Skip to main content

Electrophysiological Biometrics: Opportunities and Risks

  • Chapter
  • First Online:

Part of the book series: The International Library of Ethics, Law and Technology ((ELTE,volume 11))

Abstract

The use of electrophysiological signals as features to authenticate subjects is a novel approach to biometrics. It has been proven that both electrocardiography (ECG) and electroencephalography (EEG) signals are unique enough to be applied for recognition and identification purposes. Moreover, the use of electrooculography (EOG) and electromyography (EMG), which are related to the movement of the eyes and muscular activity, can also be useful and add an extra dimension to the field of biometrics: the possibility of continuous and transparent biometrics, i.e., biometry on the move. We also comment on the future of the electrophysiological biometrics, highlighting the added value. This includes the use of a Brain Computer Interface (BCI) system for authentication purposes and the application of such a system for the evolving field of telepresence and virtual reality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Real-time control of wheelchairs with brain waves http://www.riken.jp/engn/r-world/info/release/press/2009/090629/index.html . Accessed October 26th 2009.

  2. 2.

    Cisco Telepresence Solution http://www.cisco.com/en/US/netsol/ns669/networking_solutions_solution_segment_home.html . Accessed October 26th 2009.

Abbreviations

AR:

Autoregression

BCI:

Brain computer interface

CC:

Cross correlation

CO:

Coherence

ECG:

Electrocardiogram

EEG:

Electroencephalogram

EER:

Equal error rate

EMG:

Electromyogram

EOG:

Electrooculogram

ERP:

Event related potential

EU:

European Union

FP:

Framework program

FPR:

False positive rate

FT:

Fourier transform

Hz:

Hertz

MI:

Mutual information

TPR:

True positive rate

USB:

Universal serial bus

References

  • Andreassi, J.L. 2007. Psychophysiology: Human behavior and physiological response, 5th ed. Mahwah/London: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  • Arjunan, S.P., and D.K. Kumar. 2007. Fractal based modelling and analysis of electromyography (EMG) to identify subtle actions. Conference Proceeding of IEEE Engineering in Medicine and Biology Society 2007: 1961–1964.

    Google Scholar 

  • Biel, L., et al. 2001. ECG analysis: A new approach in human identification. IEEE Transactions on Instrumentation and Measurement 50: 808–812.

    Article  Google Scholar 

  • Chang, C. 2005. Human identification using one lead ECG. Master thesis. Dep Comput Sci Inf Eng. Chaoyang Univ Technol (Taiwan).

    Google Scholar 

  • Cohn, J., et al. 2002. Individual differences in facial expression: Stability over time, relation to self-reported emotion, and ability to inform person identification. In Proceedings of the International Conference on Multimodal User Interfaces. Washington, DC: IEEE Computer Society.

    Google Scholar 

  • Costa, T., et al. 2006. EEG phase synchronization during emotional response to positive and ­negative film stimuli. Neuroscience Letters. doi:10.1016/j.neulet.2006.06.039.

  • Galvani, L. 1791. De viribus electricitatis in motu musculari: Commentarius. Bologna: Tip. Istituto delle Scienze, p 58.4 tavv. f.  t.; in 4.; DCC.f.70.

    Google Scholar 

  • Goldstein, I.B. 1972. Electromyography: A measure of skeletal muscle response. In Handbook of psychophysiology, ed. N.S. Greenfield and R.A. Sternbach, 329–365. New York: Holt, Rinehart & Winston.

    Google Scholar 

  • Graff, C., et al. 2007. Physiological signals as potential measures of individual biometric characteristics and recommendations for system development. Deliv D2.1, EU IST HUMABIO Project (IST-2004-026990).

    Google Scholar 

  • Guger, C., et al. 2009. Brain-computer interface for virtual reality control. Proc ESANN: 443–448.

    Google Scholar 

  • Higuchi, T. 1988. Approach to irregular time series on the basis of the fractal theory. Pfysica D 31: 277–283.

    Article  Google Scholar 

  • Israel, S., et al. 2005. ECG to identify individuals. Pattern Recognition. doi:10.1016/j.patcog.2004.05.014.

  • Kandel, E. 1981. Principles of neural science. New York: Elsevier.

    Google Scholar 

  • Kleissen, R. 1998. Electromyography in the biomechanical analysis of human movement and its clinical application. Gait & Posture 8: 143–158.

    Article  Google Scholar 

  • Kyoso, M. 2001. Development of an ECG identification system. In Proceedings of 23rd Annual International IEEE Conference of Engineering in Medicine and Biology Society, 4: 3721–3723.

    Google Scholar 

  • Ljubomir, A., et al. 1996. Non-linear analysis of emotion EEG: Calculation of Kolmogorov entropy and the principal Lyapunov exponent. Neuroscience Letters. doi:10.1016/S0304-3940(97)00232-2DOI:dx.doi.org.

  • Llobera, J. 2007. Narratives within Immersive Technologies. arXiv:0704.2542.

    Google Scholar 

  • Marcel, S., and J. Millán. 2007. Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi:10.1109/TPAMI.2007.1012.

  • Mohammadi, G., et al. 2006. Person identification by using AR model for EEG signals. In Proceedings of 9th International Conference on Bioengineering Technology. Czech Republic.

    Google Scholar 

  • Moukabary, T. 2007. Willem Einthoven (1860–1927): Father of electrocardiography. Cardiology Journal 14: 316–317.

    Google Scholar 

  • Neher, E., and B. Sakmann. 1992. The patch clamp technique. Scientific American 266(3): 44–51.

    Article  Google Scholar 

  • Palaniappan, R., and S.M. Krishnan. 2004. Identifying individuals using ECG beats. In Proceedings of the International Conference Signal Processing Communication, 569–572. Bangalore. ISBN: 0-7803-8674-4.

    Google Scholar 

  • Paranjape, R., et al. 2001. The electroencephalogram as a biometric. Proceeding of the Canadian Conference on Electrical and Computer Engineering. doi:10.1109/CCECE.2001.933649.

  • Poulos, M., et al. 1998. Person identification via the EEG using computational geometry ­algorithms. In Proceedings of the Ninth European Signal Processing, 2125–2128. Rhodes. ISBN 960-7620-05-4.

    Google Scholar 

  • Poulos, M., et al. 1999. Parametric person identification from EEG using computational geometry. In Proceedings of the 6th International Conference on Electron, Circuits and System (ICECS’99). doi: 10.1109/ICECS.1999.813403.

  • Poulos, M., et al. 2001. On the use of EEG features towards person identification via neural ­networks. Médical Informatics & the Internet in Medicine. doi:10.1080/14639230118937.

  • Poulos, M., et al. 2002. Person identification from the EEG using nonlinear signal classification. Methods of Information in Medicine 41: 64–75.

    Google Scholar 

  • Rainville, P., et al. 2006. Basic emotions are associated with distinct patterns of cardiorespiratory activity. International Journal of Psychophysiology. doi:10.1016/j.ijpsycho.2005.10.024.

  • Riera, A., et al. 2008a. Unobtrusive biometric system based on electroencephalogram analysis. Hindawi Journal of Advances in Signal Processing. doi:10.1155/2008/143728.

  • Riera, A., et al. 2008b. STARFAST: A wireless wearable EEG/ECG biometric system based on the ENOBIO sensor. Phealth Proceedings of the 5th International Workshop on Wearable Micro and Nanosystems for Personalised Health.

    Google Scholar 

  • Ruffini, G., et al. 2006. A dry electrophysiology electrode using CNT arrays. Sensors and Actuators. doi:10.1016/j.sna.2006.06.013.

  • Ruffini, G., et al. 2007. ENOBIO dry electrophysiology electrode; first human trial plus wireless electrode system. In Proceedings of the 29th IEEE EMBS Annual International Conference. Lyon. 10.1109/IEMBS.2007.4353895.

  • Song, Y., et al. 2009. Active microelectronic neurosensor arrays for implantable brain communication interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering 17(4): 339–345.

    Article  Google Scholar 

  • Swartz, B.E. 1998. Timeline of the history of EEG and associated fields. Electroencephalography and Clinical Neurophysiology 106: 173–176.

    Article  Google Scholar 

  • Vianna, E., and D. Tranel. 2006. Gastric myoelectrical activity as an index of emotion arousal. Psychophysiology. doi:10.1016/j.ijpsycho.2005.10.019.

  • Waller, A.D. 1887. A demonstration on man of electromotive changes accompanying the hearts beat. The Journal of Physiology 8: 229–234.

    Google Scholar 

  • Wang, Y., et al. 2006. Phase synchrony measurement in motor cortex for classifying. Single-trial EEG during motor imagery. In Proceedings of the 28th IEEE EMBS Annual International Conference. New York. doi:10.1109/IEMBS.2006.259673.

  • Welch, P.D. 1967. The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics AU-15(2): 70–73.

    Article  Google Scholar 

  • Winges, S., and M. Santello. 2005. From single motor unit activity to multiple grip forces: Mini-review of multi-digit grasping. Integrative and Comparative Biology. doi:10.1093/icb/45.4.679.

  • Zhang, D.D. 2000. Automated biometrics: Technologies and systems. Heidelberg: Springer.

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the ACTIBIO project, a STREP collaborative project supported under the 7th Framework Program (Grant agreement number: FP7-ICT-2007-1-215372) in which Starlab is actively involved. ACTIBIO aims at authenticating subjects in a transparent way by monitoring their activities by means of novel biometric modalities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Riera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Riera, A., Dunne, S., Cester, I., Ruffini, G. (2012). Electrophysiological Biometrics: Opportunities and Risks. In: Mordini, E., Tzovaras, D. (eds) Second Generation Biometrics: The Ethical, Legal and Social Context. The International Library of Ethics, Law and Technology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3892-8_7

Download citation

Publish with us

Policies and ethics