Skip to main content

Carbon Dynamics in the Boreal Forest

  • Chapter
  • First Online:
Managing Forest Carbon in a Changing Climate

Abstract

As one of the largest and most intact biomes, the boreal forest occupies a prominent place in the global carbon budget. While it contains about 13% of global terrestrial biomass, its organic-rich soils hold 43% of the world’s soil carbon. A growing body of research has attempted to measure how climate influences the processes governing carbon uptake and release, and to predict further changes due to climate change. Current research on boreal forest carbon pools and the processes that affect them suggest that this biome acts as a weak sink for atmospheric carbon. However, evidence of rapid climate change at northern latitudes has raised concern that the boreal forest could readily shift to a net carbon source if the ecophysiological processes facilitating carbon uptake are sufficiently disrupted. Changes in soil temperatures, respiration rates, and disturbance dynamics (type, extent, and frequency) brought about by climate change or other factors could switch the biome to a net source of carbon. Based on current knowledge, it appears that a warming climate will likely create the conditions for increased carbon release from boreal forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manag 259:660–684

    Google Scholar 

  • Allison SD, Treseder KK (2008) Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob Change Biol 14:2898–2909

    Google Scholar 

  • Amiro BD, Chen JM, Liu J (2000) Net primary productivity following forest fire for Canadian ecoregions. Can J Forest Res 30:939–947

    Google Scholar 

  • Amiro BD, Todd JB, Wotton BM, Logan KA, Flannigan MD, Stocks BJ, Mason JA, Martell DL, Hirsch KG (2001) Direct carbon emissions from Canadian forest fires, 1959–1999. Can J Forest Res 31:512–525

    CAS  Google Scholar 

  • Amiro BD, Orchansky AL, Barr AG, Black TA, Chambers SD, Chapin FS, Gouldenf ML, Litvakg M, Liu HP, McCaughey JH, McMillan A, Randerson JT (2006) The effect of post-fire stand age on the boreal forest energy balance. Agric Forest Meteorol 140:41–50

    Google Scholar 

  • Apps MJ, Kurz WA, Luxmoore RJ, Nilsson LO, Sedjo RA, Schmidt R, Simpson LG, Vinson TS (1993) Boreal forests and tundra. Water Air Soil Pollut 70:39–53

    CAS  Google Scholar 

  • Arain MA, Black TA, Barr AG, Jarvis PG, Massheder JM, Verseghy DL, Nesic Z (2002) Effects of seasonal and interannual climate variability on net ecosystem productivity of boreal deciduous and conifer forests. Can J Forest Res 32:878–891

    Google Scholar 

  • Archard F, Mollicone D, Stibig H-J, Aksenov D, Laestadius L, Li Z, Popatov P, Yaroshenko A (2006) Areas of rapid forest-cover change in boreal Eurasia. Forest Ecol Manag 237:322–334

    Google Scholar 

  • Auclair AND, Carter TB (1993) Forest wildfires as a recent source of CO2 at northern latitudes. Can J Forest Res 23:1528–1536

    CAS  Google Scholar 

  • Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci USA 104:6550–6555

    PubMed  CAS  Google Scholar 

  • Baldocchi D, Kelliher FM, Black TA, Jarvis P (2000) Climate and vegetation controls on boreal zone energy exchange. Glob Change Biol 6:69–83

    Google Scholar 

  • Balshi MS, McGuire AD, Zhuang Q, Melillo J, Kicklighter DW, Kasischke E, Wirth C, Flannigan M, Harden J, Clein JS, Burnside TJ, McAllister J, Kurz WA, Apps M, Shvidenko A (2007) The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: a process-based analysis. J Geophys Res 112:G02029

    Google Scholar 

  • Balshi MS, McGuire AD, Duffy P, Flannigan M, Kicklighter DW, Melillo J (2009) Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Glob Change Biol 15:1491–1510

    Google Scholar 

  • Barber VA, Juday GP, Finney BP (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–673

    PubMed  CAS  Google Scholar 

  • Barr AG, Black TA, Hogg EH, Griffis TJ, Morgenstern K, Kljun N, Theede A, Nesic Z (2007) Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003. Glob Change Biol 13:561–576

    Google Scholar 

  • Baskerville GL (1975) Spruce budworm – super silviculturalist. Forest Chron 51:138–140

    Google Scholar 

  • Berg EE, Henry JD, Fastie CL, De Volder AD, Matsuoka SM (2006) Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: relationship to summer temperatures and regional differences in disturbance regimes. Forest Ecol Manag 227:219–232

    Google Scholar 

  • Berg A, Östlund L, Moen J, Olofsson J (2008) A century of logging and forestry in a reindeer herding are in northern Sweden. Forest Ecol Manag 256:1009–1020

    Google Scholar 

  • Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187–190

    PubMed  CAS  Google Scholar 

  • Billings WD (1987) Carbon balance of Alaskan tundra and taiga ecosystems – past, present and future. Quaternary Sci Rev 6:165–177

    Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    PubMed  CAS  Google Scholar 

  • Bonan GB, Shugart HH (1989) Environmental factors and ecological processes in boreal forests. Annu Rev Ecol Syst 20:1–28

    Google Scholar 

  • Bonan GB, Vancleve K (1992) Soil-temperature, nitrogen mineralization, and carbon source sink relationships in boreal forests. Can J Forest Res 22:629–639

    CAS  Google Scholar 

  • Bonan GB, Shugart HH, Urban DL (1990) The sensitivity of some high-latitude boreal forests to climatic parameters. Climatic Change 16:9–29

    Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate change. Nature 359:716–718

    Google Scholar 

  • Bonan GB, Chapin FS, Thompson SL (1995) Boreal forest and tundra ecosystems as components of the climate system. Climatic Change 29:145–167

    Google Scholar 

  • Bond-Lamberty B, Wang CK, Gower ST (2004) Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Glob Change Biol 10:473–487

    Google Scholar 

  • Bond-Lamberty B, Peckham SD, Ahl DE, Gower ST (2007) Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450:89–92

    PubMed  CAS  Google Scholar 

  • Brassard BW, Chen HYH (2008) Effects of forest types and disturbance on diversity of coarse woody debris in boreal forest. Ecosystems 11:1078–1090

    Google Scholar 

  • Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–682

    CAS  Google Scholar 

  • Bronson DR, Gower ST, Tanner M, Linder S, Van Herk I (2008) Response of soil surface CO2 flux in a boreal forest to ecosystem warming. Glob Change Biol 14:856–867

    Google Scholar 

  • Camill P (2005) Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Climatic Change 68:135–152

    CAS  Google Scholar 

  • Camill P, Lynch JA, Clark JS, Adams JB, Jordan B (2001) Changes in biomass, aboveground net primary production, and peat accumulation following permafrost thaw in the boreal peatlands of Manitoba, Canada. Ecosystems 4:461–478

    Google Scholar 

  • Chapin FS, McGuire AD, Ruess RW, Hollingsworth TN, Mack MC, Johnstone Jill F, Kasischke ES, Euskirchen ES, Jones JB, Jorgenson MT, Kielland K, Kofinas G, Turetsky MR, Yarie J, Lloyd A, Taylor DL (2010) Resilience of Alaskas boreal forest to climatic change. Can J Forest Res 40:1360–1370

    Google Scholar 

  • Chen WJ, Black TA, Yang PC, Barr AG, Neumann HH, Nesic Z, Blanken PD, Novak MD, Eley J, Ketler RJ, Cuenca A (1999) Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Glob Change Biol 5:41–53

    CAS  Google Scholar 

  • Conard SG, Ivanova GA (1997) Wildfire in Russian boreal forests – potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environ Pollut 98:305–313

    CAS  Google Scholar 

  • Czimczik CI, Trumbore SE, Ce MS, Winston GC (2006) Changing sources of soil respiration with time since fire in a boreal forest. Glob Change Biol 12:957–971

    Google Scholar 

  • DeLuca TH, Aplet GH (2008) Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front Ecol Environ 6:18–24

    Google Scholar 

  • Dioumaeva I, Trumbore S, Schuur EAG, Goulden ML, Litvak M, Hirsch AI (2002) Decomposition of peat from upland boreal forest: temperature dependence and sources of respired carbon. J Geophys Res Atmos 108:8222

    Google Scholar 

  • Dixon RK, Krankina ON (1993) Forest-fires in Russia – carbon-dioxide emissions to the atmosphere. Can J Forest Res 23:700–705

    CAS  Google Scholar 

  • Dulamsuren C, Hauck M, Bader M, Oyungerel S, Osokhjargal D, Nyambayar S, Leuschner C (2009) The different strategies of Pinus sylvestris and Larix sibirica to deal with summer drought in a northern Mongolian forest – steppe ecotone suggest a future superiority of pine in a warming climate. Can J Forest Res 39:2520–2528

    CAS  Google Scholar 

  • Dunn AL, Barford CC, Wofsy SC, Goulden ML, Daube BC (2007) A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Glob Change Biol 13:577–590

    Google Scholar 

  • Emanuel WR, Shugart HH, Stevenson M (1985) Response to comment: climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climate Change 7:457–460

    Google Scholar 

  • Flannigan MD, Bergeron Y, Engelmark O, Wotton BM (1998) Future wildfire in circumboreal forests in relation to global warming. J Vegetation Sci 9:469–476

    Google Scholar 

  • Frey BR, Lieffers VJ, Hogg EH, Landhausser SM (2004) Predicting landscape patterns of aspen dieback: mechanisms and knowledge gaps. Can J Forest Res 34:1379–1390

    Google Scholar 

  • Goetz SJ, Mack MC, Gurney KR, Randerson JT, Houghton RA (2007) Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: observations and model results contrasting northern Eurasia and North America. Environ Res Lett 2:045031

    Google Scholar 

  • Gorham E (1991) Northern peatlands – role in the carbon-cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Google Scholar 

  • Goulden ML, Wofsy SC, Harden JW, Trumbore SE, Crill PM, Gower ST, Fries T, Daube BC, Fan SM, Sutton DJ, Bazzaz A, Munger JW (1998) Sensitivity of boreal forest carbon balance to soil thaw. Science 279:214–217

    PubMed  CAS  Google Scholar 

  • Goulden ML, McMillan AMS, Winston C, Rocha AV, Manies KL, Harden JW, Bond-Lamberty BP (2010) Patterns of NPP, GPP, respiration, and NEP during boreal forest succesion. Glob Change Biol 17:855–871

    Google Scholar 

  • Gower ST, Richards JH (1990) Larches – deciduous conifers in an evergreen world. Bioscience 40:818–826

    Google Scholar 

  • Gower ST, Vogel JG, Norman JM, Kucharik CJ, Steele SJ, Stow TK (1997) Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. J Geophys Res Atmos 102:29029–29041

    CAS  Google Scholar 

  • Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wang C (2001) Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol Appl 11:1395–1411

    Google Scholar 

  • Grant RF, Black TA, Gaumont-Guay D, Kljun N, Barrc AG, Morgenstern K, Nesic Z (2006) Net ecosystem productivity of boreal aspen forests under drought and climate change: mathematical modelling with Ecosys. Agr Forest Meteorol 140:152–170

    Google Scholar 

  • Gromtsev A (2002) Natural disturbance dynamics in the boreal forests of European Russia: a review. Silva Fenn 36:41–55

    Google Scholar 

  • Hanninen H, Kolari P, Hari P (2005) Seasonal development of Scots pine under climatic warming: effects on photosynthetic production. Can J Forest Res 35:2092–2099

    Google Scholar 

  • Harden JW, O’Neill KP, Trumbore SE, Veldhuis H, Stocks BJ (1997) Moss and soil contributions to the annual net carbon flux of a maturing boreal forest. J Geophys Res Atmos 102:28805–28816

    CAS  Google Scholar 

  • Harden JW, Trumbore SE, Stocks BJ, Hirsch A, Gower ST, O’Neill KP, Kasischke ES (2000) The role of fire in the boreal carbon budget. Glob Change Biol 6:174–184

    Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Glob Change Biol 6:196–210

    Google Scholar 

  • Hogg EH, Brandt JP, Kochtubajda B (2002) Growth and dieback of Aspen forests in northwestern Alberta, Canada, in relation to climate and insects. Can J Forest Res 32:823–832

    Google Scholar 

  • Hogg EH, Brandt JP, Michaelian M (2008) Impacts of a regional drought on the productivity, dieback and biomass of western Canadian aspen forests. Can J Forest Res 38:1373–1384

    Google Scholar 

  • Jarvis P, Linder S (2000) Botany – constraints to growth of boreal forests. Nature 405:904–905

    PubMed  CAS  Google Scholar 

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil carbon and nitrogen storage: meta analysis. Forest Ecol Manag 140:227–238

    Google Scholar 

  • Johnson EA, Rowe JS (1975) Fire in the subarctic wintering ground of the Beverly Caribou Herd. Am Midland Nat 94:1–14

    Google Scholar 

  • Johnstone JF, Hollingsworth TN, Chapin FS, Mack MC (2010) Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob Change Biol 16:1281–1295

    Google Scholar 

  • Kang S, Kimball JS, Running SW (2006) Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration. Sci Total Environ 362:85–102

    PubMed  CAS  Google Scholar 

  • Karhu K, Fritz H, Inen KHMM, Vanhala P, Jungner HG, Oinonen M, Sonninen E, Tuomi M, Spetz P, Kitunen V (2010) Temperature sensitivity of soil carbon fractions in boreal forest soil. Ecology 91:370–376

    PubMed  Google Scholar 

  • Kasischke ES, Christensen NL, Stocks BJ (1995) Fire, global warming, and the carbon balance of boreal forests. Ecol Appl 5:437–451

    Google Scholar 

  • Kasischke ES, Verbyla DL, Rupp TS, McGuire AD, Murphy K, Jandt R, Barnes J, Hoy EE, Duffy PA, Calef M, Turetsky MR (2010) Alaska’s changing fire regime – implications for the vulnerability of its boreal forests. Can J Forest Res 40:1313–1324

    Google Scholar 

  • Kellomaki S, Karjalainen T, Vaisanen H (1997) More timber from boreal forests under changing climate? Forest Ecol Manag 94:195–208

    Google Scholar 

  • Kharuk VI, Ranson KJ, Im ST, Dvinskaya ML (2009) Response of Pinus sibirica and Larix sibirica to climate change in southern Siberian alpine forest-tundra ecotone. Scand J Forest Res 24:130–139

    Google Scholar 

  • Krankina ON, Harmon ME, Kukuev YA, Treyfeld RF, Kashpor NN, Kresnov VG, Skudin VM, Protasov NA, Yatskov M, Spycher G, Povarov ED (2002) Coarse woody debris in forest regions of Russia. Can J Forest Res 32:768–778

    Google Scholar 

  • Krishnan P, Black TA, Barr AG, Grant NJ, Gaumont-Guay D, Nesic Z (2008) Factors controlling the interannual variability in the carbon balance of a southern boreal black spruce forest. J Geophys Res 113. doi:10.1029/2007JD008965

    Google Scholar 

  • Kurz WA, Dymond CC, Stinson G, Rampley GL, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008a) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990

    PubMed  CAS  Google Scholar 

  • Kurz WA, Stinson G, Rampley G (2008b) Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbance? Philos Trans R Bot Soc 363:2259–2268

    Google Scholar 

  • Kurz WA, Stinson G, Rampley GJ, Dymond CC, Neilson ET (2008c) Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci USA 105:1551–1555

    PubMed  CAS  Google Scholar 

  • Lapenis A, Shvidenko A, Shepaschenko D, Nilsson S, Aiyyer A (2005) Acclimation of Russian forests to recent changes in climate. Glob Change Biol 11:2090–2102

    Google Scholar 

  • Larsen JA (1980) The boreal ecosystem. Academic Press, Inc, London

    Google Scholar 

  • Légaré S, Bergeron Y, Leduc A, Paré D (2001) Comparison of the understory vegetation in boreal forest types of southwest Quebec. Can J Bot 79:1019–1027

    Google Scholar 

  • Lesieur D, Gauthier S, Bergeron Y (2002) Fire frequency and vegetation dynamics for the south-central boreal forest of Quebec, Canada. Can J Forest Res 32:1996–2009

    Google Scholar 

  • Li Z, Apps MJ, Kurz WA, Banfield E (2003) Temporal changes of forest net primary production and net ecosystem production in west central Canada associated with natural and anthropogenic disturbances. Can J Forest Res 33:2340–2351

    Google Scholar 

  • Lindroth A, Grelle A, Moren AS (1998) Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Glob Change Biol 4:443–450

    Google Scholar 

  • Litvak M, Miller S, Wofsy SC, Goulden M (2003) Effect of stand age on whole ecosystem CO2 exchange in the Canadian boreal forest. J Geophys Res Atmos 108(D3):8225

    Google Scholar 

  • Lloyd AH, Bunn AG, Berner L (2011) A latitudinal gradient in tree growth response to climate warming in the Siberian taiga. Glob Change Biol 17:1935–1945

    Google Scholar 

  • MacDonald SE, Fenniak TE (2007) Understory plant communities of boreal mixedwood forests in western Canada: natural patterns and response to variable-retention harvesting. Forest Ecol Manag 242:34–38

    Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–850

    PubMed  Google Scholar 

  • Mäkipää R, Karjalainen T, Pussinen A, Kellomaki S (1999) Effects of climate change and nitrogen deposition on the carbon sequestration of a forest ecosystem in the boreal zone. Can J Forest Res 29:1490–1501

    Google Scholar 

  • Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740

    CAS  Google Scholar 

  • Malmstrom CM, Raffa KF (2000) Biotic disturbance agents in the boreal forest: considerations for vegetation change models. Glob Change Biol 6:35–48

    Google Scholar 

  • Martin JL, Gower ST, Plaut J, Holmes B (2005) Carbon pools in a boreal mixedwood logging chronosequence. Glob Change Biol 11:1883–1894

    Google Scholar 

  • Nalder IA, Wein RW (1999) Long-term forest floor carbon dynamics after fire in upland boreal forests of western Canada. Global Biogeochem Cycles 13:951–968

    CAS  Google Scholar 

  • Niinisto SM, Silvola J, Kellomaki S (2004) Soil CO2 efflux in a boreal pine forest under atmospheric CO2 enrichment and air warming. Glob Change Biol 10:1363–1376

    Google Scholar 

  • O’Neill KP, Kasischke ES, Richter DD (2002) Environmental controls on soil CO2 flux following fire in black spruce, white spruce, and aspen stands of interior Alaska. Can J Forest Res 32:1525–1541

    Google Scholar 

  • Ohlson M, Dahlberg B, Økland T, Brown KJ, Halvorsen R (2009) The charcoal carbon pool in boreal forest soils. Nat Geosci 2:692–695

    CAS  Google Scholar 

  • Ollinger SV, Richardson AD, Martin ME, Hollinger DY, Frolking S, Reich PB, Plourde LC, Katul GG, Munger JW, Oren R, Smith M-L, Paw UKT, Bolstad PV, Cook BD, Day MC, Martin TA, Monson RK, Schmid HP (2008) Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks. Proc Natl Acad Sci USA 105:19335–19340

    Google Scholar 

  • Pastor J, Post WM (1988) Response of northern forests to CO2-induced climate change. Nature 334:55–58

    Google Scholar 

  • Powell JA, Logan JA (2005) Insect seasonality: circle map analysis of temperature-driven life cycles. Theor Popul Biol 67:161–179

    PubMed  Google Scholar 

  • Price DT, Halliwell DH, Apps MJ, Kurz WA, Curry SR (1997) Comprehensive assessment of carbon stocks and fluxes in a Boreal-Cordilleran forest management unit. Can J Forest Res 27:2005–2016

    Google Scholar 

  • Prokushkin AS, Kajimoto T, Prokushkin SG, McDowell WH, Abaimov AP, Matsuura Y (2005) Climatic factors influencing fluxes of dissolved organic carbon from the forest floor in a continuous-permafrost Siberian watershed. Can J Forest Res 35:2130–2140

    CAS  Google Scholar 

  • Pypker TG, Fredeen AL (2002) The growing season carbon balance of a sub-boreal clearcut 5 years after harvesting using two independent approaches to measure ecosystem CO2 flux. Can J Forest Res 32:852–862

    Google Scholar 

  • Rapalee G, Trumbore SE, Davidson EA, Harden JW, Veldhuis H (1998) Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape. Global Biogeochem Cycles 12:687–701

    CAS  Google Scholar 

  • Ruess RW, VanCleve K, Yarie J, Viereck LA (1996) Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior. Can J Forest Res 26:1326–1336

    CAS  Google Scholar 

  • Rustad LE, Fernandez IJ (1998) Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA. Glob Change Biol 4:597–605

    Google Scholar 

  • Ryan MG, Lavigne MB, Gower ST (1997) Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J Geophys Res Atmos 102:28871–28883

    CAS  Google Scholar 

  • Schulze ED, Lloyd J, Kelliher FM, Wirth C, Rebmann C, Luhker B, Mund M, Knohl A, Milyukova IM, Schulze W, Ziegler W, Varlagin AB, Sogachev AF, Valentini R, Dore S, Grigoriev S, Kolle O, Panfyorov MI, Tchebakova N, Vygodskaya NN (1999) Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink – a synthesis. Glob Change Biol 5:703–722

    Google Scholar 

  • Schulze ED, Wirth C, Mollicone D, Ziegler W (2005) Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia. Oecologia 146:77–88

    PubMed  Google Scholar 

  • Seedre M, Chen HYH (2010) Carbon dynamics of aboveground live vegetation of boreal mixedwoods after wildfire and clear-cutting. Can J Forest Res 40:1862–1869

    CAS  Google Scholar 

  • Seely B, Welham C, Kimmins H (2002) Carbon sequestration in a boreal forest ecosystem: results from the ecosystem simulation model, FORECAST. Forest Ecol Manag 169:123–135

    Google Scholar 

  • Shuman JK, Shugart HH, O’Halloran TL (2011) Sensitivity of Siberian larch forests to climate change. Glob Change Biol 17:1–15

    Google Scholar 

  • Shvidenko A, Nilsson S, Roshkov V (1997) Possibilities for increased carbon sequestration through the implementation of rational forest management in Russia. Water Air Soil Pollut 94:137–162

    CAS  Google Scholar 

  • Siitonen J, Martikainen P, Punttila P, Rauh J (2000) Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. Forest Ecol Manag 128:211–225

    Google Scholar 

  • Smith TM, Shugart HH (1993) The transient-response of terrestrial carbon storage to a perturbed climate. Nature 361:523–526

    Google Scholar 

  • Soja AJ, Tchebakova NM, French NHF, Flannigan MD, Shugart HH, Stocks BJ, Sukhinin AI, Varfenova EI, Chapin FS, Stackhouse PW (2007) Climate-induced boreal forest change: predictions versus current observations. Global Planet Change 56:274–296

    Google Scholar 

  • Startsev NA, Lieffers VJ, McNabb DH (2007) Effects of feathermoss removal, thinning, and fertilization on lodgepole pine growth, soil microclimate and stand nitrogen dynamics. Forest Ecol Manag 240:79–86

    Google Scholar 

  • Stocks BJ, Fosberg MA, Lynham TJ, Mearns L, Wotton BM, Yang Q, Jin JZ, Lawrence K, Hartley GR, Mason JA, McKenney DW (1998) Climate change and forest fire potential in Russian and Canadian boreal forests. Climatic Change 38:1–13

    Google Scholar 

  • Thiffault E, Hannam KD, Quideau SA, Pare D, Belanger N, Oh S-W, Munson AD (2008) Chemical composition of forest floor and consequences for nutrient availability after wildfire and harvesting in the boreal forest. Plant Soil 308:37–53

    CAS  Google Scholar 

  • Tilman D, Reich P, Phillips H, Menton M, Patel A, Vos E, Peterson D, Knops J (2000) Fire suppression and ecosystem carbon storage. Ecology 81:2680–2685

    Google Scholar 

  • Trofymow JA, Moore TR, Titus B, Prescott C, Morrison I, Siltanen M, Smith S, Fyles J, Wein R, CamirT C, Duschene L, Kozak L, Kranabetter M, Visser S (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can J Forest Res 32:789–804

    Google Scholar 

  • Turetsky MR (2003) Bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409

    Google Scholar 

  • Turetsky MR, Mack MC, Harden JW, Manies KL (2005) Spatial patterning of soil carbon storage across boreal landscapes. In: Lovett GM, Jones CG, Turner MG, Weathers KC (eds) Ecosystem function in heterogeneous landscapes. Springer, New York, pp 229–256

    Google Scholar 

  • Turetsky MR, Mack MC, Hollingsworth TN, Harden JW (2010) The role of mosses in ecosystem succession and function in Alaska’s boreal forest. Can J Forest Res 40:1237–1264

    Google Scholar 

  • Van Cleve K, Oechel WC, Hom JL (1990) Response of black spruce (picea-mariana) ecosystems to soil temperature modification in interior Alaska USA. Can J Forest Res 20:1530–1535

    Google Scholar 

  • Vedrova EF, Shugalei LS, Stakanov VD (2002) The carbon balance in natural and disturbed forests of the southern taiga in central Siberia. J Veg Sci 13:341–350

    Google Scholar 

  • Vygodskaya NN, Schulze ED, Tchebakova NM, Karpachevskii LO, Kozlov D, Sidorov KN, Panfyorov MI, Abrazko MA, Shaposhnikov ES, Solnzeva ON, Minaeva TY, Jeltuchin AS, Wirth C, Pugachevskii AV (2002) Climatic control of stand thinning in unmanaged spruce forests of the southern taiga in European Russia. Tellus Ser B Chem Phys Meteorol 54:443–461

    Google Scholar 

  • Wang CK, Gower ST, Wang YH, Zhao HX, Yan P, Bond-Lamberty BP (2001) The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China. Glob Change Biol 7:719–730

    Google Scholar 

  • Williams DW, Liebhold AM (1995) Forest defoliators and climatic-change - potential changes in spatial-distribution of outbreaks of western spruce budworm (lepidoptera, tortricidae) and gypsy-moth (lepidoptera, lymantriidae). Environ Entomol 24:1–9

    Google Scholar 

  • Wilmking M, Juday GP, Barber VA, Zald HSJ (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Glob Change Biol 10:1724–1736

    Google Scholar 

  • Winston GC, Sundquist ET, Stephens BB, Trumbore SE (1997) Winter CO2 fluxes in a boreal forest. J Geophys Res Atmos 102:28795–28804

    CAS  Google Scholar 

  • Wirth C, Schulze ED, Luhker B, Grigoriev S, Siry M, Hardes G, Ziegler W, Backor M, Bauer G, Vygodskaya NN (2002) Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests. Plant Soil 242:41–63

    CAS  Google Scholar 

  • Wolf A, Kozlov MV, Callaghan TV (2008) Impact of non-outbreak insect damage on vegetation in northern Europe will be greater than expected during a changing climate. Climatic Change 87:91–106

    CAS  Google Scholar 

  • Wooster MJ, Zhang YH (2004) Boreal forest fires burn less intensely in Russia than in North America. Geophys Res Lett 31:L20505

    Google Scholar 

  • Yarie J, Billings S (2002) Carbon balance of the taiga forest within Alaska: present and future. Can J Forest Res 32:757–767

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent Frey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Milakovsky, B., Frey, B., James, T. (2012). Carbon Dynamics in the Boreal Forest. In: Ashton, M., Tyrrell, M., Spalding, D., Gentry, B. (eds) Managing Forest Carbon in a Changing Climate. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2232-3_6

Download citation

Publish with us

Policies and ethics