Skip to main content

Molecular Insight and Preclinical Perspective of Thymoquinone as Chemopreventive Agent and Therapeutic Adjunct in Cancer

  • Chapter
  • First Online:

Abstract

Thymoquinone (TQ) is the predominant bioactive constituent present in black seed oil (Nigella sativa) and tested for its anecdotal efficacy against several diseases including their potent anticancer and adjunctive therapeutic potential. We present information from literature highlighting molecular insight for anti-tumor functions of TQ largely due to its pleiotropic mechanism of action and ability to prevent tumor growth in preclinical models. Thymoquinone has anti-inflammatory effects and inhibits tumor cell proliferation through modulation of apoptosis signaling, inhibition of angiogenesis, metastasis and exert cytostatic as well as cytotoxic effect on several cancer cell lines. Collectively the results, thus far, points to efficacy of this compound in enhancing therapeutic benefit against tumors that are resistant to therapy. TQ targets cellular niches considered as molecular determinants for chemo resistant phenotype and responsible for their survival and progression. Novel analogs of TQ directed towards better efficacy and sensitizing potential than parent TQ have been reported. Further in-depth studies are warranted including investigation on its bioavailability and pharmacokinetics. From clinical perspective, information on maximum tolerated dose (MTD) and dosing schedule in human subjects are lacking in literature. Nevertheless, existing preclinical knowledge strongly support advancement of TQ to phase-I clinical trial for intervention strategies that prevent or slows down the disease process and contribute to reduced incidence of cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alenzi FQ, El-Bolkiny Yel S, Salem ML (2010) Protective effects of Nigella sativa oil and thymoquinone against toxicity induced by the anticancer drug cyclophosphamide. Br J Biomed Sci 67(1):20–28

    CAS  PubMed  Google Scholar 

  • Alhosin M et al (2010) Induction of apoptosis by thymoquinone in lymphoblastic leukemia Jurkat cells is mediated by a p73-dependent pathway which targets the epigenetic integrator UHRF1. Biochem Pharmacol 79(9):1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Al-Johar D et al (2008) Role of Nigella sativa and a number of its antioxidant constituents towards azoxymethane-induced genotoxic effects and colon cancer in rats. Phytother Res 22(10):1311–1323

    Article  CAS  PubMed  Google Scholar 

  • Alkharfy KM et al (2011) The protective effect of thymoquinone against sepsis syndrome morbidity and mortality in mice. Int Immunopharmacol 11(2):250–254

    Article  CAS  PubMed  Google Scholar 

  • Al-Naqeep G, Ismail M, Allaudin Z (2009) Regulation of low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme a reductase gene expression by thymoquinone-rich fraction and thymoquinone in HepG2 cells. J Nutrigenet Nutrigenomics 2(4–5):163–172

    Article  CAS  PubMed  Google Scholar 

  • al-Shabanah OA et al (1998) Thymoquinone protects against doxorubicin-induced cardiotoxicity without compromising its antitumor activity. J Exp Clin Cancer Res 17(2):193–198

    CAS  PubMed  Google Scholar 

  • Andrianifahanana M et al (2007) IFN-gamma-induced expression of MUC4 in pancreatic cancer cells is mediated by STAT-1 upregulation: a novel mechanism for IFN-gamma response. Oncogene 26(51):7251–7261

    Article  CAS  PubMed  Google Scholar 

  • Arafa E-SA et al (2011) Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells. Mutat Res 706(1–2):28–35

    CAS  Google Scholar 

  • Awad AS, Kamel R, Sherief MA (2011) Effect of thymoquinone on hepatorenal dysfunction and alteration of CYP3A1 and spermidine/spermine N-1-acetyl-transferase gene expression induced by renal ischaemia-reperfusion in rats. J Pharm Pharmacol 63(8):1037–1042

    Article  CAS  PubMed  Google Scholar 

  • Badary OA (1999) Thymoquinone attenuates ifosfamide-induced Fanconi syndrome in rats and enhances its antitumor activity in mice. J Ethnopharmacol 67(2):135–142

    Article  CAS  PubMed  Google Scholar 

  • Badary OA, Gamal El-Din AM (2001) Inhibitory effects of thymoquinone against 20-methylcholanthrene-induced fibrosarcoma tumorigenesis. Cancer Detect Prev 25(4):362–368

    CAS  PubMed  Google Scholar 

  • Badary OA et al (1997) Thymoquinone ameliorates the nephrotoxicity induced by cisplatin in rodents and potentiates its antitumor activity. Can J Physiol Pharmacol 75(12):1356–1361

    Article  CAS  PubMed  Google Scholar 

  • Badary OA et al (1999) Inhibition of benzo(a)pyrene-induced forestomach carcinogenesis in mice by thymoquinone. Eur J Cancer Prev 8(5):435–440

    Article  CAS  PubMed  Google Scholar 

  • Badary OA et al (2000) The influence of thymoquinone on doxorubicin-induced hyperlipidemic nephropathy in rats. Toxicology 143(3):219–226

    Article  CAS  PubMed  Google Scholar 

  • Badary OA et al (2003) Thymoquinone is a potent superoxide anion scavenger. Drug Chem Toxicol 26(2):87–98

    Article  CAS  PubMed  Google Scholar 

  • Balkwill F, Coussens LM (2004) Cancer: an inflammatory link. Nature 431(7007):405–406

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S et al (2005) Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res 65(19):9064–9072

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S et al (2007) In vitro and in vivo molecular evidence of genistein action in augmenting the efficacy of cisplatin in pancreatic cancer. Int J Cancer 120(4):906–917

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S et al (2009) Antitumor activity of gemcitabine and oxaliplatin is augmented by thymoquinone in pancreatic cancer. Cancer Res 69(13):5575–5583

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S et al (2010) Structure-activity studies on therapeutic potential of Thymoquinone analogs in pancreatic cancer. Pharm Res 27(6):1146–1158

    Article  CAS  PubMed  Google Scholar 

  • Barron J, Benghuzzi H, Tucci M (2008) Effects of thymoquinone and selenium on the proliferation of mg 63 cells in tissue culture. Biomed Sci Instrum 44:434–440

    CAS  PubMed  Google Scholar 

  • Bower JJ et al (2006) As(III) transcriptionally activates the gadd45a gene via the formation of H2O2. Free Radic Biol Med 41(2):285–294

    Article  CAS  PubMed  Google Scholar 

  • Bronner C et al (2007) The UHRF family: oncogenes that are drugable targets for cancer therapy in the near future? Pharmacol Ther 115(3):419–434

    Article  CAS  PubMed  Google Scholar 

  • Buchanan FG, DuBois RN (2006) Connecting COX-2 and Wnt in cancer. Cancer Cell 9(1):6–8

    Article  CAS  PubMed  Google Scholar 

  • Cecarini V et al (2010) Effects of thymoquinone on isolated and cellular proteasomes. FEBS J 277(9):2128–2141

    Article  CAS  PubMed  Google Scholar 

  • Chehl N et al (2009) Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford) 11(5):373–381

    Article  Google Scholar 

  • Connelly L et al (2011) Inhibition of NF-kappa B activity in mammary epithelium increases tumor latency and decreases tumor burden. Oncogene 30(12):1402–1412

    Article  CAS  PubMed  Google Scholar 

  • Effenberger K, Breyer S, Schobert R (2010) Terpene conjugates of the Nigella sativa seed-oil constituent thymoquinone with enhanced efficacy in cancer cells. Chem Biodivers 7(1):129–139

    Article  CAS  PubMed  Google Scholar 

  • Effenberger-Neidnicht K, Schobert R (2011) Combinatorial effects of thymoquinone on the anti-cancer activity of doxorubicin. Cancer Chemother Pharmacol 67(4):867–874

    Article  CAS  PubMed  Google Scholar 

  • El-Dakhakhny M et al (2002) Nigella sativa oil, nigellone and derived thymoquinone inhibit synthesis of 5-lipoxygenase products in polymorphonuclear leukocytes from rats. J Ethnopharmacol 81(2):161–164

    Article  CAS  PubMed  Google Scholar 

  • El Gazzar MA (2007) Thymoquinone suppressses in vitro production of IL-5 and IL-13 by mast cells in response to lipopolysaccharide stimulation. Inflamm Res 56(8):345–351

    Article  CAS  PubMed  Google Scholar 

  • El-Gouhary I et al (2005) Comparison of the amelioration effects of two enzyme inducers on the inflammatory process of experimental allergic encephalitis (EAE) using immunohistochemical technique. Biomed Sci Instrum 41:376–381

    CAS  PubMed  Google Scholar 

  • El-Mahdy MA et al (2005) Thymoquinone induces apoptosis through activation of caspase-8 and mitochondrial events in p53-null myeloblastic leukemia HL-60 cells. Int J Cancer 117(3):409–417

    Article  CAS  PubMed  Google Scholar 

  • El Mahmoudy A et al (2002) Thymoquinone suppresses expression of inducible nitric oxide synthase in rat macrophages. Int Immunopharmacol 2(11):1603–1611

    Article  CAS  PubMed  Google Scholar 

  • El Mezayen R et al (2006) Effect of thymoquinone on cyclooxygenase expression and prostaglandin production in a mouse model of allergic airway inflammation. Immunol Lett 106(1):72–81

    Article  CAS  PubMed  Google Scholar 

  • El Najjar N et al (2010) Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis 15(2):183–195

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247

    Article  CAS  PubMed  Google Scholar 

  • Fouda AM et al (2008) Thymoquinone ameliorates renal oxidative damage and proliferative response induced by mercuric chloride in rats. Basic Clin Pharmacol Toxicol 103(2):109–118

    Article  CAS  PubMed  Google Scholar 

  • Gali-Muhtasib H et al (2004a) Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol 25(4):857–866

    CAS  PubMed  Google Scholar 

  • Gali-Muhtasib HU et al (2004b) Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes. Anticancer Drugs 15(4):389–399

    Article  CAS  PubMed  Google Scholar 

  • Gali-Muhtasib H, Roessner A, Schneider-Stock R (2006) Thymoquinone: a promising anti-cancer drug from natural sources. Int J Biochem Cell Biol 38(8):1249–1253

    Article  CAS  PubMed  Google Scholar 

  • Gali-Muhtasib H et al (2008a) Thymoquinone triggers inactivation of the stress response pathway sensor CHEK1 and contributes to apoptosis in colorectal cancer cells. Cancer Res 68(14):5609–5618

    Article  CAS  PubMed  Google Scholar 

  • Gali-Muhtasib H et al (2008b) Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models. J Cell Mol Med 12(1):330–342

    Article  PubMed  Google Scholar 

  • Giovannini C et al (2004) Checkpoint effectors CDKN1A and Gadd45 correlate with oxidative DNA damage in human prostate carcinoma. Anticancer Res 24(6):3955–3960

    CAS  PubMed  Google Scholar 

  • Gokce A et al (2010) Protective effect of thymoquinone in experimental testicular torsion. Urol Int 85(4):461–465

    Article  PubMed  Google Scholar 

  • Gurung RL et al (2010) Thymoquinone induces telomere shortening, DNA damage and apoptosis in human glioblastoma cells. PLoS One 5(8):e12124

    Article  PubMed  Google Scholar 

  • Hajhashemi V, Ghannadi A, Jafarabadi H (2004) Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug. Phytother Res 18(3):195–199

    Article  CAS  PubMed  Google Scholar 

  • Hamdy NM, Taha RA (2009) Effects of Nigella sativa oil and thymoquinone on oxidative stress and neuropathy in streptozotocin-induced diabetic rats. Pharmacology 84(3):127–134

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30(6):445–600

    Article  CAS  PubMed  Google Scholar 

  • Higuchi Y (2004) Glutathione depletion-induced chromosomal DNA fragmentation associated with apoptosis and necrosis. J Cell Mol Med 8(4):455–464

    Article  CAS  PubMed  Google Scholar 

  • Hochhauser D (1997) Modulation of chemosensitivity through altered expression of cell cycle regulatory genes in cancer. Anticancer Drugs 8(10):903–910

    Article  CAS  PubMed  Google Scholar 

  • Houghton PJ et al (1995) Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med 61(1):33–36

    Article  CAS  PubMed  Google Scholar 

  • Hussain AR et al (2011) Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma. Free Radic Biol Med 50(8):978–987

    Article  CAS  PubMed  Google Scholar 

  • Ismail M, Al-Naqeep G, Chan KW (2009) Nigella sativa thymoquinone-rich fraction greatly improves plasma antioxidant capacity and expression of antioxidant genes in hypercholesterolemic rats. Free Radic Biol Med 48(5):664–672

    Article  PubMed  Google Scholar 

  • Ivankovic S et al (2006) The antitumor activity of thymoquinone and thymohydroquinone in vitro and in vivo. Exp Oncol 28(3):220–224

    CAS  PubMed  Google Scholar 

  • Jafri SH et al (2010) Thymoquinone and cisplatin as a therapeutic combination in lung cancer: in vitro and in vivo. J Exp Clin Cancer Res 29:87

    Article  PubMed  Google Scholar 

  • Jenkins Y et al (2005) Critical role of the ubiquitin ligase activity of UHRF1, a nuclear RING finger protein, in tumor cell growth. Mol Biol Cell 16(12):5621–5629

    Article  CAS  PubMed  Google Scholar 

  • Kachadourian R, Leitner HM, Day BJ (2007) Selected flavonoids potentiate the toxicity of cisplatin in human lung adenocarcinoma cells: a role for glutathione depletion. Int J Oncol 31(1):161–168

    CAS  PubMed  Google Scholar 

  • Kaseb AO et al (2007) Androgen receptor and E2F-1 targeted thymoquinone therapy for hormone-refractory prostate cancer. Cancer Res 67(16):7782–7788

    Article  CAS  PubMed  Google Scholar 

  • Koka PS et al (2010) Studies on molecular mechanisms of growth inhibitory effects of thymoquinone against prostate cancer cells: role of reactive oxygen species. Exp Biol Med (Maywood) 235(6):751–760

    Article  CAS  Google Scholar 

  • Li F, Rajendran P, Sethi G (2010) Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br J Pharmacol 161(3):541–554

    Article  CAS  PubMed  Google Scholar 

  • Mansour M, Tornhamre S (2004) Inhibition of 5-lipoxygenase and leukotriene C4 synthase in human blood cells by thymoquinone. J Enzyme Inhib Med Chem 19(5):431–436

    Article  CAS  PubMed  Google Scholar 

  • Mansour MA et al (2002) Effects of thymoquinone on antioxidant enzyme activities, lipid peroxidation and DT-diaphorase in different tissues of mice: a possible mechanism of action. Cell Biochem Funct 20(2):143–151

    Article  CAS  PubMed  Google Scholar 

  • Martin TM, Benghuzzi H, Tucci M (2006) The effect of conventional and sustained delivery of thymoquinone and levodopa on SH-SY5Y human neuroblastoma cells. Biomed Sci Instrum 42:332–337

    Article  PubMed  Google Scholar 

  • McDermott C, O’Donoghue MH, Heffron JJ (2008) n-Hexane toxicity in Jurkat T-cells is mediated by reactive oxygen species. Arch Toxicol 82(3):165–171

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi N et al (2007) Dietary flavonoid apigenin is a potential inducer of intracellular oxidative stress: the role in the interruptive apoptotic signal. Arch Biochem Biophys 466(2):274–282

    Article  CAS  PubMed  Google Scholar 

  • Mohamed A et al (2005) Thymoquinone inhibits the activation of NF-kappaB in the brain and spinal cord of experimental autoimmune encephalomyelitis. Biomed Sci Instrum 41:388–393

    CAS  PubMed  Google Scholar 

  • Moine P et al (2000) NF-kappaB regulatory mechanisms in alveolar macrophages from patients with acute respiratory distress syndrome. Shock 13(2):85–91

    Article  CAS  PubMed  Google Scholar 

  • Morse MA, Stoner GD (1993) Cancer chemoprevention: principles and prospects. Carcinogenesis 14(9):1737–1746

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SH et al (2010) Protective effect of Nigella sativa extract and thymoquinone on serum/glucose deprivation-induced PC12 cells death. Cell Mol Neurobiol 30(4):591–598

    Article  CAS  PubMed  Google Scholar 

  • Nagi MN, Almakki HA (2009) Thymoquinone supplementation induces quinone reductase and glutathione transferase in mice liver: possible role in protection against chemical carcinogenesis and toxicity. Phytother Res 23(9):1295–1298

    Article  CAS  PubMed  Google Scholar 

  • Nagi MN, Mansour MA (2000) Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: a possible mechanism of protection. Pharmacol Res 41(3):283–289

    Article  CAS  PubMed  Google Scholar 

  • Nagi MN et al (2010) Thymoquinone supplementation reverses acetaminophen-induced oxidative stress, nitric oxide production and energy decline in mice liver. Food Chem Toxicol 48(8–9):2361–2365

    CAS  PubMed  Google Scholar 

  • Nohl H, Gille L, Kozlov AV (1998) Prooxidant functions of coenzyme Q. Subcell Biochem 30:509–526

    CAS  PubMed  Google Scholar 

  • Panigrahy D et al (2005) PPARgamma as a therapeutic target for tumor angiogenesis and metastasis. Cancer Biol Ther 4(7):687–693

    Article  CAS  PubMed  Google Scholar 

  • Rajkamal G et al (2010) Evaluation of chemopreventive effects of Thymoquinone on cell surface glycoconjugates and cytokeratin expression during DMBA induced hamster buccal pouch carcinogenesis. BMB Rep 43(10):664–669

    Article  CAS  PubMed  Google Scholar 

  • Ravindran J et al (2010) Thymoquinone poly (lactide-co-glycolide) nanoparticles exhibit enhanced anti-proliferative, anti-inflammatory, and chemosensitization potential. Biochem Pharmacol 79(11):1640–1647

    Article  CAS  PubMed  Google Scholar 

  • Richards LR et al (2006) The physiological effect of conventional treatment with epigallocatechin-3-gallate, thymoquinone, and tannic acid on the LNCaP cell line. Biomed Sci Instrum 42:357–362

    CAS  PubMed  Google Scholar 

  • Roepke M et al (2007) Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells. Cancer Biol Ther 6(2):160–169

    Article  CAS  PubMed  Google Scholar 

  • Rooney S, Ryan MF (2005) Effects of alpha-hederin and thymoquinone, constituents of Nigella sativa, on human cancer cell lines. Anticancer Res 25(3B):2199–2204

    CAS  PubMed  Google Scholar 

  • Sayed AA, Morcos M (2007) Thymoquinone decreases AGE-induced NF-kappaB activation in proximal tubular epithelial cells. Phytother Res 21(9):898–899

    Article  CAS  PubMed  Google Scholar 

  • Sayed-Ahmed MM et al (2010) Thymoquinone attenuates diethylnitrosamine induction of hepatic carcinogenesis through antioxidant signaling. Oxid Med Cell Longev 3(4):254–261

    Article  PubMed  Google Scholar 

  • Sethi G, Ahn KS, Aggarwal BB (2008) Targeting nuclear factor-kappa B activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res 6(6):1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Shoieb AM et al (2003) In vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone. Int J Oncol 22(1):107–113

    CAS  PubMed  Google Scholar 

  • Tan M et al (2006) Effects of (−)epigallocatechin gallate and thymoquinone on proliferation of a PANC-1 cell line in culture. Biomed Sci Instrum 42:363–371

    CAS  PubMed  Google Scholar 

  • Torres MP et al (2010) Effects of thymoquinone in the expression of mucin 4 in pancreatic cancer cells: implications for the development of novel cancer therapies. Mol Cancer Ther 9(5):1419–1431

    Article  CAS  PubMed  Google Scholar 

  • Vaillancourt F et al (2011) Elucidation of molecular mechanisms underlying the protective effects of thymoquinone against rheumatoid arthritis. J Cell Biochem 112(1):107–117

    Article  CAS  PubMed  Google Scholar 

  • Velho-Pereira R et al (2011) Radiosensitization in human breast carcinoma cells by thymoquinone: role of cell cycle and apoptosis. Cell Biol Int 35(10):1025–1029

    Article  PubMed  Google Scholar 

  • Wang D, DuBois RN (2008) Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Lett 267(2):197–203

    Article  CAS  PubMed  Google Scholar 

  • Wattenberg LW (1985) Chemoprevention of cancer. Cancer Res 45(1):1–8

    CAS  PubMed  Google Scholar 

  • Wilson-Simpson F, Vance S, Benghuzzi H (2007) Physiological responses of ES-2 ovarian cell line following administration of epigallocatechin-3-gallate (EGCG), thymoquinone (TQ), and selenium (SE). Biomed Sci Instrum 43:378–383

    CAS  PubMed  Google Scholar 

  • Wink DA et al (1998) The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19(5):711–721

    Article  CAS  PubMed  Google Scholar 

  • Womack K et al (2006) Evaluation of bioflavonoids as potential chemotherapeutic agents. Biomed Sci Instrum 42:464–469

    CAS  PubMed  Google Scholar 

  • Woo CC et al (2011) Anticancer activity of thymoquinone in breast cancer cells: possible involvement of PPAR-gamma pathway. Biochem Pharmacol 82(5):463–475

    Article  Google Scholar 

  • Xie K, Fidler IJ (1998) Therapy of cancer metastasis by activation of the inducible nitric oxide synthase. Cancer Metastasis Rev 17(1):55–75

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki L (2003) Role of the RB tumor suppressor in cancer. Cancer Treat Res 115:209–239

    Article  CAS  PubMed  Google Scholar 

  • Yi T et al (2008) Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol Cancer Ther 7(7):1789–1796

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Banerjee, S., Parasramka, M., Sarkar, F.H., Mohammad, R.M. (2012). Molecular Insight and Preclinical Perspective of Thymoquinone as Chemopreventive Agent and Therapeutic Adjunct in Cancer. In: Shankar, S., Srivastava, R. (eds) Nutrition, Diet and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2923-0_4

Download citation

Publish with us

Policies and ethics