Skip to main content

Well-Posed Problems

  • Reference work entry
Encyclopedia of Thermal Stresses

Synonyms

Continuous dependence; Existence; Lagrange identity method; Linear thermoelasticity; Logarithmic convexity method; Uniqueness; Well-posedness

Overview

The mathematical model of the linear thermoelasticity is understood to be well posed in the sense of Hadamard if the corresponding boundary–initial value problem possesses a unique solution that depends continuously on the prescribed data. This definition is made precise by indicating the space to which the solution must belong and the measure in which continuous dependence is desired. A problem is called improperly posed (or ill posed) if it fails to have a global solution, if it fails to have a unique solution, or if the solution does not depend continuously on the data.

Uniqueness is equivalent to proving that at most only the trivial exists for homogeneous given data. Energy arguments are among the most frequently used methods to establish uniqueness in linear thermoelastodynamics (see, e.g., Weiner [1], Ionescu-Cazimir [2, 3...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiner JH (1957) A uniqueness theorem for the coupled thermoelastic problem. Q Appl Math 15:102–105

    MATH  MathSciNet  Google Scholar 

  2. Ionescu–Cazimir V (1964) Problem of linear coupled thermoelasticity. III. Uniqueness theorem. B Acad Pol Sci Tech 12:565–573

    Google Scholar 

  3. Ionescu–Cazimir V (1964) Problem of linear coupled thermoelasticity. IV. Uniqueness theorem. B Acad Pol Sci Tech 12:575–579

    Google Scholar 

  4. Brun L (1969) Méthodes énergetétiques dans les systèmes évolutifs linéaires. Première partie: Séparation des énergies. Deuxième partie: Théorèmes d’unicité. J Mécanique 8:125–166

    MATH  MathSciNet  Google Scholar 

  5. Knops RJ, Payne LE (1970) Uniqueness and continuous dependence for dynamic problems in linear thermoelasticity. Int J Solids Struct 6:1173–1184

    MATH  Google Scholar 

  6. Wilkes NS (1980) Continuous dependence and instability in linear thermoelasticity. SIAM J Math Anal 11:292–299

    MATH  MathSciNet  Google Scholar 

  7. Chiriţă S (1987) Hölder stability and uniqueness results for linear thermoelasticity on unbounded domains. B Unione Mat Ital (7) 1-B: 387–407

    Google Scholar 

  8. Rionero S, Chiriţă S (1987) The Lagrange identity method in linear thermoelasticity. Int J Eng Sci 25:935–947

    MATH  Google Scholar 

  9. Ames KA, Straughan B (1992) Continuous dependence results for initially prestressed thermoelastic bodies. Int J Eng Sci 30:7–13

    MATH  MathSciNet  Google Scholar 

  10. Knops RJ, Wilkes EW (1973) Theory of elastic stability. In: Truesdell C (ed) Handbuch der Physik VIa/3. Springer–Verlag, Berlin/Heidelberg/New York, pp 125–302

    Google Scholar 

  11. Ames KA, Straughan B (1997) Non–standard and improperly posed problems. In: Ames WF (ed) Mathematics in science and engineering series, vol 194. Academic, San Diego/New York

    Google Scholar 

  12. Dafermos CM (1968) On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch Ration Mech An 29:241–271

    MATH  MathSciNet  Google Scholar 

  13. Navarro CB, Quintanilla R (1984) On existence and uniqueness in incremental thermoelasticity. Z Angew Math Phys 35:206–215

    MATH  MathSciNet  Google Scholar 

  14. Quintanilla R (2003) Convergence and structural stability in thermoelasticity. Appl Math Comput 135:287–300

    MATH  MathSciNet  Google Scholar 

  15. Knops RJ, Quintanilla R (2007) Spatial and structural stability in thermoelastodynamics on a half–cylinder. Note di Matematica 27:155–169

    MATH  MathSciNet  Google Scholar 

  16. Dafermos CM (1976) Contraction semigroups and trend to equilibrium in continuum mechanics. In: Dold A, Eckmann B (eds) Lecture notes mathematics, vol 503. Springer-Verlag, Berlin/Heidelberg/New York, pp 295–306

    Google Scholar 

  17. Yosida K (1968) Functional analysis. Springer–Verlag, Berlin/Heidelberg/New York

    Google Scholar 

  18. Chiriţă S, Ciarletta M (2008) On structural stability of thermoelastic model of porous media. Math Method Appl Sci 31:19–34

    MATH  Google Scholar 

  19. Gurtin ME (1972) The linear theory of elasticity. In: Truesdell C (ed) Handbuch der Physik VI a/2. Springer–Verlag, Berlin/Heidelberg/New York, pp 1–296

    Google Scholar 

  20. Ieşan D (1989) On some theorems in thermoelastodynamics. Rev Roum Sci Tech – Méc Appl 34:101–111

    MATH  Google Scholar 

  21. Ieşan D (2004) Thermolelastic models of continua. Kluwer Academic Publishers, Boston/Dordrecht/London

    Google Scholar 

  22. Payne LE (1975) Improperly posed problems in partial differential equations. Volume 22 of CBMS–NSF regional conference series in applied mathematics. SIAM, Philadelphia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan Chiriţă .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Chiriţă, S. (2014). Well-Posed Problems. In: Hetnarski, R.B. (eds) Encyclopedia of Thermal Stresses. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2739-7_264

Download citation

Publish with us

Policies and ethics