Skip to main content

Improving Water Use Efficiency for Sustainable Agriculture

  • Chapter
  • First Online:
Agroecology and Strategies for Climate Change

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 8))

Abstract

Fresh water resources are becoming scarce and polluted while their demands for agriculture, domestic, industrial, environmental and recreational uses are on a continuous rise around the globe. Traditional ways to increase yield by extending the area under cultivation, using high intensity of external inputs and breeding for yield potential in high input agro-ecosystems offer limited possibilities under limiting resource availability. Improved agricultural systems should ensure high yields via an efficient and sustainable use of natural resources such as water. This prospect has evoked calls for a “blue revolution” based on the core idea of obtaining more crop per drop of water. This chapter presents approaches to improve water use efficiency by better crop, soil and irrigation management, and analyses underlying physiological and hydrological mechanisms. We found that most management measures contribute to better water use efficiency by improving water availability to the crop while reducing unproductive water losses. The main effect of crop, soil and irrigation management is an increase of the transpiration component in relation to runoff, soil evaporation and drainage. Also the effect of deficit irrigation methods is achieved partially by reducing stomatal conductance that results in higher transpiration efficiency. Redistribution of water from soil evaporation to plant transpiration is the key for better water use efficiency of residue management and most measures in crop rotation design. Improved water use efficiency by better agronomy is achieved most effectively by an integral set of measures that are evaluated over the whole crop rotation. Processes underlying most improvements of water use efficiency in agronomy suggest that research should target plant water uptake capacity. We conclude that an integral system approach and an interdisciplinary focus on possibilities for root system management are most promising for a better water use and sustainable productivity in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aase JK, Pikul JL Jr (1995) Crop and soil response to long-term no-tillage practices in the Northern Great Plains. Agron J 87:652–656

    Google Scholar 

  • Abbate PE, Dardanelli JL, Cantarero MG, Maturano M, Melchiori RJM, Suero EE (2004) Climatic and water availability effects on water-use efficiency in wheat. Crop Sci 44:474–483

    Google Scholar 

  • Ajouri A, Asgedom H, Becker M (2004) Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J Plant Nutr Soil Sci 16:630–636

    Google Scholar 

  • Alam SM (1999) Nutrient uptake by plants under stress conditions. In: Pessarakli M (ed.) Handbook of plant and crop stress. Marcel Dekker, New York, pp 285–314

    Google Scholar 

  • Ali MO (2004) More grain from less rain, seed priming—a key technology of lentil production for resource-poor farmers in dry areas. In: Proceedings of the 7th international symposium on water, arsenic and environmental crisis in Bengal basin issues, impacts and strategies, held in Dhaka, Dec 19–20

    Google Scholar 

  • Ali MH, Talukder MSU (2008) Increasing water productivity in crop production—A synthesis. Agr Water Manage 95:1201–1213. doi:10.1016/j.agwat.2008.06.008

    Google Scholar 

  • Andersen MN, Jensen CR, Lösch R (1992) The interaction effects of potassium and drought in field-grown barley. I. Yield, water use efficiency and growth. Acta Agr Scand Sect B 42(1):34–44. doi:10.1080/09064719209410197

    CAS  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals, what should we breed for? Ann Bot 89:925–940. doi:10.1093/aob/mcf049

    PubMed  Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serrert MD (2008) Breeding for yield potential and stress adaptation in cereals. Cr Rev Plant Sci 27:377–412. doi:10.1080/07352680802467736

    Google Scholar 

  • Armand R, Bockstaller C, Auzet A-V, Van Dijk P (2009) Runoff generation related to intra-field soil surface characteristics variability: Application to conservation tillage context. Soil Tillage Res 102:27–37

    Google Scholar 

  • Arriaga F, Balkcom K (2005) Benefits of conservation tillage on rainfall and water management. In: Proceedings of the 2005 Georgia water resources conference, The University of Georgia, Athens, 25–27 April 2005. Hatcher KJ (ed.), Institute Ecology, The University of Georgia, Athens

    Google Scholar 

  • Asif M, Ahmed M, Gafoor A, Aslam Z (2003) Wheat productivity, land and water use efficiency by traditional and laser land – leveling techniques. J Biol Sci 3:141–146

    Google Scholar 

  • Aujla MS, Thind HS, Buttar GS (2005) Cotton yield and water use efficiency at various levels of water and N through drip irrigation under two methods of planting. Agr Water Manage 71:167–179. doi:10.1016/j.agwat.2004.06.010, DOI:dx.doi.org

    Google Scholar 

  • Ayars JE, Phene CJ, Hutmacher RB, Davis KR, Schoneman RA, Vail SS, Mead RM (1999) Subsurface drip irrigation of row crops, a review of 15 years of research at the Water Management Research Laboratory. Agr Water Manage 42:1–27. doi:10.1016/S0378-3774(99)00025-6, DOI:dx.doi.org

    Google Scholar 

  • Azam-Ali SN, Gregory PJ, Monteith JL (1984) Effects of planting density on water use and productivity of pearl millet (Pennisetum typhoides). II. Water use, light interception and dry matter production. Exp Agric 20:203–214

    Google Scholar 

  • Bahavar N, Ebadi A, Tobeh A, Jamaati-E-Somarin S (2009) Effects of mineral nitrogen on water use efficiency of chickpea (Cicer arietinum L.) under water deficit condition. Res J Environ Sci 3(3):332–338

    CAS  Google Scholar 

  • Bai Y, Chen F, Li H, Chen H, He J, Wang Q, Tullberg JN, Gong Y (2008) Traffic and tillage effects on wheat production on the Loess Plateau of China: 2. Soil physical properties. Aust J Soil Res 46:652–658

    Google Scholar 

  • Barthès B, Roose E (2002) Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 47:133–149

    Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, pp 210

    Google Scholar 

  • Baumhardt RL, Jones OR (2002) Residue management and tillage effects on soil-water storage and grain yield of dryland wheat and sorghum for a clay loam in Texas. Soil Tillage Res 68(2):71–82. doi:10.1016/S0167-1987(02)00097-1, DOI:dx.doi.org

    Google Scholar 

  • Bengough AG, Bransby MF, Hans J, McKenna SJ, Roberts TJ, Valentine TA (2006) Root responses to soil physical conditions; growth dynamics from field to cell. J Exp Bot 57:437–447

    PubMed  CAS  Google Scholar 

  • Benlloch-González M, Arquero O, Fournier JM, Barranco D, Benlloch M (2008) K  +  starvation inhibits water-stress-induced stomatal closure. J Plant Physiol 165:623–630. doi:10.1016/j.jplph.2007.05.010

    PubMed  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Google Scholar 

  • Blum A (2009) Effective use of water and not water-use efficiency is the target of crop yield improvement under drought stress. Field Crops Res 112:119–123

    Google Scholar 

  • Bodner G, Loiskandl W, Kaul HP (2007) Cover crop evapotranspiration under semi-arid conditions using FAO dual crop coefficient method with water stress compensation. Agr Water Manage 93:85–98

    Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207. doi:10.1007/BF00012037

    CAS  Google Scholar 

  • Boland AM, Mitchell PD, Jerie PH, Goodwin I (1993) The effect of regulated deficit irrigation on tree water use and growth of peach. J Hort Sci 68:261–274

    Google Scholar 

  • Borlaug N (2007) Feeding a hungry world. Science 318:359

    PubMed  CAS  Google Scholar 

  • Borrell A, Garside A, Fukai S (1997) Improving efficiency of water use for irrigated rice in a semi-arid tropical environment. Field Crops Res 52:231–248. doi:10.1016/S0378-4290(97)00033-6, DOI:dx.doi.org

    Google Scholar 

  • Bossio D, Geheb K (2008) Conserving land, protecting water. International Water Management Institute, Challenge Program on Water and Food, pp 320

    Google Scholar 

  • Brisson N, Wery J, Boote K (2006) Fundamental concepts of crop models illustrated by a comparative approach. In: Wallach D, Makowski D, Jones JW (eds.) Working with dynamic crop models. Foundation, analysis, parameterization and applications. Elsevier, The Netherlands, pp 257–280

    Google Scholar 

  • Brück H, Payne WA, Sattelmacher B (2000) Effects of phosphorus and water supply on yield, transpirational water-use efficiency, and carbon isotope discrimination of pearl millet. Crop Sci 40:120–125. doi:10.2135/cropsci2000.401120x

    Google Scholar 

  • Buttar GS, Aujla MS, Thind HS, Singh CJ, Saini KS (2007) Effect of timing of first and last irrigation on the yield and water use efficiency in cotton. Agr Water Manage 89:236–242. doi:10.1016/j.agwat.2007.01.011

    Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530. doi:10.1002/jpln.200420485521

    CAS  Google Scholar 

  • Campbell CA, Zentner RP, McConkey BG, Selles F (1992) Effect of nitrogen and snow management on efficiency of water use by spring wheat grown annually on zero-tillage. Can J Soil Sci 72:271–279

    CAS  Google Scholar 

  • Carsky JR, Hayashi Y, Tian G (1998) Benefits of mulching in the subhumid savanna zone: research needs and technology targetting. Draft Resource and Crop Management Research Monograph. IITA, Ibadan

    Google Scholar 

  • Chalmers DJ (1986) Research and progress in cultural systems and management in temperate fruit orchards. Acta Horticulturae 175:215–225

    Google Scholar 

  • Chalmers DJ, Mitchell PD, van Heck L (1981) Control of peach tree growth and productivity by regulated water supply, tree density and summer pruning. J Amer Soc Hort Sci 106:307–312

    Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55(407):2365–2384. doi:10.1093/jxb/erh269

    PubMed  CAS  Google Scholar 

  • Chaves MM, Osoŕo J, Pereira JS (2004) Water use efficiency and photosynthesis. In: Bacon M (ed.) Water use efficiency in plant biology. Blackwell, Oxford, pp 42–74

    Google Scholar 

  • Chen Y, Cavers C, Tessier S, Monero F, Lobb D (2005) Short term tillage effects on soil cone index and plant development in a poorly drained, heavy clay soil. Soil Tillage Res 82(2):161–171

    Google Scholar 

  • Chen S, Zhang X, Sun H, Ren T, Wang Y (2010) Effects of winter wheat row spacing on evapotranpsiration, grain yield and water use efficiency. Agr Water Manage 97:1126–1132. doi:10.1016/j.agwat.2009.09.005

    Google Scholar 

  • Ciompi S, Gentili E, Guidi L, Soldatini GF (1996) The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. Plant Sci 118:177–184. doi:10.1016/0168-9452(96)04442-1

    CAS  Google Scholar 

  • Claupein W (1993) Stickstoffdüngung und chemischer Pflanzenschutz in einem Dauerfeldversuch und die Ertragsgesetze von Liebig, Liebscher, Wollny und Mitscherlich. J Agron Crop Sci 171:102–113

    Google Scholar 

  • Comstock JP (2002) Hydraulic and chemical signaling in the control of stomatal conductance and transpiration. J Exp Bot 53:195–200

    PubMed  CAS  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460. doi:10.1093/jxb/erh277

    PubMed  CAS  Google Scholar 

  • Cooley H, Christian-Smith J, Gleick PH (2008) More with less, agricultural water conservation and efficiency in California. Oakland, Pacific Institute. www.pacinst.org/reports/more-with-less-delta

  • Cooper PJM, Gregory PJ, Tully D, Harris HC (1987) Improving water use efficiency of annual crops in the rainfed farming systems of West Asia and North Africa. Exp Agric 23:113–158

    Google Scholar 

  • Cowan IR, Farquhar GD (1977) Stomatal function in relation to leaf metabolism and environment. Symp Soc Exp Biol 31:471–505

    PubMed  CAS  Google Scholar 

  • Cresswell HP, Kirkegaard JA (1995) Subsoil amelioration by plant-roots – the process and the evidence. Aust J Soil Res 33:221–239

    Google Scholar 

  • Dagdelen N, Yılmaz E, Sezgin F, Gurbuz T (2006) Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey. Agr Water Manage 82(1–2):63–85

    Google Scholar 

  • Dang TH (1999) Effects of fertilization on water use efficiency of winter wheat in arid highland. Eco-Agric Res 7:28–31

    Google Scholar 

  • Davies WJ, Bacon MA, Thompson DS, Sobeih W, Rodriguez L (2000) Regulation of leaf and fruit growth in plants growing in drying soil: exploitation of the plants’ chemical signalling system and hydraulic architecture to increase the efficiency of water use in agriculture. J Exp Bot 51:1617–1626

    PubMed  CAS  Google Scholar 

  • Davis JG (1994) Managing plant nutrients for optimum water use efficiency and water conservation. Adv Agron 53:85–120

    CAS  Google Scholar 

  • Davis JG, Quick JS (1998) Nutrient management, cultivar development, and selection strategies to optimize water use efficiency. J Crop Prod 1:221–240. doi:10.1300/J144v01n02_09

    Google Scholar 

  • De Wit CT (1958) Transpiration and crop yields. Verslagen van landbouwkundige onderzoekingen, No. 64.4. Wageningen

    Google Scholar 

  • Deng X, Shan L, Shinobu I (2002) High efficiency use of limited supplement water by dry land spring wheat. Trans CSAE 18:84–91

    Google Scholar 

  • Deng X, Shan L, Zhang H, Turner NC (2006) Improving agricultural water use efficiency in arid and semiarid areas of China. Agr Water Manage 80:23–40. doi:10.1016/j.agwat.2005.07.021, DOI:dx.doi.org

    Google Scholar 

  • Diaz-Ambrona CH, Miniguez M (2001) Cereal–legume rotations in a Mediterranean environment, biomass and yield production. Field Crops Res 70:139–151. doi:10.1016/S0378-4290(01)00132-0, DOI:dx.doi.org

    Google Scholar 

  • Dordas CA, Sioulas C (2008) Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rain fed conditions. Ind Crop Prod 27:75–85. doi:10.1016/j.indcrop. 2007.07.020

    CAS  Google Scholar 

  • Dry PR, Loveys B, Düring H (2000) Partial drying of the rootzone of grape. II. Changes in the pattern of root development. Vitis 39:9–12

    Google Scholar 

  • Eapen D, Barroso ML, Ponce G, Campos ME, Cassab GI (2005) Hydrotropism: root growth responses to water. Trends Plant Sci 10:44–50. doi:10.1016/j.tplants.2004.11.004

    PubMed  CAS  Google Scholar 

  • Egila JN, Davies FT Jr, Drew MC (2001) Effect of potassium on drought resistance of Hibiscus rosa-sinensis cv. Leprechaun, plant growth, leaf macro and micronutrient content and root longevity. Plant Soil 229:213–224

    Google Scholar 

  • Ehlers W, Goss M (2003) Water dynamics in plant production. CABI Publishing, Wallingford, pp 141–152

    Google Scholar 

  • English MJ, Raja SN (1996) Perspectives on deficit irrigation. Agr Water Manage 32:1–14. doi:10.1016/S0378-3774(96)01255-3, DOI:dx.doi.org

    Google Scholar 

  • Evans JR, Seemann JR (1989) The allocation of protein N in the photosynthetic apparatus: costs, consequences, and control. In: Briggs WR (ed.) Photosynthesis. Alan R Liss, New York, pp 183–205

    Google Scholar 

  • Evett SR, Tolk JA (2009) Introduction, Can water use efficiency be modeled well enough to impact crop management? Agron J 101:423–425

    Google Scholar 

  • Falkenmark M (1997) Meeting water requirements of an expanding world population. Phil T Roy Lond Soc B 352:929–936. doi:10.1098/rstb.1997.0072

    Google Scholar 

  • Fang Q, Mab L, Yuc Q, Ahuja LR, Malone RW, Hoogenboom G (2009) Irrigation strategies to improve the water use efficiency of wheat–maize double cropping systems in North China Plain. Agr Water Manage. doi:10.1016/j.agwat.2009.02.012, DOI:dx.doi.org

  • FAO (1997) Food and Agriculture Organization. http://www.fao.org/docrep/W3094E/w3094e04.htm

  • Farahani HJ, Izzi G, Oweis TY (2009) Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agron J 101:469–476. doi:10.2134/agronj2008.0182s

    Google Scholar 

  • Faraji A, Latifi N, Soltani A, Rad AHS (2009) Seed yield and water use efficiency of canola (Brassica napus L.) as affected by high temperature stress and supplemental irrigation. Agr Water Manage 96:132–140. doi:10.1016/j.agwat.2008.07.014, DOI:dx.doi.org

    Google Scholar 

  • Fare DC, Gilliam CG, Keever GJ (1993) Monitoring irrigation at container nurseries. Hortic Technol 2:75–78

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. doi:10.1051/agro:2008021

    Google Scholar 

  • Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol 11:539–552

    CAS  Google Scholar 

  • Feddes RA, Raats PAC (2004) Parameterizing the soil-water-plant root system. In: Feddes RA, de Rooij GH, van Dam JC (eds.) Unsaturated-zone modeling. Progress, challenges and applications. Kluwer, Dordrecht, pp 95–144

    Google Scholar 

  • Feddes RA, Bresler E, Neuman SP (1974) Field test of a modified numerical model for water uptake by root systems. Water Resour Res 10:1199–1206

    Google Scholar 

  • Feng FX, Huang GB, Chai Q, Yu AZ (2010) Tillage and straw management impacts on soil properties, root growth, and grain yield of winter wheat in northwestern China. Crop Sci 50:1465–1473. doi:10.2135/cropsci2008.10.0590

    Google Scholar 

  • Fereres E, Soriano MA (2007) Deficit irrigation for reducing agricultural water use. J Exp Bot 58(2):147–159

    PubMed  CAS  Google Scholar 

  • Fernández-Ugalde O, Virto I, Descansa P, Imaz MJ, Enrique A, Karlen DL (2009) No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil Tillage Res 106:29–35

    Google Scholar 

  • Finkel E (2009) Making every drop count in the buildup to a blue revolution. Science 323:1004–1005. doi:10.1126/science.323.5917.1004

    PubMed  CAS  Google Scholar 

  • Fischer G, Heilig GK (1997) Population momentum and the demand on land and water resources. Phil Trans Roy Soc Lond B 352:869–889. doi:10.1098/rstb.1997.0067

    Google Scholar 

  • Gan Y, Campbell CA, Liu L, Basnyat P, McDonald CL (2009) Water use and distribution profile under pulse and oilseed crops in semiarid northern high latitude areas. Agr Water Manage 96:337–348. doi:10.1016/j.agwat.2008.08.012, DOI:dx.doi.org

    Google Scholar 

  • Geerts S, Raes D (2009) Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agr Water Manage 96:175–1284. doi:10.1016/j.agwat.2009.04.009

    Google Scholar 

  • GEMS (2004) Global environment monitoring system, United Nations Environment Programme/Water Programme. State of water quality assessment reporting at global level (R. Robarts). Presentation at the UN International Work Session on Water Statistics. http://unstats.un.org/unsd/environment/waterstress_papers.htm. Accessed 27 July 2009

  • Gerardeaux E, Jordan-Meille L, Constantin J, Pellerin S, Dingkuhn M (2010) Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum (L.). Environ Exp Bot 67:451–459. doi:10.1016/j.envexpbot.2009.09.008

    CAS  Google Scholar 

  • Gercek S, Comlekcioglu N, Dikilitas M (2009) Effectiveness of water pillow irrigation method on yield and water use efficiency on hot pepper (Capsicum annuum L.). Sci Hortic 120(3):325–329. doi:10.1016/j.scienta.2008.11.028, DOI:dx.doi.org

    Google Scholar 

  • Gibson G, Radford BJ, Nielsen RGH (1992) Fallow management, soil water, plant-available soil nitrogen and grain sorghum production in south west Queensland. Aust J Exp Agric 32:473–482. doi:10.1071/EA9920473

    CAS  Google Scholar 

  • Gleick PH (2003) Global fresh water resources. Science 302:1524–1528. doi:10.1126/science.1089967

    PubMed  CAS  Google Scholar 

  • Gómez JA, Nearing MA (2005) Runoff and sediment losses from rough and smooth soil surfaces in a laboratory experiment. Catena 59:253–266

    Google Scholar 

  • Goodwin I, Boland AM (2002) Scheduling deficit irrigation of fruit trees for optimizing water use efficiency. Water reports, FAO Publication number 22, Rome, pp 67–79

    Google Scholar 

  • Greb BW (1966) Effect of surface-applied wheat straw on soil water losses by solar distillation. Soil Sci Soc Am Proc 30:786–788

    Google Scholar 

  • Gregory PJ (2004) Agronomic approaches to increasing water use efficiency. In: Bacon M (ed.) Water use efficiency in plant biology. Blackwell, Oxford, pp 142–170

    Google Scholar 

  • Gregory PJ, Bengough AG, Grinev D, Schmidt S, Thomas WTB, Wojciechowski T, Young IM (2009) Root phenomics of crops: opportunities and challenges. Funct Plant Biol 36:922–929. doi:10.1071/FP09150

    Google Scholar 

  • Gu J, Li S, Gao H, Li M, Qin Q, Cheng K (2004) Effect of organic–inorganic fertilizers on the water use efficiency of crops in dry land. Agr Res Arid Areas 22(1):142–145, 151 (In Chinese, with English abstract)

    Google Scholar 

  • Guinn G, Mauney JR, Fry KE (1981) Irrigation scheduling and plant population effects on growth, bloom rates, boll abscission and yield of cotton. Agron J 73:529–534

    Google Scholar 

  • Gunasekera CP, Martin LD, Siddique KHM, Walton GH (2006) Genotype by environment interactions of Indian mustard (Brassica Iuncea L.) and canola (Brassica napus L.) in Mediterranean-type environments. II. Oil and protein concentrations in seed. Eur J Agron 25:13–21

    Google Scholar 

  • Hatfield JL, Sauer TJ, Prueger JH (2001) Managing soils to achieve greater water use efficiency: a review. Agron J 93:271–280

    Google Scholar 

  • Hati KM, Mandal KG, Misra AK, Ghosh PK, Bandyopadhyay KK (2006) Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Biores Techonol 97(16):2182–2188

    CAS  Google Scholar 

  • He H, Cheng GL, Zhao SW (1999) Effect of different water and fertilizer conditions on water use efficiency of potato. Agr Res Arid Areas 17:59–66

    Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152. doi:10.1007/s11104-008-9885-9

    CAS  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24

    Google Scholar 

  • Howell TA (2001) Enhancing water use efficiency in irrigated agriculture. Agron J 93:281–289

    Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Ann Rev Plant Physiol 24:519–570. doi:10.1146/annurev.pp. 24.060173.002511

    CAS  Google Scholar 

  • Hsiao TC, Steduto P, Fereres E (2007) A systematic and quantitative approach to improve water use efficiency in agriculture. Irrig Sci 25:209–231. doi:10.1007/s00271-007-0063-2

    Google Scholar 

  • Hsieh JCC, Chadwick OA, Kelly EF, Savin SM (1998) Oxygen isotopic composition of soil water: quantifying evaporation and transpiration. Geoderma 82:269–293. doi:10.1016/S0016-7061(97)00105-5

    Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nurt Soil Sci 168:541–549

    CAS  Google Scholar 

  • Hu SJ, Song YD, Zhou HF, Tian CY (2002) Experimental study on water use efficiency of cotton in the Tarim River Basin. Agric Res Arid Areas 20:65–70

    Google Scholar 

  • Hufstetler EV, Boerma HR, Carter TE Jr, Earl HJ (2007) Genotypic variation for three physiological traits affecting drought tolerance in soybean. Crop Sci 47:25–35. doi:10.2135/cropsci2006.04.0243

    Google Scholar 

  • Humphreys E, Bhuiyan AM, Fattore A, Fawcett B, Smith D (2001). The benefits of winter crops after rice harvest. Part 1: Results of field experiments. Part 2: Models to predict what will happen in your situation. Part 3: What growers think about crops after rice. Farmers’ Newsl. Large Area 157, pp 29–31, 36–42

    Google Scholar 

  • IPCC (2007) Climate change, synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Pachauri RK, Reisinger A (eds.). IPCC, Geneva

    Google Scholar 

  • Islam N, Wallender WW, Mitchell J, Wicks S, Howitt RE (2006) A comprehensive experimental study with mathematical modelling to investigate the effects of cropping practices on water balance variables. Agr Water Manage 82:129–147

    Google Scholar 

  • Ismail SM, Ozawa K, Khondaker NA (2008) Influence of single and multiple water application timings on yield and water use efficiency in tomato (var. First power). Agr Water Manage 95:116–122. doi:10.1016/j.agwat.2007.09.006

    Google Scholar 

  • Jacob J, Udayakumar M, Prasad TG (1995) Mesophyll conductance was inhibited more than stomatal conductance in nitrogen deficient plants. Plant Physiol Biochem 17:55–61

    Google Scholar 

  • Jaleel CA, Gopi R, Sankar B, Gomathinayagam M, Panneerselvam R (2008) Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. C R Biol 331:42–47. doi:10.1016/j.crvi.2007.11.003, DOI:dx.doi.org

    PubMed  Google Scholar 

  • Jalota SK, Buttar GS, Sood A, Chahal GBS, Ray SS, Panigrahy S (2008) Effects of sowing date, tillage and residue management on productivity of cotton (Gossypium hirsutum L.)–wheat (Triticum aestivum L.) system in northwest India. Soil Tillage Res 99:76–83. doi:10.1016/j.still.2008.01.005

    Google Scholar 

  • Jin K, Cornelis WM, Schiettecatte W, Lu J, Yao Y, Wu H, Gabriels D, De Neve S, Cai D, Jin J, Hartmann R (2007) Effects of different management practices on the soil–water balance and crop yield for improved dryland farming in the Chinese Loess Plateau. Soil Tillage Res 96:131–144. doi:10.1016/j.still.2007.05.002

    Google Scholar 

  • Jin H, Qingjie W, Hongwen L, Lijin L, Huanwen G (2009) Effect of alternative tillage and residue cover on yield and water use efficiency in annual double cropping system in North China Plain. Soil Tillage Res 104(1):198–205. doi:10.1016/j.still.2008.08.015, DOI:dx.doi.org

    Google Scholar 

  • Johnson DA, Asay KH, Tieszen LL, Ehleringer JR, Jefferson PG (1990) Carbon isotope discrimination, potential in screening cool-season grasses for water-limited environments. Crop Sci 30:338–343

    Google Scholar 

  • Johnson N, Revenga C, Echeverria J (2001) Managing water for people and nature. Science 292:1071–1074

    PubMed  CAS  Google Scholar 

  • Jones H (2004a) What is water use efficiency? In: Bacon MA (ed.) Water use efficiency in plant biology. Blackwell, Oxford, pp 27–41

    Google Scholar 

  • Jones HG (2004b) Irrigation scheduling: advantages and pitfalls of plant- based methods. J Exp Bot 55(407):2427–2436. doi:10.1093/jxb/erh213

    PubMed  CAS  Google Scholar 

  • Kang SZ, Liu XM, Xiong YZ (1992) Research on the model of water uptake by winter wheat roots. Acta Univ Agric Boreali occidentalis 20:5–12

    Google Scholar 

  • Kant S, Kafkafi U (2002) Potassium and abiotic stresses in plants. In: Pasricha NS, Bansal SK (eds.) Role of potassium in nutrient management for sustainable crop production in India, Potash Research Institute of India, Gurgaon.

    Google Scholar 

  • Karam NS (1993) Overhead sprinkle strategies to reduce water and nitrogen loss from container-growen plants. Ph.D. Dissertation. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  • Karam F, Breidy J, Stephan C, Rouphael J (2003) Evapotranspiration, yield and water use efficiency of drip irrigated corn in the Bekaa Valley of Lebanon. Agr Water Manage 63(2):125–137

    Google Scholar 

  • Karam F, Masaad R, Sfeir T, Mounzer O, Rouphael Y (2005) Evapotranspiration and seed yield of field grown soybean under deficit irrigation conditions. Agr Water Manage 75:226–244

    Google Scholar 

  • Karam F, Masaad R, Daccache A, Mounzer O, Rouphael Y (2006) Water use and lint yield response of drip irrigated cotton to the length of irrigation season. Agric Water Manage 85:287–295

    Google Scholar 

  • Karrou M (1998) Observations on effect of seeding pattern on water-use efficiency of durum wheat in semi-arid areas of Morocco. Field Crops Res 59:175–179. doi:10.1016/S0378-4290(98)00118-X, DOI:dx.doi.org

    Google Scholar 

  • Katerji N, Mastrorilli M (2009) The effect of soil texture on the water use efficiency of irrigated crops: results of a multi-year experiment carried out in the Mediterranean region. Eur J Agron 30:95–100. doi:0.1016/j.eja.2008.07.009

    Google Scholar 

  • Katerji N, van Hoorn JW, Hamdy A, Karam F, Mastrorilli M (1996) Effect of salinity on water stress, growth, and yield of maize and sunflower. Agr Water Manage 30:237–249

    Google Scholar 

  • Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M (2003) Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agr Water Manage 62:37–66

    Google Scholar 

  • Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M, Oweis T (2005a) Salt tolerance analysis of chickpea, faba bean and durum wheat varieties. I. Chickpea and faba bean. Agr Water Manage 72:177–194

    Google Scholar 

  • Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M, Nachit MM, Oweis T (2005b) Salt tolerance analysis of chickpea, faba bean and durum wheat varieties. II. Durum wheat. Agr Water Manage 72:195–207

    Google Scholar 

  • Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M, Fares C, Ceccarelli S, Grando S, Oweis T (2006) Classification and salt tolerance analysis of barley varieties. Agr Water Manage 85:184–192

    Google Scholar 

  • Katerji N, Mastrorilli M, Rana G (2008) Water use efficiency of crops cultivated in the Mediterranean region: review and analysis. Eur J Agron 28:493–507. doi:10.1016/j.eja.2007.12.003

    Google Scholar 

  • Kato Y, Abe J, Kamoshita A, Yamagishi J (2006) Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes. Plant Soil 287:117–129

    CAS  Google Scholar 

  • Kirda C (2002) Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. In Deficit irrigation practices. Water Rep. 22. FAO, Rome. pp 3–10

    Google Scholar 

  • Kirda C, Topcu S, Cetin M, Dasgan HY, Kaman H, Topaloglu F, Derici MR, Ekici B (2007) Prospects of partial root zone irrigation for increasing irrigation water use efficiency of major crops in the Mediterranean region. Ann Appl Biol 150:281–291. doi:10.1111/j.1744-7348.2007.00141.x

    Google Scholar 

  • Kondratyev KY, Krapivin VF, Varotsos CA (2003) Global carbon cycle and climate change. Springer, Berlin, p 388

    Google Scholar 

  • Kundu M, Chakraborty PK, Mukherjee A, Sarkar S (2008) Influence of irrigation frequencies and phosphate fertilization on actual evapotranspiration rate, yield and water use pattern of rajmash (Phaseolus vulgaris L.). Agr Water Manage 95:383–390. doi:10.1016/j.agwat.2007.10.022

    Google Scholar 

  • Lagos LO, Martin DL, Verma S, Suyker A, Irmak S (2009) Surface energy balance model of transpiration from variable canopy cover and evaporation from residue-covered or bare-soil systems. Irrig Sci 28:51–64. doi:10.1007/s00271-009-0181-0

    Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    PubMed  Google Scholar 

  • Lampurlanés J, Cantero-Martínez C (2006) Hydraulic conductivity, residue cover and soil surface roughness under different tillage systems in semiarid conditions. Soil Tillage Res 85:13–26

    Google Scholar 

  • Larcher W (1994) Ökophysiologie der Pflanzen, 5th edn. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Latiri-Souki K, Nortcliff S, Lawlor DW (1998) Nitrogen fertilizer can increase dry matter, grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions. Eur J Agron 9(1):21–34. doi:10.1016/S1161-0301(98)00022-7, DOI:dx.doi.org

    Google Scholar 

  • Latta RA, Blacklow LJ, Cocks PS (2001) Comparative soil water, pasture production, and crop yields in phase farming systems with lucerne and annual pasture in Western Australia. Aust J Agric Res 52:295–303

    Google Scholar 

  • Lawlor DW (2002) Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot 53:773–787

    PubMed  CAS  Google Scholar 

  • Leitner D, Klepsch S, Bodner G, Schnepf A (2010) A dynamic root system growth model based on L-Systems. Plant Soil 332:177–192

    CAS  Google Scholar 

  • Levitt J (1972) Responses of plants to environmental stresses. Academic, New York

    Google Scholar 

  • Li S, Xiao L (1992) Distribution and management of drylands in the People’s Republic of China. Adv Soil Sci 18:148–293

    Google Scholar 

  • Li FR, Zhao SL, Geballe GT (2000) Water use patterns and agronomic performance for some cropping systems with and without fallow crops in a semi-arid environment of Northwest China. Agric Ecosyst Environ 79:129–142

    Google Scholar 

  • Li Y, Wu L, Zhao L, Lu X, Fan Q, Zhang F (2007) Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition. Soil Tillage Res 93:370–378. doi:10.1016/j.still.2006.05.010

    Google Scholar 

  • Li SX, Wang ZH, Malhi SS, Li SQ, Gao YJ, Tian XH (2009) Nutrient and water management effects on crop production, and nutrient and water use efficiency in dryland areas of China. Adv Agron 102:223–265

    Google Scholar 

  • Li F, Yu J, Nong M, Kang S, Zhang J (2010) Partial root-zone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers. Agr Water Manage 97:231–239. doi:10.1016/j.agwat.2009.09.014

    Google Scholar 

  • Lipiec J, Kus J, Słowinska-Jurkiewicz A, Nosalewicz A (2005) Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res 89:210–220

    Google Scholar 

  • Liu HJ, Kang YH, Liu SP (2003) Regulation of field environmental condition by sprinkler irrigation and its effect on water use efficiency of winter wheat. Trans Chin Soc Agric Eng 19:46–51

    Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610. doi:10.1126/science.1152339

    PubMed  CAS  Google Scholar 

  • Long SP (2006) C4 photosynthesis at low temperature. Plant Cell Environ 6:345–363. doi:10.1111/j.1365-3040.1983.tb01267.x

    Google Scholar 

  • Lopez MV, Arrue JL (1997) Growth, yield and water use efficiency of winter barley in response to conservation tillage in a semi-arid region of Spain. Soil Tillage Res 44(1–2):35–54. doi:10.1016/S0167-1987(97)00030-5, DOI:dx.doi.org

    Google Scholar 

  • Loveys B, Ping L (2002) Plants response to water: new tools for vineyard irrigators. In: Dundon C, Hamilton R, Johnstone R, Partridge S (eds.) ASVO Proceedings. Australian Society Viticulture and Oenology, Victoria

    Google Scholar 

  • Loveys B, Stoll M, Davies WJ (2004) Physiological approaches to enhance water use efficiency in agriculture: exploiting plant signalling in novel irrigation practice. In: Bacon M (ed.) Water use efficiency in plant biology. Blackwell, Oxford, pp 113–141

    Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Google Scholar 

  • Machado S, Petrie S, Rhinhart K, Ramig RE (2008) Tillage effects on water use and grain yield of winter wheat and green pea in rotation. Agron J 100:154–162. doi:10.2134/agrojnl2006.0218

    Google Scholar 

  • Marouelli WA, Silva WLC, Moretti CL (2004) Production, quality and water use efficiency of processing tomato as affected by the final irrigation timing. Hortic Bras 22(2):226–231

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, San Diego

    Google Scholar 

  • Martin B, Tauer CG, Lin RK (1999) Carbon isotope discrimination as a tool to improve water use efficiency in tomato. Crop Sci 39:1775–1783

    Google Scholar 

  • Marty JR, Puech J, Maertens C, Blanchet R (1975) Etude expérimentale de la réponse de quelques grandes cultures `a l’irrigation. C R Acad Agr 61:560–567

    Google Scholar 

  • Mastrorilli M, Katerji N, Rana G (1995) Water efficiency and stress on grain sorghum at different reproductive stages. Agr Water Manage 28:23–34

    Google Scholar 

  • Mathews RB, Stephens W (2002) Crop –soil simulation models: applications in developing countries. CABI publishing, Wallingford, pp 271

    Google Scholar 

  • Matsuoka M, Furbank RT, Fukayama H, Miyao M (2001) Molecular engineering of C4 photosynthesis. Ann Rev Plant Physiol Plant Molecular Biol 52:297–314

    CAS  Google Scholar 

  • McHugh OV, Steenhuis TS, Abebe B, Fernandes ECM (2007) Performance of in situ rainwater conservation tillage techniques on dry spell mitigation and erosion control in the drought-prone North Wello zone of the Ethiopian highlands. Soil Tillage Res 97:19–36. doi:10.1016/j.still.2007.08.002

    Google Scholar 

  • Mellouli HJ, Hartmann R, Gabriels D, Cornelis WM (1998) The use of olive mill effluents (‘margines’) as soil conditioner mulch to reduce evaporation losses. Soil Tillage Res 49:85–91

    Google Scholar 

  • Monneveux P, Reynolds MP, Trethowan R, González-Santoyo H, Peña RJ, Zapata F (2005) Relationship between grain yield and carbon isotope discrimination in bread wheat under four water regimes. Eur J Agron 22:231–242. doi:10.1016/j.eja.2004.03.001

    CAS  Google Scholar 

  • Moreno F, Pelegrin F, Fernandez JE, Murillo JM (1997) Soil physical properties, water depletion and crop development under traditional and conservation tillage in southern Spain. Soil Tillage Res 41:25–42

    Google Scholar 

  • Moret D, Braud I, Arrúe JL (2007) Water balance simulation of a dryland soil during fallow under conventional and conservation tillage in semiarid Aragon, Northeast Spain. Soil Till Res 92:251–263

    Google Scholar 

  • Morison JIL, Baker NR, Mullineaux PM, Davies WJ (2008) Improving water use in crop production. Phil T Roy Soc B 363:639–658. doi:10.1098/rstb.2007.2175

    CAS  Google Scholar 

  • Morrison MJ, Stewart DW (2002) Heat stress during flowering in summer Brassica. Crop Sci 42:797–803

    Google Scholar 

  • Nielsen DC, Unger PW, Miller PR (2005) Efficient water use in dry land cropping systems in the great plains. Agron J 97:364–372

    Google Scholar 

  • Nobel PS (1991) Physicochemical and environmental plant physiology. Academic, San Diego

    Google Scholar 

  • Ogola JBO, Wheeler TR, Harris PM (2002) Effects of nitrogen and irrigation on water use of maize crops. Field Crops Res 78(2–3):105–117. doi:10.1016/S0378-4290(02)00116-8, DOI:dx.doi.org

    Google Scholar 

  • Oweis T (1997) Supplemental irrigation. A highly efficient water use practice. ICARDA Editions. pp 16

    Google Scholar 

  • Oweis T (2004) Lentil production under supplemental irrigation in a Mediterranean environment. Agr Water Manage 68:251–265

    Google Scholar 

  • Oweis T, Hachum A, Kijne J (1999) Water harvesting and supplemental irrigation for improved water use efficiency in dry areas. SWIM Paper 7, International Water Management Institute, Colombo

    Google Scholar 

  • Oweis T, Zhang H, Pala M (2000) Water use efficiency of rainfed and irrigation bread wheat in a Mediterranean environment. Agron J 92:231–238

    Google Scholar 

  • Oweis T, Hachum A, Pala M (2004) Water use efficiency of winter-sown chickpea under supplemental irrigation in a mediterranean environment. Agr Water Manage 66:163–179. doi:10.1016/j.agwat.2003.10.006, DOI:dx.doi.org

    Google Scholar 

  • Pala M, Ryan J, Zhang M, Singh M, Harris HC (2007) Water-use efficiency of wheat-based rotation systems in a Mediterranean environment. Agr Water Manage 93:136–144. doi:10.1016/j.agwat.2007.07.001, DOI:dx.doi.org

    Google Scholar 

  • Panda RK, Behera SK, Kashyap PS (2004) Effective management of irrigation water for maize under stressed conditions. Agr Water Manage 66(3):181–203. doi:10.1016/j.agwat.2003.12.001, DOI:dx.doi.org

    Google Scholar 

  • Papastylianou I (1993) Productivity requirements of barley in rainfed Mediterranean conditions. Eur J Agron 2:119–129

    Google Scholar 

  • Parry MAJ, Flexas J, Medrano H (2005) Prospects for crop production under drought: research priorities and future directions. Annals Appl Biol 147:211–226

    Google Scholar 

  • Passioura J (1977) Grain yield, harvest index, and water use of wheat. J Aus Inst Agr Sci 43:117–121

    Google Scholar 

  • Passioura JB (2002) Environmental biology and crop improvement. Funct Plant Biol 29:537–546

    Google Scholar 

  • Passioura J (2006) Increasing crop productivity when water is scarce – From breeding to field management. Agr Water Manage 80:176–196. doi:10.1016/j.agwat.2005.07.012, DOI:dx.doi.org

    Google Scholar 

  • Passioura JB, Angus JF (2010) Improving productivity of crops in water-limited environments. In: Sparks DL (ed.) Advances in agronomy, vol 106. Academic, Burlington, pp 37–75

    Google Scholar 

  • Paul ND, Ayres PG (1984) Effects of rust and post-infection drought on photosynthesis, growth and water relations in groundsel. Plant Pathol 33:561–569

    Google Scholar 

  • Payero JO, Tarkalson DD, Irmak S, Davison D, Petersen JL (2009) Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass. Agr Water Manage 96(10):1387–1397

    Google Scholar 

  • Payne WA (1997) Managing yield and water use of Pearl millet in the Sahel. Agron J 89:481–490

    Google Scholar 

  • Payne WA, Drew MC, Hossner LR, Lascano RJ, Onken AB, Wendt CW (1992) Soil phosphorus availability and pearl millet water-use efficiency. Crop Sci 32:1010–1015

    CAS  Google Scholar 

  • Payne WA, Hossner LR, Onken AB, Wendt CW (1995) Nitrogen and phosphorus uptake in pearl millet and its relation to nutrient and transpiration efficiency. Agron J 87:425–431

    Google Scholar 

  • Pereira LS, Oweis T, Zairi A (2002) Irrigation management under water scarcity. Agr Water Manage 57:175–206

    Google Scholar 

  • Peterson GA, Westfall DG (2004) Managing precipitation use in sustainable dryland agroecosystems. Ann Appl Biol 144:127–138. doi:10.1111/j.1744-7348.2004.tb00326.x

    Google Scholar 

  • Pettigrew WT (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 133:670–681

    PubMed  CAS  Google Scholar 

  • Playan E, Mateos L (2006) Modernization and optimization of irrigation systems to increase water productivity. Agr Water Manage 80:100–116. doi:10.1016/j.agwat.2005.07.007, DOI:dx.doi.org

    Google Scholar 

  • Polley WH (2002) Implications of atmospheric and climate change for crop yield and water use efficiency. Crop Sci 42:131–140

    PubMed  Google Scholar 

  • Power JF (1983) Soil management for efficient water use: soil fertility. In: Taylor HM (ed.) Limitations to efficient water use in production. ASA, CSSA, and SSSA, Madison, pp 461–470

    Google Scholar 

  • Purcell LC, Sinclair TR, McNew RW (2003) Drought avoidance assessment for summer annual crops using long-term weather data. Agron J 95:1566–1576

    Google Scholar 

  • Rajabi A, Ober ES, Griffiths H (2009) Genotypic variation for water use efficiency, carbon isotope discrimination, and potential surrogate measures in sugar beet. Field Crops Res 112:172–181. doi:10.1016/j.fcr.2009.02.015

    Google Scholar 

  • Rama RN (1986) Potassium nutrition of pearl millet subjected to moisture stress. J Potassium Res 2:1–12

    Google Scholar 

  • Rana G, Katerji N (2007) Direct and indirect methods to simulate the actual evapotranspiration of irrigated overhead table grape vineyard under Mediterranean conditions. Hyrol Proc 22(2):181–188

    Google Scholar 

  • Rashid A, Haris D, Hollington PA, Khattak RA, Ahmad R, Malik KA (2002) On-farm seed priming, a key technology for improving the livelihood of resource-poor farmers of saline lands. Prospects Saline Agric. Pakintan, pp 423–431

    Google Scholar 

  • Rasool R, Kukal SS, Hira GS (2008) Soil organic carbon and physical properties as affected by long-term application of FYM and inorganic fertilizers in maize-wheat system. Soil Tillage Res 101:31–36. doi:10.1016/j.still.2008.05.015, DOI:dx.doi.org

    Google Scholar 

  • Rasse DP, Smucker AJM (1998) Root colonization of previous root channels in corn and alfalfa rotations. Plant Soil 204:203–121

    CAS  Google Scholar 

  • Raven JA, Handley LL, Wollenwerber B (2004) Plant nutrition and water use efficiency. In: Bacon MA (ed.) Water use efficiency in plant biology. Blackwell, Oxford, pp 322

    Google Scholar 

  • Ray JD, Sinclair TR (1998) The effect of pot size on growth and transpiration of maize and soybean during water deficit stress. J Exp Bot 49:1381–1386. doi:10.1093/jxb/49.325.1381

    CAS  Google Scholar 

  • Rebetzke GJ, Richards RA, Fettell NA, Long M, Condon AG, Forrester RI, Botwright TL (2007) Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Res 100:10–23. doi:10.1016/j.fcr.2006.05.001

    Google Scholar 

  • Reynolds M, Tuberosa R (2008) Translational research impacting on crop productivity in drought-prone environments. Curr Opin Plant Biol 11:171–179

    PubMed  Google Scholar 

  • Richards RA (2004) Physiological traits used in the breeding of new cultivars for water-scarce environments. In: New directions for a diverse planet. Proceedings 4th international crop science congress, Brisbane, 26 Sept–1 Oct 2004 (eds.). Fischer RA, Turner N, Angus J, McIntyre L, Robertson M, Borrell A, Lloyd D. See www.cropscience.org.au/icsc2004

  • Richards RA, Watt M, Rebetzke GJ (2007) Physiological traits and cereal germplasm for sustainable agricultural systems. Euphytica 154:409–425. doi:10.1007/s10681-006-9286-1

    Google Scholar 

  • Ridley AM, Christy B, Dunin FX, Haines PJ, Wilson KF, Ellington A (2001) Lucerne in crop rotations on the Riverine Plains 1. The soil water balance. Aust J Agric Res 52:263–277

    Google Scholar 

  • Ritchie JT (1971) Dryland evaporative flux in a subhumid climate, I. Micrometeorological influences. Agron J 70:723–728

    Google Scholar 

  • Ritchie JT (1983) Efficient water use in crop production: discussion on the generality of relations between biomass production and evapotranspiration. In: Taylor HM (ed.) Limitations to efficient water use in production. ASA, CSSA, and SSSA, Madison, pp 29–44

    Google Scholar 

  • Ritchie JT, Basso B (2008) Water use efficiency is not constant when crop water supply is adequate or fixed, the role of agronomic management. Eur J Agron 28(3):273–281. doi:10.1016/j.eja.2007.08.003, DOI:dx.doi.org

    Google Scholar 

  • Röckström J (2001) Green water security for food makers of tomorrow: windows of opportunity in drought-prone savannahs. Water Sci Technol 43:71–78

    PubMed  Google Scholar 

  • Römheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180. doi:10.1007/s11104-010-0520-1

    Google Scholar 

  • Sadras VO (2009) Does partial root-zone drying improve irrigation water productivity in the field? A meta-analysis. Irrig Sci 27:183–190. doi:10.1007/s00271-008-0141-0

    Google Scholar 

  • Sadras V, Roget D, Krause M (2003) Dynamic cropping strategies for risk management in dry-land farming systems. Agric Syst 76:929–948. doi:10.1016/S0308-521X(02)00010-0, DOI:dx.doi.org

    Google Scholar 

  • Sage RF, Pearcy RW (1987) The nitrogen use efficiency of C3 and C4 plants. II. Leaf nitrogen, effects on the gas exchange characteristics of Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol 84:959–963

    PubMed  CAS  Google Scholar 

  • Santos TPd, Lopes CM, Rodrigues ML, Souza CRd, Maroco JP, Pereira JS, Silva JR, Chaves MM (2003) Partial rootzone drying: effects on growth and fruit quality of field-grown grapevines (Vitis vinifera). Funct Plant Biol 30:663–671

    Google Scholar 

  • Sarkar S, Paramanick M, Goswami SB (2007) Soil temperature, water use and yield of yellow sarson (Brassica napus L. var. glauca) in relation to tillage intensity and mulch management under rainfed lowland ecosystem in eastern India. Soil Tillage Res 93(1):94–101. doi:10.1016/j.still.2006.03.015, DOI:dx.doi.org

    Google Scholar 

  • Saxena NP (1985) The role of potassium in drought tolerance, Potash review, No. 5, International Potash Institute, Bern. 16, pp 1–15

    Google Scholar 

  • Schillinger WF, Cook RJ, Papendick RI (1999) Increased dryland cropping intensity with no-till barley. Agron J 91:744–752

    Google Scholar 

  • Schmidhalter U, Studer Ch (1998) Water-use efficiency as influenced by plant mineral nutrition. First Sino-German workshop impact of plant nutrition on sustainable agricultural production, Kiel, 22–23 Oct 1998, 9 pp

    Google Scholar 

  • Schulze ED, Hall AE (1982) Stomatal responses, water loss and CO2 carbon dioxide assimilation rates of plants in contrasting environments. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds.) Encyclopedia of plant physiology—physiological plant ecology, vol II. Springer-Verlag, Berlin, pp 181–230

    Google Scholar 

  • Selvaraju R, Ramaswami C (1997) Evaluation of fallow management practices in a rainfed vertisol of peninsular India. Soil Tillage Res 43:319–333

    Google Scholar 

  • Shangguan ZP, Shao MA, Dyckmans J (2000) Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environ Exp Bot 44:141–149

    PubMed  CAS  Google Scholar 

  • Shiklomanov IA (2003) World water resources at the beginning of the 21st century. Cambridge University Press, Cambridge

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signalling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Siddique KHM, Tennant D, Perry MW, Belford RK (1990) Water use and water use efficiency of old and modern wheat cultivars in a Mediterranean-type environment. Aust J Agric Res 41:431–447

    Google Scholar 

  • Silburn DM, Glanville SF (2002) Management practices for control of runoff losses from cotton furrows under storm rainfall. I. Runoff and sediment on a black vertisol. Aust J Soil Res 40:1–20

    Google Scholar 

  • Simane B, Peacock JM, Struik PC (1993) Differences in developmental plasticity and growth rate among drought-resistant and susceptible cultivars of durum wheat (Triticum turgidum L. var. durum). Plant Soil 157:155–166. doi:10.1007/BF00011044

    Google Scholar 

  • Simpson JR, Pinkerton A (1989) Fluctuations in soil moisture, and plant uptake of surface applied phosphate. Fertilizer Res 20:101–108. doi:10.1007/BF01055434

    CAS  Google Scholar 

  • Šimůnek J, Šejna M, Saito H, Sakai M, van Genuchten M Th (2008) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 4.0, HYDRUS Software Series 1, Department of Environmental Sciences, University of California Riverside, Riverside

    Google Scholar 

  • Šimůnek J, Hopmans JW (2009) Modeling compensated root water and nutrient uptake. Ecol Model 220:505–521

    Google Scholar 

  • Singh G, Bhushan LS (1980) Water use, water use efficiency, and yield of dryland chickpea as influenced by P fertilization, stored soil water, and crop season rainfall. Agr Water Manage 2:299–305. doi:10.1016/0378-3774(80)90030-X, DOI:dx.doi.org

    Google Scholar 

  • Singh KB, Malhotra RS, Saxena MC, Bejiga G (1997) Superiority of winter sowing over traditional spring sowing of chickpea in the Mediterranean region. Agron J 89:112–118

    Google Scholar 

  • Soracco CG, Lozano LA, Sarli GO, Gelati PR, Filgueira RR (2010) Anisotropy of saturated hydraulic conductivity in a soil under conservation and no-till treatments. Soil Tillage Res 109:18–22. doi:10.1016/j.still.2010.03.013

    Google Scholar 

  • Souza CRd, Maroco JP, Santos TPd, Rodrigues ML, Lopes CM, Pereira JS, Chaves MM (2003) Partial rootzone drying: regulation of stomatal aperture and carbon assimilation in field-grown grapevines (Vitis vinifera cv. Moscatel). Funct Plant Biol 30:653–662

    Google Scholar 

  • Steduto P, Hsiao TC, Fereres E (2007) On the conservative behavior of biomass water productivity. Irrig Sci 25:189–207

    Google Scholar 

  • Steiner JL (1989) Tillage and surface residue effects on evaporation from soils. Soil Sci Soc Am J 53(3):911–916

    Google Scholar 

  • Strudley MW, Green TR, Ascough JC II (2008) Tillage effects on soil hydraulic properties in space and time: state of the science. Soil Till Res 99:4–48

    Google Scholar 

  • Su Z, Zhang J, Wu W, Cai D, Lv J, Jiang G, Huang J, Gao J, Hartmann R, Gabriels D (2007) Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau. China Agr Water Manage 87(3):307–314. doi:10.1016/j.agwat.2006.08.005, DOI:dx.doi.org

    Google Scholar 

  • Sun J, Yang L, Wang Y, Ort DR (2009) FAC-ing the global change: opportunities for improvement in photosynthetic radiation use efficiency and crop yield. Plant Sci 177:511–522

    CAS  Google Scholar 

  • Tambussi EA, Bort J, Araus JL (2007) Water use efficiency in C3 cereals under Mediterranean conditions: a review of physiological aspects. Annals Appl Biol 150:307–321

    Google Scholar 

  • Tebrügge F, Düring R-A (1999) Reducing tillage intensity—a review of results from a long-term study in Germany. Soil Tillage Res 53:15–28

    Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low input high-diversity grassland. Science 314:1598–1660. doi:10.1126/science.1133306

    PubMed  CAS  Google Scholar 

  • Tiwari HS, Agarval RM, Bhatt RK (1998) Photosynthesis, stomatal resistance and related characters as influenced by potassium under normal water supply and water stress condition in rice (Oryza sativa L.). Indian J. Plant Physiol 3:314–316

    Google Scholar 

  • Trondalen JM (2008) Water and peace for the people – Proposed solutions to water disputes in the Middle East. UNESCO International Hydrological Programme (IHP), Paris

    Google Scholar 

  • Turner NC (2004) Agronomic options for improving rainfall-use efficiency of crops in dry land farming systems. J Exp Bot 55:2413–2425. doi:10.1093/jxb/erh154

    PubMed  CAS  Google Scholar 

  • Tyler HH, Warren SL, Bilderback TE (1996) Cyclic irrigation increases irrigation application efficiency and decreases ammonium losses. J Environ Hortic 14:194–198

    Google Scholar 

  • Umar S, Moinuddin (2002) Genotypic differences in yield and quality of groundnut as affected by potassium nutrition under erratic rainfall conditions. J Plant Nutr 25:1549–1562. doi:10.1081/PLN-120005407

    CAS  Google Scholar 

  • UNEP (1996) United Nations Environment Programme. Groundwater: a threatened resource. UNEP Environment Library No. 15, UNEP, Nairobi

    Google Scholar 

  • Unger PW (1991) Ontogeny and water use of no-tillage sorghum cultivars on dryland. Agron J 83:961–968

    Google Scholar 

  • UNIS (2000) United Nations Information Service secretary general address to developing countries ‘South Summit’, UN Information service press release, 13 April 2000. See www.unis/unvienna.org/unis/pressrels/2000/sg2543.html

  • UN-Water. (2009) World water day brochure. http://www.unwater.org/worldwaterday/downloads/wwd09brochureenLOW.pdf

  • Van Genuchten MTh (1987) A numerical model for water and solute movement in and below the root zone. Research Report No 121, U.S. Salinity laboratory, USDA, ARS, Riverside.

    Google Scholar 

  • Van Ginkel M, Calhoun DS, Gebeyehu G, Miranda A, Tian-you C, Pargas LR, Trethowan RM, Sayre K, Crossa J, Rajaram S (1998) Plant traits related to yield of wheat in early, later, or continuous drought conditions. Euphytica 100:109–121

    Google Scholar 

  • Varvel GE (1994) Monoculture and rotation system effects on precipitation use efficiency of corn. Agron J 86:204–208

    Google Scholar 

  • Varvel GE (1995) Precipitation use efficiency of soybean and grain sorghum in monoculture and rotation. Soil Sci Soc Am J 59:527–531

    CAS  Google Scholar 

  • Viets FG Jr (1962) Fertilizers and the efficient use of water. Adv Agron 14:223–264

    Google Scholar 

  • Waines JG, Ehdaie B (2007) Domestication and crop physiology: roots of green-revolution wheat. Ann Bot 100:991–998. doi:10.1093/aob/mcm180

    PubMed  Google Scholar 

  • Wallace JS (2000) Increasing agricultural water use efficiency to meet future food production. Agric Ecosyst Environ 82:105–119. doi:10.1016/S0167-8809(00)00220-6, DOI:dx.doi.org

    Google Scholar 

  • Wallace JS, Batchelor CH (1997) Managing water resources for crop production. Phil T Roy Soc B 352:937–947. doi:10.1098/rstb.1997.0073

    Google Scholar 

  • Walley FL, Clayton GW, Miller PR, Carr PM, Lafond GP (2007) Nitrogen economy of pulse crop production in the northern Great Plains. Agron J 99:1710–1718. doi:10.2134/agronj2006.0314s

    CAS  Google Scholar 

  • Wang X, Dai K, Zhang D et al (2010) Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China. Field Crops Res. doi:10.1016/j.fcr.2010.08.010

  • Webb AAR, Hetherington AM (1997) Convergence of the abscisic acid, CO2, and extracellular calcium signal transduction pathways in stomatal guard cells. Plant Physiol 114:1557–1560

    PubMed  CAS  Google Scholar 

  • Wilkinson S (2004) Water use efficiency and chemical signalling. In: Bacon M (ed.) Water use efficiency in plant biology. Blackwell, Oxford, pp 75–112

    Google Scholar 

  • WWAP (2003) United Nations World Water Assessment Programme. The world water development report 1: Water for people, water for life. UNESCO, Paris

    Google Scholar 

  • WWAP (2009) World Water Assessment Programme. The United Nations world water development report 3, Water in a changing world, Paris, UNESCO, and London, Earthscan

    Google Scholar 

  • Xu FA, Zhao BZ (2001) Development of crop yield and water use efficiency in Fengqiu County. China Acta Pedol Sin 38:491–497

    CAS  Google Scholar 

  • Xue Q, Zhu Z, Musick JT, Stewart BA, Dusek DA (2006) Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation. J Plant Physiol 153:154–164. doi:10.1016/j.jplph.2005.04.026, DOI:dx.doi.org

    Google Scholar 

  • Yusuf AM, Johansen C, Krishnamurthy L, Hamid A (2005) Genotypic variation in root systems of chickpea (Cicer arietinum L.) across environments. J. Agron. Crop Sci 191:464–472

    Google Scholar 

  • Zentner RP, Wall DD, Nagy CN, Smith EG, Young DL, Miller PR, Campbell CA, McConkey BG, Brandt SA, Lafond GP, Johnston AM, Derksen DA (2002) Economics of crop diversification and soil tillage opportunities in the Canadian Prairies. Agron J 94:216–230

    Google Scholar 

  • Zhang J (2004) Crop yield and water use efficiency: a case study in rice. In: Bacon M (ed.) Water use efficiency in plant biology. Blackwell, Oxford, pp 198–227

    Google Scholar 

  • Zhang H, Oweis T (1999) Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region. Agr Water Manage 38:195–211. doi:10.1016/S0378-3774(98)00069-9, DOI:dx.doi.org

    Google Scholar 

  • Zhang H, Wang X, You M, Liu C (1999) Water–yield relations and water use efficiency of winter wheat in the north China plain. Irrig Sci 19:37–45. doi:10.1007/s002710050069

    CAS  Google Scholar 

  • Zhang XY, Chen SY, Liu MY (2002) Evapotranspiration, yield and crop coefficient of irrigated maize under straw mulch conditions. Progr Geogr 21:583–592

    Google Scholar 

  • Zhang X, Chen S, Liu M, Pei D, Sun H (2005) Improved water use efficiency associated with cultivars and agronomic management in the North China Plain. Agron J 97:783–790. doi:10.2134/agronj2004.0194

    Google Scholar 

  • Zhang GS, Chan KY, Oates A, Heenan DP, Huang GB (2007a) Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil Tillage Res 92:122–128

    Google Scholar 

  • Zhang J, Sun J, Duan A, Wang J, Shen X, Liu X (2007b) Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China. Agric Water Manage 92:41–47. doi:10.1016/j.agwat.2007.04.007

    Google Scholar 

  • Zhang S, Lövdahl L, Grip H, Jansson P, Tong Y (2007c) Modelling the effects of mulching and fallow cropping on water balance in the Chinese Loess Plateau. Soil Tillage Res 93:283–298. doi:10.1016/j.still.2006.05.002

    Google Scholar 

  • Zhao JB, Mei XR, Zhong ZZ (1996) The effect of straw mulch on crop water use efficiency in dryland. Sci Agr Sin 29:59–66

    Google Scholar 

  • Zuazo VHD, Pleguezuelo CRR (2008) Soil-erosion and runoff prevention by plant covers. a review. Agron Sustain Dev 28:65–86

    Google Scholar 

  • Zwart SJ, Bastiaanssen WGM (2004) Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agr Water Manage 69(2):115–133. doi:10.1016/j.agwat.2004.04.007, DOI:dx.doi.org

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Raza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Raza, A., Friedel, J.K., Bodner, G. (2012). Improving Water Use Efficiency for Sustainable Agriculture. In: Lichtfouse, E. (eds) Agroecology and Strategies for Climate Change. Sustainable Agriculture Reviews, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1905-7_8

Download citation

Publish with us

Policies and ethics