Chem. B, 112, 10005–10011.

    PubMed  CAS  Google Scholar 

  • Ashikaga, T., Wada, M., Kobayashi, H., Mori, M., Katsumura, Y., Fukui, H., Kato, S., Yamaguchi, M. & Takamatsu, T. (2000) Effect of the photocatalytic activity of TiO2 on plasmid DNA. Mutation Research – Genetic Toxicology and Environmental Mutagenesis, 466, 1–7.

    PubMed  CAS  Google Scholar 

  • Bechet, D., Couleaud, P., Frochot, C., Viriot, M.-L., Guillemin, F. & Barberi-Heyob, M. (2008) Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends in Biotechnology, 26, 612–621.

    PubMed  CAS  Google Scholar 

  • Beguin, Y., Sautois, B., Forget, P., Bury, J. & Fillet, G. (1997) Long term follow-up of patients with acute myelogenous leukemia who received the daunorubicin, vincristine, and cytosine arabinoside regimen. Cancer, 79, 1351–1354.

    PubMed  CAS  Google Scholar 

  • Biju, V., Mundayoor, S., Omkumar, R. V., Anas, A. & Ishikawa, M. (2010) Bioconjugated quantum dots for cancer research: Present status, prospects and remaining issues. Biotechnology Advances, 28, 199–213.

    PubMed  CAS  Google Scholar 

  • Brevet, D., Gary-Bobo, M., Raehm, L., Richeter, S., Hocine, O., Amro, K., Loock, B., Couleaud, P., Frochot, C., Morere, A., Maillard, P., Garcia, M. & Durand, J. O. (2009) Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem. Commun., 1475–1477.

    Google Scholar 

  • Britton, J., Antunes, E. & Nyokong, T. (2009) Fluorescence studies of quantum dots and zinc tetraamino phthalocyanine conjugates. Inorganic Chemistry Communications, 12, 828–831.

    CAS  Google Scholar 

  • Britton, J., Antunes, E. & Nyokong, T. (2010) Fluorescence quenching and energy transfer in conjugates of quantum dots with zinc and indium tetraamino phthalocyanines. Journal of Photochemistry and Photobiology a-Chemistry, 210, 1–7.

    CAS  Google Scholar 

  • Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, R. N., Limbach, L. K., Bruinink, A. & Stark, W. J. (2006) In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environmental Science and Technology, 40, 4374–4381.

    PubMed  CAS  Google Scholar 

  • Cai, R., Hashimoto, K., Itoh, K., Kubota, Y. & Fujishima, A. (1991) Photokilling of malignant cells with ultrafine TiO2 powder. Bulletin of the Chemical Society of Japan, 64, 1268–1273.

    CAS  Google Scholar 

  • Cai, R., Kubota, Y., Shuin, T., Sakai, H., Hashimoto, K. & Fujishima, A. (1992) Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Research, 52, 2346–2348.

    PubMed  CAS  Google Scholar 

  • Camerin, M., Magaraggia, M., Soncin, M., Jori, G., Moreno, M., Chambrier, I., Cook, M. J. & Russell, D. A. (2010) The in vivo efficacy of phthalocyanine-nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma. Eur J Cancer, 46, 1910–8.

    PubMed  CAS  Google Scholar 

  • Chan, W. H., Shiao, N. H. & Lu, P. Z. (2006) CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol. Lett., 167, 191–200.

    PubMed  CAS  Google Scholar 

  • Chatterjee, D. K., Fong, L. S. & Zhang, Y. (2008) Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug. Deliv. Rev., 60, 1627–1637.

    PubMed  CAS  Google Scholar 

  • Chen, R. J., Bangsaruntip, S., Drouvalakis, K. A., Kam, N. W. S., Shim, M., Li, Y. M., Kim, W., Utz, P. J. & Dai, H. J. (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. U. S. A., 100, 4984–4989.

    PubMed  CAS  Google Scholar 

  • Chen, R. J., Zhang, Y. G., Wang, D. W. & Dai, H. J. (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc., 123, 3838–3839.

    PubMed  CAS  Google Scholar 

  • Chen, Z. L., Sun, Y., Huang, P., Yang, X. X. & Zhou, X. P. (2009) Studies on Preparation of Photosensitizer Loaded Magnetic Silica Nanoparticles and Their Anti-Tumor Effects for Targeting Photodynamic Therapy. Nanoscale Res. Lett., 4, 400–408.

    PubMed  CAS  Google Scholar 

  • Cheng, H. M., Hsu, H. C., Chen, S. L., Wu, W. T., Kao, C. C., Lin, L. J. & Hsieh, W. F. (2005) Efficient UV photoluminescence from monodispersed secondary ZnO colloidal spheres synthesized by sol-gel method. Journal of Crystal Growth, 277, 192–199.

    CAS  Google Scholar 

  • Cheng, S.-H., Lee, C.-H., Yang, C.-S., Tseng, F.-G., Mou, C.-Y. & Lo, L.-W. (2009) Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: potential cancer theranostics. J. Mater. Chem., 19, 1252–1257.

    CAS  Google Scholar 

  • Cheng, Y., Samia, A. C., Li, J., Kenney, M. E., Resnick, A. & Burda, C. (2010) Delivery and Efficacy of a Cancer Drug as a Function of the Bond to the Gold Nanoparticle Surface. Langmuir, 26, 2248–2255.

    PubMed  CAS  Google Scholar 

  • Cheng, Y., Samia, A. C., Meyers, J. D., Panagopoulos, I., Fei, B. W. & Burda, C. (2008) Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J. Am. Chem. Soc., 130, 10643–10647.

    PubMed  CAS  Google Scholar 

  • Chidawanyika, W., Litwinski, C., Antunes, E. & Nyokong, T. (2010) Photophysical study of a covalently linked quantum dot-low symmetry phthalocyanine conjugate. Journal of Photochemistry and Photobiology a-Chemistry, 212, 27–35.

    CAS  Google Scholar 

  • Choi, A. O., Cho, S. J., Desbarats, J., Lovric, J. & Maysinger, D. (2007) Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnology, 5, 1.

    PubMed  Google Scholar 

  • Clarke, S. J., Hollmann, C. A., Zhang, Z. J., Suffern, D., Bradforth, S. E., Dimitrijevic, N. M., Minarik, W. G. & Nadeau, J. L. (2006) Photophysics of dopamine-modified quantumdots and effects on biological systems. Nature Materials, 5, 409–417.

    PubMed  CAS  Google Scholar 

  • Compagnin, C., Bau, L., Mognato, M., Celotti, L., Miotto, G., Arduini, M., Moret, F., Fede, C., Selvestrel, F., Echevarria, I. M. R., Mancin, F. & Reddi, E. (2009) The cellular uptake of meta-tetra (hydroxyphenyl)chlorin entrapped in organically modified silica nanoparticles is mediated by serum proteins. Nanotechnology, 20.

    Google Scholar 

  • Cooper, D. R., Dimitrijevic, N. M. & Nadeau, J. L. (2010) Photosensitization of CdSe/ZnS QDs and reliability of assays for reactive oxygen species production. Nanoscale, 2, 114–121.

    PubMed  CAS  Google Scholar 

  • Davydenko, M. O., Radchenko, E. O., Yashchuk, V. M., Dmitruk, I. M., Prylutskyy, Y. I., Matishevska, O. P. & Golub, A. A. (2006) Sensitization of fullerene C60 immobilized at silica nanoparticles for cancer photodynamic therapy. J. Mol. Liq., 127, 145–147.

    CAS  Google Scholar 

  • Dayal, S., Krolicki, R., Lou, Y., Qiu, X., Berlin, J. C., Kenney, M. E. & Burda, C. (2006) Femtosecond time-resolved energy transfer from CdSe nanoparticles to phthalocyanines. Applied Physics B-Lasers and Optics, 84, 309–315.

    CAS  Google Scholar 

  • Demberelnyamba, D., Ariunaa, M. & Shim, Y. K. (2008) Newly synthesized water soluble cholinium-purpurin photosensitizers and their stabilized gold nanoparticles as promising anticancer agents. International Journal of Molecular Sciences, 9, 864–871.

    PubMed  CAS  Google Scholar 

  • Do Nascimento, G. M., De Oliveira, R. C., Pradie, N. A., Lins, P. R. G., Worfel, P. R., Martinez, G. R., Di Mascio, P., Dresselhaus, M. S. & Corio, P. (2010) Single-wall carbon nanotubes modified with organic dyes: Synthesis, characterization and potential cytotoxic effects. Journal of Photochemistry and Photobiology a-Chemistry, 211, 99–107.

    CAS  Google Scholar 

  • Dorfman, A., Kumar, N. & Hahm, J. I. (2006a) Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms. Langmuir, 22, 4890–4895.

    PubMed  CAS  Google Scholar 

  • Dorfman, A., Kumar, N. & Hahm, J. I. (2006b) Nanoscale ZnO-enhanced fluorescence detection of protein interactions. Advanced Materials, 18, 2685–2690.

    CAS  Google Scholar 

  • Ellington, A. D. & Szostak, J. W. (1990) INVITRO SELECTION OF RNA MOLECULES THAT BIND SPECIFIC LIGANDS. Nature, 346, 818–822.

    PubMed  CAS  Google Scholar 

  • Epple, M., Ganesan, K., Heumann, R., Klesing, J., Kovtun, A., Neumann, S. & Sokolova, V. (2010) Application of calcium phosphate nanoparticles in biomedicine. J. Mater. Chem., 20, 18–23.

    CAS  Google Scholar 

  • Erbas, S., Gorgulu, A., Kocakusakogullari, M. & Akkaya, E. U. (2009) Non-covalent functionalized SWNTs as delivery agents for novel Bodipy-based potential PDT sensitizers. Chem. Commun., 4956–4958.

    Google Scholar 

  • Erdogmus, A., Moeno, S., Litwinski, C. & Nyokong, T. (2010) Photophysical properties of newly synthesized fluorinated zinc phthalocyanines in the presence of CdTe quantum dots and the accompanying energy transfer processes. Journal of Photochemistry and Photobiology a-Chemistry, 210, 200–208.

    CAS  Google Scholar 

  • Febvay, S., Marini, D. M., Belcher, A. M. & Clapham, D. E. (2010) Targeted Cytosolic Delivery of Cell-Impermeable Compounds by Nanoparticle-Mediated, Light-Triggered Endosome Disruption. Nano Lett., 10, 2211–2219.

    PubMed  CAS  Google Scholar 

  • Fujishima, A., Rao, T. N. & Tryk, D. A. (2000) Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1–21.

    CAS  Google Scholar 

  • Fukahori, S., Ichiura, H., Kitaoka, T. & Tanaka, H. (2003) Capturing of bisphenol A photodecomposition intermediates by composite TiO2-zeolite sheets. Applied Catalysis B: Environmental, 46, 453–462.

    CAS  Google Scholar 

  • Guo, D., Wu, C., Jiang, H., Li, Q., Wang, X. & Chen, B. (2008) Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. Journal of Photochemistry and Photobiology B: Biology, 93, 119–126.

    CAS  Google Scholar 

  • Guo, H. C., Qian, H. S., Idris, N. M. & Zhang, Y. (2010a) Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer. Nanomedicine-Nanotechnology Biology and Medicine, 6, 486–495.

    CAS  Google Scholar 

  • Guo, Y. Y., Rogelj, S. & Zhang, P. (2010b) Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria. Nanotechnology, 21.

    Google Scholar 

  • He, X., Wu, X., Wang, K., Shi, B. & Hai, L. (2009) Methylene blue-encapsulated phosphonate-terminated silica nanoparticles for simultaneous in vivo imaging and photodynamic therapy. Biomaterials, 30, 5601–9.

    PubMed  CAS  Google Scholar 

  • Hefta, L. J. F., Neumaier, M. & Shively, J. E. (1998) Kinetic and affinity constants of epitope specific anti-carcinoembryonic antigen (CEA) monoclonal antibodies for CEA and engineered CEA domain constructs. Immunotechnology, 4, 49–57.

    PubMed  CAS  Google Scholar 

  • Henderson, M. A. (1997) Complexity in the decomposition of formic acid on the TiO2(110) surface. Journal of Physical Chemistry B, 101, 221–229.

    CAS  Google Scholar 

  • Hirohara, S., Obata, M., Ogata, S. I., Ohtsuki, C., Higashida, S., Ogura, S. I., Okura, I., Takenaka, M., Ono, H., Sugai, Y., Mikata, Y., Tanihara, M. & Yano, S. (2005) Cellular uptake and photocytotoxicity of glycoconjugated chlorins in HeLa cells. Journal of Photochemistry and Photobiology B: Biology, 78, 7–15.

    CAS  Google Scholar 

  • Hirsch, A. (2002) Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed., 41, 1853–1859.

    CAS  Google Scholar 

  • Hocine, O., Gary-Bobo, M., Brevet, D., Maynadier, M., Fontanel, S., Raehm, L., Richeter, S., Loock, B., Couleaud, P., Frochot, C., Charnay, C., Derrien, G., Smaïhi, M., Sahmoune, A., Morère, A., Maillard, P., Garcia, M. & Durand, J.-O. (doi:10.1016/j.ijpharm.2010.10.004) Silicalites and Mesoporous Silica Nanoparticles for photodynamic therapy. Int. J. Pharma.

    Google Scholar 

  • Hoffman, A. S. (2008) The origins and evolution of “controlled” drug delivery systems. J. Control. Release, 132, 153–163.

    PubMed  CAS  Google Scholar 

  • Hone, D. C., Walker, P. I., Evans-Gowing, R., Fitzgerald, S., Beeby, A., Chambrier, I., Cook, M. J. & Russell, D. A. (2002) Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy. Langmuir, 18, 2985–2987.

    CAS  Google Scholar 

  • Hsieh, J. M., Ho, M. L., Wu, P. W., Chou, P. T., Tsai, T. T. & Chi, Y. (2006) Iridium-complex modified CdSe/ZnS quantum dots; a conceptual design for bifunctionality toward imaging and photosensitization. Chem. Commun., 615–617.

    Google Scholar 

  • Idowu, M., Chen, J. Y. & Nyokong, T. (2008) Photoinduced energy transfer between water-soluble CdTe quantum dots and aluminium tetrasulfonated phthalocyanine. New Journal of Chemistry, 32, 290–296.

    CAS  Google Scholar 

  • Ipe, B. I., Lehnig, M. & Niemeyer, C. M. (2005) On the generation of free radical species from quantum dots. Small, 1, 706–709.

    PubMed  CAS  Google Scholar 

  • Jhonsi, M. A. & Renganathan, R. (2010) Investigations on the photoinduced interaction of water soluble thioglycolic acid (TGA) capped CdTe quantum dots with certain porphyrins. Journal of Colloid and Interface Science, 344, 596–602.

    PubMed  CAS  Google Scholar 

  • Juzenas, P., Chen, W., Sun, Y. P., Coelho, M. A. N., Generalov, R., Generalova, N. & Christensen, I. L. (2008) Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug. Deliv. Rev., 60, 1600–1614.

    PubMed  CAS  Google Scholar 

  • Kam, N. W. S., Jessop, T. C., Wender, P. A. & Dai, H. J. (2004) Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc., 126, 6850–6851.

    CAS  Google Scholar 

  • Kantonis, G., Trikeriotis, M. & Ghanotakis, D. F. (2007) Biocompatible protoporphyrin IX-containing nanohybrids with potential applications in photodynamic therapy. Journal of Photochemistry and Photobiology a-Chemistry, 185, 62–66.

    CAS  Google Scholar 

  • Kim, H. J., Shin, K. J., Han, M. K., An, K., Lee, J. K., Honma, I. & Kim, H. (2009a) One-pot synthesis of multifunctional mesoporous silica nanoparticle incorporated with zinc(II) phthalocyanine and iron oxide. Scripta Materialia, 61, 1137–1140.

    CAS  Google Scholar 

  • Kim, S., Ohulchanskyy, T. Y., Bharali, D., Chen, Y. H., Pandey, R. K. & Prasad, P. N. (2009b) Organically Modified Silica Nanoparticles with Intraparticle Heavy-Atom Effect on the Encapsulated Photosensitizer for Enhanced Efficacy of Photodynamic Therapy. Journal of Physical Chemistry C, 113, 12641–12644.

    CAS  Google Scholar 

  • Kim, S., Ohulchanskyy, T. Y., Pudavar, H. E., Pandey, R. K. & Prasad, P. N. (2007) Organically Modified Silica Nanoparticles Co-encapsulating Photosensitizing Drug and Aggregation-Enhanced Two-Photon Absorbing Fluorescent Dye Aggregates for Two-Photon Photodynamic Therapy. J. Am. Chem. Soc., 129, 2669–2675.

    PubMed  CAS  Google Scholar 

  • Klostranec, J. M. & Chan, W. C. W. (2006) Quantum dots in biological and biomedical research: Recent progress and present challenges. Advanced Materials, 18, 1953–1964.

    CAS  Google Scholar 

  • Kostarelos, K., Lacerda, L., Pastorin, G., Wu, W., Wieckowski, S., Luangsivilay, J., Godefroy, S., Pantarotto, D., Briand, J. P., Muller, S., Prato, M. & Bianco, A. (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotechnology, 2, 108–113.

    PubMed  CAS  Google Scholar 

  • Kovala-Demertzi, D., Galani, A., Kourkoumelis, N., Miller, J. R. & Demertzis, M. A. (2007) Synthesis, characterization, crystal structure and antiproliferative activity of platinum(II) complexes with 2-acetylpyridine-4-cyclohexyl-thiosemicarbazone. Polyhedron, 26, 2871–2879.

    CAS  Google Scholar 

  • Kubota, Y., Shuin, T., Kawasaki, C., Hosaka, M., Kitamura, H., Cai, R., Sakai, H., Hashimoto, K. & Fujishima, A. (1994) Photokilling of T-24 human bladder cancer cells with titanium dioxide. British Journal of Cancer, 70, 1107–1111.

    PubMed  CAS  Google Scholar 

  • Kuo, W. S., Chang, C. N., Chang, Y. T., Yang, M. H., Chien, Y. H., Chen, S. J. & Yeh, C. S. (2010) Gold Nanorods in Photodynamic Therapy, as Hyperthermia Agents, and in Near-Infrared Optical Imaging. Angew. Chem. Int. Ed., 49, 2711–2715.

    CAS  Google Scholar 

  • Kuo, W. S., Chang, C. N., Chang, Y. T. & Yeh, C. S. (2009) Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem. Commun., 4853–4855.

    Google Scholar 

  • Kurwa, H. A. & Barlow, R. J. (1999) The role of photodynamic therapy in dermatology. Clinical and Experimental Dermatology, 24, 143–148.

    PubMed  CAS  Google Scholar 

  • Labanauskiene, J., Gehl, J. & Didziapetriene, J. (2007) Evaluation of cytotoxic effect of photodynamic therapy in combination with electroporation in vitro. Bioelectrochemistry, 70, 78–82.

    PubMed  CAS  Google Scholar 

  • Lai, C.-W., Wang, Y.-H., Lai, C.-H., Yang, M.-J., Chen, C.-Y., Chou, P.-T., Chan, C.-S., Chi, Y., Chen, Y.-C. & Hsiao, J.-K. (2008) Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles: a facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small, 4, 218–224.

    PubMed  CAS  Google Scholar 

  • Lambreva, M., Glück, B., Radeva, M. & Berg, H. (2004) Electroporation of cell membranes supporting penetration of photodynamic active macromolecular chromophore dextrans. Bioelectrochemistry, 62, 95–98.

    PubMed  CAS  Google Scholar 

  • Lei, W., Zhou, Q., Li, Z., Wang, X. & Zhang, B. (2009) Photodynamic activity of ascorbic acid-modified TiO2 nanoparticles upon visible illumination (>550 nm) Chemistry Letters, 38, 1138–1139.

    CAS  Google Scholar 

  • Li, J., Guo, D., Wang, X., Wang, H., Jiang, H. & Chen, B. (2010a) The photodynamic effect of different size ZnO nanoparticles on cancer cell proliferation in vitro. Nanoscale Research Letters, 5, 1063–1071.

    PubMed  CAS  Google Scholar 

  • Li, Z. B., Wang, J. G., Chen, J. R., Lei, W. H., Wang, X. S. & Zhang, B. W. (2010b) pH-responsive silica nanoparticles for controllable O-1(2) generation. Nanotechnology, 21.

    Google Scholar 

  • Liang, G., Wang, L., Yang, Z., Koon, H., Mak, N., Chang, C. K. & Xu, B. (2006) Using enzymatic reactions to enhance the photodynamic therapy effect of porphyrin dityrosine phosphates. Chemical Communications, 5021–5023.

    Google Scholar 

  • Lin, K. F., Cheng, H. M., Hsu, H. C., Lin, L. J. & Hsieh, W. F. (2005) Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method. Chemical Physics Letters, 409, 208–211.

    CAS  Google Scholar 

  • Liu, F., Zhou, X., Chen, Z., Huang, P., Wang, X. & Zhou, Y. (2008a) Preparation of purpurin-18 loaded magnetic nanocarriers in cottonseed oil for photodynamic therapy. Mater. Lett., 62, 2844–2847.

    CAS  Google Scholar 

  • Liu, Y., Zhang, Y., Wang, S., Pope, C. & Chen, W. (2008b) Optical behaviors of ZnO-porphyrin conjugates and their potential applications for cancer treatment. Applied Physics Letters, 92, Article number 143901.

    Google Scholar 

  • Liu, Z., Davis, C., Cai, W. B., He, L., Chen, X. Y. & Dai, H. J. (2008c) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. U.S.A., 105, 1410–1415.

    PubMed  CAS  Google Scholar 

  • Liu, F., Zhou, X., Ni, S., Wang, X., Y., Z. & Chen, Z. (2009) Preparation and properties of Photosensitizer Loaded Magnetic Nanocarriers. Current Nanoscience, 5, 293–296.

    CAS  Google Scholar 

  • Lopez-Goerne, T. M. (2007) Sol-gel nanostructured titania reservoirs for use in the controlled release of drugs in the central nervous system WO2007141590.

    Google Scholar 

  • Lopez, T., Bosch, P., Moran, M. & Gomez, R. (1993) Pt/SiO2 sol-gel catalysts: Effects of pH and platinum precursor. Journal of Physical Chemistry, 97, 1671–1677.

    CAS  Google Scholar 

  • López, T., Gómez, R., Pecci, G., Reyes, P., Bokhimi, X. & Novaro, O. (1999) Effect of pH on the incorporation of platinum into the lattice of sol-gel titania phases. Materials Letters, 40, 59–65.

    Google Scholar 

  • Lopez, T., Figueras, F., Manjarrez, J., Bustos, J., Alvarez, M., Silvestre-Albero, J., Rodríguez-Reinoso, F., Martínez-Ferre, A. & Martínez, E. (2010a) Catalytic nanomedicine: A new field in antitumor treatment using supported platinum nanoparticles. In vitro DNA degradation and in vivo tests with C6 animal model on Wistar rats. European Journal of Medicinal Chemistry, 45, 1982–1990.

    Google Scholar 

  • Lopez, T., Ortiz, E., Alvarez, M., Navarrete, J., Odriozola, J. A., Martinez-Ortega, F., Páez-Mozo, E. A., Escobar, P., Espinoza, K. A. & Rivero, I. A. (2010b) Study of the stabilization of zinc phthalocyanine in sol-gel TiO2 for photodynamic therapy applications Nanomedicine: Nanotechnology, Biology, and Medicine DOI: 10.1016/j.nano.2010.04.007.

    Google Scholar 

  • Lowis, S., Lewis, I., Elsworth, A., Weston, C., Doz, F., Vassal, G., Bellott, R., Robert, J., Pein, F., Ablett, S., Pinkerton, R. & Frappaz, D. (2006) A phase I study of intravenous liposomal daunorubicin (DaunoXome) in paediatric patients with relapsed or resistant solid tumours. British Journal of Cancer, 95, 571–580.

    PubMed  CAS  Google Scholar 

  • Maisch, T. (2009) A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment. Mini-Rev. Med. Chem., 9, 974–983.

    PubMed  CAS  Google Scholar 

  • Marković, M., Kneźević, N., Momćilović, M., Grgurić-Šipka, S., Harhaji, L., Trajković, V., Stojković, M. M., Sabo, T. & Miljković, D. (2005) [Pt(HPxSC)Cl3], a novel platinum(IV) compound with anticancer properties. European Journal of Pharmacology, 517, 28–34.

    PubMed  Google Scholar 

  • Matsunaga, T., Tomoda, R., Nakajima, T. & Wake, H. (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters, 29, 211–214.

    CAS  Google Scholar 

  • Mccarthy, J. R., Jaffer, F. A. & Weissleder, R. (2006) A macrophage-targeted theranostic nanoparticle for biomedical applications. Small, 2, 983–987.

    PubMed  CAS  Google Scholar 

  • Mccarthy, J. R., Korngold, E., Weissleder, R. & Jaffer, F. A. (2010) A Light-Activated Theranostic Nanoagent for Targeted Macrophage Ablation in Inflammatory Atherosclerosis. Small, 6, 2041–2049.

    PubMed  CAS  Google Scholar 

  • Miyasaka, T. & Kijitori, Y. (2004) Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers. Journal of the Electrochemical Society, 151.

    Google Scholar 

  • Moeno, S., Antunes, E., Khene, S., Litwinski, C. & Nyokong, T. (2010) The effect of substituents on the photoinduced energy transfer between CdTe quantum dots and mercapto substituted zinc phthalocyanine derivatives. Dalton Transactions, 39, 3460–3471.

    PubMed  CAS  Google Scholar 

  • Narayanan, S. S., Sinha, S. S. & Pal, S. K. (2008) Sensitized emission from a chemotherapeutic drug conjugated to CdSe/ZnS QDs. J. Phys. Chem. C, 112, 12716–12720.

    CAS  Google Scholar 

  • Niyogi, S., Hamon, M. A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M. E. & Haddon, R. C. (2002) Chemistry of single-walled carbon nanotubes. Acc. Chem. Res., 35, 1105–1113.

    PubMed  CAS  Google Scholar 

  • Nolkrantz, K., Farre, C., Hurtig, K. J., Rylander, P. & Orwar, O. (2002) Functional screening of intracellular proteins in single cells and in patterned cell arrays using electroporation. Analytical Chemistry, 74, 4300–4305.

    PubMed  CAS  Google Scholar 

  • Ogura, S. I., Yazaki, K., Yamaguchi, K., Kamachi, T. & Okura, I. (2005) Localization of poly-L-lysine-photosensitizer conjugate in nucleus. Journal of Controlled Release, 103, 1–6.

    PubMed  CAS  Google Scholar 

  • Ohulchanskyy, T. Y., Roy, I., Goswami, L. N., Chen, Y., Bergey, E. J., Pandey, R. K., Oseroff, A. R. & Prasad, P. N. (2007) Organically Modified Silica Nanoparticles with Covalently Incorporated Photosensitizer for Photodynamic Therapy of Cancer. Nano Lett., 7, 2835–2842.

    PubMed  CAS  Google Scholar 

  • Oo, M. K. K., Yang, X., Du, H. & Wang, H. (2008) 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer. Nanomedicine, 3, 777–786.

    PubMed  CAS  Google Scholar 

  • Ortel, B., Shea, C. R. & Calzavara-Pinton, P. (2009) Molecular mechanisms of photodynamic therapy. Front. Biosci., 14, 4157–4172.

    PubMed  CAS  Google Scholar 

  • Pantarotto, D., Briand, J. P., Prato, M. & Bianco, A. (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun., 16–17.

    Google Scholar 

  • Qian, H. S., Guo, H. C., Ho, P. C. L., Mahendran, R. & Zhang, Y. (2009a) Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy. Small, 5, 2285–2290.

    PubMed  CAS  Google Scholar 

  • Qian, J., Gharibi, A. & He, S. (2009b) Colloidal mesoporous silica nanoparticles with protoporphyrin IX encapsulated for photodynamic therapy. J. Biomed. Opt., 14, 014012/1-014012/6.

    Google Scholar 

  • Qu, L. W., Martin, R. B., Huang, W. J., Fu, K. F., Zweifel, D., Lin, Y., Sun, Y. P., Bunker, C. E., Harruff, B. A., Gord, J. R. & Allard, L. F. (2002) Interactions of functionalized carbon nanotubes with tethered pyrenes in solution. Journal of Chemical Physics, 117, 8089–8094.

    CAS  Google Scholar 

  • Rakovich, A., Savateeva, D., Rakovich, T., Donegan, J. F., Rakovich, Y. P., Kelly, V., Lesnyak, V. & Eychmuller, A. (2010) CdTe Quantum Dot/Dye Hybrid System as Photosensitizer for Photodynamic Therapy. Nanoscale Res. Lett., 5, 753–760.

    PubMed  CAS  Google Scholar 

  • Rioux, D., Laferriere, M., Douplik, A., Shah, D., Lilge, L., Kabashin, A. V. & Meunier, M. M. (2009) Silicon nanoparticles produced by femtosecond laser ablation in water as novel contamination-free photosensitizers. J. Biomed. Opt., 14, 5.

    Google Scholar 

  • Robertson, C. A., Evans, D. H. & Abrahamse, H. (2009) Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol., B, 96, 1–8.

    CAS  Google Scholar 

  • Rosenberg, B., Van Camp, L. & Krigas, T. (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a Platinum electrode. Nature, 205, 698–699.

    PubMed  CAS  Google Scholar 

  • Rosenberg, B., Van Camp, L., Trosko, J. & Mansour, V. H. (1969) Platinum compounds: a new class of potent antitumor agents. Nature, 222, 385–386.

    PubMed  CAS  Google Scholar 

  • Rossi, L. M., Silva, P. R., Vono, L. L. R., Fernandes, A. U., Tada, D. B. & Baptista, M. S. (2008) Protoporphyrin IX Nanoparticle Carrier: Preparation, Optical Properties, and Singlet Oxygen Generation. Langmuir, 24, 12534–12538.

    PubMed  CAS  Google Scholar 

  • Roy, I., Ohulchanskyy, T. Y., Pudavar, H. E., Bergey, E. J., Oseroff, A. R., Morgan, J., Dougherty, T. J. & Prasad, P. N. (2003) Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc., 125, 7860–7865.

    PubMed  CAS  Google Scholar 

  • Sakai, A. H., Cai, R. X., Yoshioka, T., Kubota, Y., Hashimoto, K. & Fujishima, A. (1994) Intracellular Ca2+ concentration change of T24 cell under irradiation in the presence of TiO2 ultrafine particles. Biochimica et Biophysica Acta – General Subjects, 1201, 259–265.

    CAS  Google Scholar 

  • Samia, A. C. S., Chen, X. B. & Burda, C. (2003) Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc., 125, 15736–15737.

    PubMed  CAS  Google Scholar 

  • Semenikhin, O. A., Kazarinov, V. E., Jiang, L., Hashimoto, K. & Fujishima, A. (1999) Suppression of surface recombination on TiO2 anatase photocatalysts in aqueous solutions containing alcohol. Langmuir, 15, 3731–3737.

    CAS  Google Scholar 

  • Shi, L. X., Hernandez, B. & Selke, M. (2006) Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites. J. Am. Chem. Soc., 128, 6278–6279.

    PubMed  CAS  Google Scholar 

  • Simon, V., Devaux, C., Darmon, A., Donnet, T., Thiénot, E., Germain, M., Honnorat, J., Duval, A., Pottier, A., Borghi, E., Levy, L. & Marill, J. (2010) Pp IX Silica Nanoparticles Demonstrate Differential Interactions with  <  i  >  In Vitro</i  >  Tumor Cell Lines and  <  i  >  In Vivo</i  >  Mouse Models of Human Cancers. Photochem. Photobiol., 86, 213–222.

    PubMed  CAS  Google Scholar 

  • Staros, J. V. (1982) N-hydroxysulfosuccinimide active esters: Bis(N-hydroxysulfosuccinimide) esters of two dicarboxylic acids are hydrophilic, membrane-impermeant, protein cross-linkers. Biochemistry, 21, 3950–3955.

    PubMed  CAS  Google Scholar 

  • Strassert, C. A., Otter, M., Albuquerque, R. Q., Hone, A., Vida, Y., Maier, B. & De Cola, L. (2009) Photoactive Hybrid Nanomaterial for Targeting, Labeling, and Killing Antibiotic-Resistant Bacteria. Angew. Chem. Int. Ed., 48, 7928–7931.

    CAS  Google Scholar 

  • Tada, D. B., Vono, L. L. R., Duarte, E. L., Itri, R., Kiyohara, P. K., Baptista, M. S. & Rossi, L. M. (2007) Methylene Blue-Containing Silica-Coated Magnetic Particles: A Potential Magnetic Carrier for Photodynamic Therapy. Langmuir, 23, 8194–8199.

    PubMed  CAS  Google Scholar 

  • Takahashi, M., Ueno, A., Uda, T. & Mihara, H. (1998) Design of novel porphyrin-binding peptides based on antibody CDR. Bioorganic and Medicinal Chemistry Letters, 8, 2023–2026.

    PubMed  CAS  Google Scholar 

  • Tang, W., Xu, H., Kopelman, R. & Philbert, M. A. (2005a) Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem Photobiol, 81, 242–9.

    PubMed  CAS  Google Scholar 

  • Tang, W., Xu, H., Kopelman, R. & Philbert, M. A. (2005b) Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem. Photobiol., 81, 242–249.

    PubMed  CAS  Google Scholar 

  • Taquet, J. P., Frochot, C., Manneville, V. & Barberi-Heyob, M. (2007) Phthalocyanines covalently bound to biomolecules for a targeted photodynamic therapy. Current Medicinal Chemistry, 14, 1673–1687.

    PubMed  CAS  Google Scholar 

  • Timoshenko, V. Y., Kudryavtsev, A. A., Osminkina, L. A., Vorontsov, A. S., Ryabchikov, Y. V., Belogorokhov, I. A., Kovalev, D. & Kashkarov, P. K. (2006) Silicon nanocrystals as photosensitizers of active oxygen for biomedical applications. Jetp Letters, 83, 423–426.

    CAS  Google Scholar 

  • Tokuoka, Y., Yamada, M., Kawashima, N. & Miyasaka, T. (2006) Anticancer effect of dye-sensitized TiO2 nanocrystals by polychromatic visible light irradiation. Chemistry Letters, 35, 496–497.

    CAS  Google Scholar 

  • Tsay, J. M., Trzoss, M., Shi, L. X., Kong, X. X., Selke, M., Jung, M. E. & Weiss, S. (2007) Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates. J. Am. Chem. Soc., 129, 6865–6871.

    PubMed  CAS  Google Scholar 

  • Tu, B. H.-L., Lin, Y.-S., Hung, Y., Lo, L.-W., Chen, Y.-F. & Mou, C.-Y. (2009) In vitro Studies of Functionalized Mesoporous Silica Nanoparticles for Photodynamic Therapy. Adv. Mater., 21, 172–174.

    CAS  Google Scholar 

  • Tuerk, C. & Gold, L. (1990) SYSTEMATIC EVOLUTION OF LIGANDS BY EXPONENTIAL ENRICHMENT – RNA LIGANDS TO BACTERIOPHAGE-T4 DNA-POLYMERASE. Science, 249, 505–510.

    PubMed  CAS  Google Scholar 

  • Underhill, M. F., Coley, C., Birch, J. R., Findlay, A., Kallmeier, R., Proud, C. G. & James, D. C. (2003) Engineering mRNA translation initiation to enhance transient gene expression in Chinese hamster ovary cells. Biotechnology Progress, 19, 121–129.

    PubMed  CAS  Google Scholar 

  • Van De Walle, C. G. (2000) Hydrogen as a cause of doping in zinc oxide. Physical Review Letters, 85, 1012–1015.

    Google Scholar 

  • Velusamy, M., Shen, J. Y., Lin, J. T., Lin, Y. C., Hsieh, C. C., Lai, C. H., Lai, C. W., Ho, M. L., Chen, Y. C., Chou, P. T. & Hsiao, J. K. (2009) A New Series of Quadrupolar Type Two-Photon Absorption Chromophores Bearing 11,12-Dibutoxydibenzo[a,c]-phenazine Bridged Amines; Their Applications in Two-Photon Fluorescence Imaging and Two-Photon Photodynamic Therapy. Adv. Func. Mater., 19, 2388–2397.

    CAS  Google Scholar 

  • Verhille, M., Couleaud, P., Vanderesse, R., Brault, D., Barberi-Heyob, M. & Frochot, C. (In Press) Modulation of photosensitization processes for an improved targeted photodynamic therapy. Current Medical Chemistry.

    Google Scholar 

  • Wamer, W. G., Yin, J. J. & Wei, R. R. (1997) Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radical Biology and Medicine, 23, 851–858.

    PubMed  CAS  Google Scholar 

  • Wang, H., Xie, C., Zhang, W., Cai, S., Yang, Z. & Gui, Y. (2007) Comparison of dye degradation efficiency using ZnO powders with various size scales. Journal of Hazardous Materials, 141, 645–652.

    PubMed  CAS  Google Scholar 

  • Wang, S., Gao, R., Zhou, F. & Selke, M. (2004) Nanomaterials and Singlet Oxygen Photosensitizers: Potential Applications in Photodynamic Therapy. J. Mater. Chem., 14, 487–493.

    CAS  Google Scholar 

  • Wang, S., Mamedova, N., Kotov, N. A., Chen, W. & Studer, J. (2002) Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates. Nano Letters, 2, 817–822.

    CAS  Google Scholar 

  • Wu, C. H., Huang, K. S. & Chern, J. M. (2006) Decomposition of acid dye by TiO2 thin films prepared by the sol-gel method. Industrial and Engineering Chemistry Research, 45, 2040–2045.

    CAS  Google Scholar 

  • Xu, F., Zhang, P., Navrotsky, A., Yuan, Z. Y., Ren, T. Z., Halasa, M. & Su, B. L. (2007a) Hierarchically assembled porous ZnO nanoparticles: Synthesis, surface energy, and photocatalytic activity. Chemistry of Materials, 19, 5680–5686.

    CAS  Google Scholar 

  • Xu, J., Sun, Y., Huang, J., Chen, C., Liu, G., Jiang, Y., Zhao, Y. & Jiang, Z. (2007b) Photokilling cancer cells using highly cell-specific antibody-TiO2 bioconjugates and electroporation. Bioelectrochemistry, 71, 217–222.

    PubMed  CAS  Google Scholar 

  • Yan, F. & Kopelman, R. (2003) The embedding of meta-tetra(hydroxyphenyl)-chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and ph-dependent optical properties. Photochem. Photobiol., 78, 587–591.

    PubMed  CAS  Google Scholar 

  • Yang, Y., Song, W. X., Wang, A. H., Zhu, P. L., Fei, J. B. & Li, J. B. (2010) Lipid coated mesoporous silica nanoparticles as photosensitive drug carriers. Physical Chemistry Chemical Physics, 12, 4418–4422.

    PubMed  CAS  Google Scholar 

  • Zhang, A. P. & Sun, Y. P. (2004) Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World Journal of Gastroenterology, 10, 3191–3193.

    PubMed  CAS  Google Scholar 

  • Zhang, P., Steelant, W., Kumar, M. & Scholfield, M. (2007) Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation. J. Am. Chem. Soc., 129, 4526–4527.

    PubMed  CAS  Google Scholar 

  • Zhang, R. R., Wu, C. L., Tong, L. L., Tang, B. & Xu, Q. H. (2009) Multifunctional Core-Shell Nanoparticles as Highly Efficient Imaging and Photosensitizing Agents. Langmuir, 25, 10153–10158.

    PubMed  CAS  Google Scholar 

  • Zhao, B. Z., Yin, J. J., Bilski, P. J., Chignell, C. F., Roberts, J. E. & He, Y. Y. (2009) Enhanced photodynamic efficacy towards melanoma cells by encapsulation of Pc4 in silica nanoparticles. Toxicology and Applied Pharmacology, 241, 163–172.

    PubMed  CAS  Google Scholar 

  • Zhou, J., Zhou, L., Dong, C., Feng, Y., Wei, S., Shen, J. & Wang, X. (2008) Preparation and photodynamic properties of water-soluble hypocrellin A-silica nanospheres. Mater. Lett., 62, 2910–2913.

    CAS  Google Scholar 

  • Zhou, L., Liu, J.-H., Zhang, J., Wei, S.-H., Feng, Y.-Y., Zhou, J.-H., Yu, B.-Y. & Shen, J. (2010) A new sol-gel silica nanovehicle preparation for photodynamic therapy in vitro. International Journal of Pharmaceutics, 386, 131–137.

    PubMed  CAS  Google Scholar 

  • Zhu, Z., Tang, Z. W., Phillips, J. A., Yang, R. H., Wang, H. & Tan, W. H. (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J. Am. Chem. Soc., 130, 10856–10857.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Raehm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vanderesse, R., Frochot, C., Barberi-Heyob, M., Richeter, S., Raehm, L., Durand, JO. (2011). Nanoparticles for Photodynamic Therapy Applications. In: Prokop, A. (eds) Intracellular Delivery. Fundamental Biomedical Technologies, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1248-5_19

Download citation

Publish with us

Policies and ethics