Skip to main content

2013 | OriginalPaper | Buchkapitel

7. Estimates of Mechanical Properties of Composite Materials

verfasst von : George J. Dvorak

Erschienen in: Micromechanics of Composite Materials

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Together with the methods described in the previous chapter, overall moduli and local field averages in the phases can be estimated by one of several approximate methods, which use different models of the microstructure. Among those described here are variants of the average field approximation, or AFA, which rely on strain or stress field averages in solitary ellipsoidal inhomogeneities, embedded in large volumes of different comparison media L 0. Among the most widely used procedures are the self-consistent and Mori-Tanaka methods, and the differential scheme, described in Sects. 7.1, 7.2 and 7.3. Those are followed by several double inclusion or double inhomogeneity models in Sect. 7.4, and by illustrative comparison with finite element evaluations for functionally graded materials in Sect. 7.5.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Babuska, I. (1975). Homogenization and application: Mathematical and computational problems. In B. Hubbard (Ed.), Numerical solution of partial differential equations –III. New York: Academic. Babuska, I. (1975). Homogenization and application: Mathematical and computational problems. In B. Hubbard (Ed.), Numerical solution of partial differential equations –III. New York: Academic.
Zurück zum Zitat Bensoussan, A., Lions, J. L., & Papanicolaou, G. (1978). Asymptotic analysis for periodic structures. Amsterdam: Nort Holland.MATH Bensoussan, A., Lions, J. L., & Papanicolaou, G. (1978). Asymptotic analysis for periodic structures. Amsterdam: Nort Holland.MATH
Zurück zum Zitat Benveniste, Y. (1987a). A new approach to the application of Mori-Tanaka theory in composite materials. Mechanics of Materials, 6, 147–157.CrossRef Benveniste, Y. (1987a). A new approach to the application of Mori-Tanaka theory in composite materials. Mechanics of Materials, 6, 147–157.CrossRef
Zurück zum Zitat Benveniste, Y. (1987b). A differential effective medium theory with a composite sphere embedding. ASME Journal of Applied Mechanics, 54, 466–468.CrossRef Benveniste, Y. (1987b). A differential effective medium theory with a composite sphere embedding. ASME Journal of Applied Mechanics, 54, 466–468.CrossRef
Zurück zum Zitat Benveniste, Y., & Dvorak, G. J. (1989). On a correspondence between mechanical and thermal effects in two-phase composites. In Micromechanics and inhomogeneity (The Toshio Mura 65th anniversary volume, pp. 65–81). New York: Springer. Benveniste, Y., & Dvorak, G. J. (1989). On a correspondence between mechanical and thermal effects in two-phase composites. In Micromechanics and inhomogeneity (The Toshio Mura 65th anniversary volume, pp. 65–81). New York: Springer.
Zurück zum Zitat Benveniste, Y., Dvorak, G. J., & Chen, T. (1989). Stress fields in composites with coated inclusions. Mechanics of Materials, 7, 305–317.CrossRef Benveniste, Y., Dvorak, G. J., & Chen, T. (1989). Stress fields in composites with coated inclusions. Mechanics of Materials, 7, 305–317.CrossRef
Zurück zum Zitat Benveniste, Y., Chen, T., & Dvorak, G. J. (1990). The effective thermal conductivity of composites reinforced by coated cylindrically orthotropic fibers. Journal of Applied Physics, 67, 2878–2884.CrossRef Benveniste, Y., Chen, T., & Dvorak, G. J. (1990). The effective thermal conductivity of composites reinforced by coated cylindrically orthotropic fibers. Journal of Applied Physics, 67, 2878–2884.CrossRef
Zurück zum Zitat Benveniste, Y., Dvorak, G. J., & Chen, T. (1991a). On the effective properties of composites with coated cylindrically orthotropic fibers. Mechanics of Materials, 12, 289–297.CrossRef Benveniste, Y., Dvorak, G. J., & Chen, T. (1991a). On the effective properties of composites with coated cylindrically orthotropic fibers. Mechanics of Materials, 12, 289–297.CrossRef
Zurück zum Zitat Benveniste, Y., Dvorak, G. J., & Chen, T. (1991b). On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media. Journal of the Mechanics and Physics of Solids, 39, 927–946.MathSciNetCrossRefMATH Benveniste, Y., Dvorak, G. J., & Chen, T. (1991b). On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media. Journal of the Mechanics and Physics of Solids, 39, 927–946.MathSciNetCrossRefMATH
Zurück zum Zitat Berryman, J. G. (1980). Long wavelength propagation in composite elastic media II, Ellipsoidal inclusions. Journal of the Acoustical Society of America, 68, 1820–1831.CrossRefMATH Berryman, J. G. (1980). Long wavelength propagation in composite elastic media II, Ellipsoidal inclusions. Journal of the Acoustical Society of America, 68, 1820–1831.CrossRefMATH
Zurück zum Zitat Boucher, S. (1974). On the effective moduli of isotropic two-phase elastic composites. Journal of Composite Materials, 8, 82–89.CrossRef Boucher, S. (1974). On the effective moduli of isotropic two-phase elastic composites. Journal of Composite Materials, 8, 82–89.CrossRef
Zurück zum Zitat Bruggeman, D. A. G. (1935). Berechnung verschiedener physikalisher Konstanten von heterogenen Substanzen I. Annalen der Physik, 24, 636–663.CrossRef Bruggeman, D. A. G. (1935). Berechnung verschiedener physikalisher Konstanten von heterogenen Substanzen I. Annalen der Physik, 24, 636–663.CrossRef
Zurück zum Zitat Budiansky, B. (1965). On the elastic moduli of some heterogeneous materials. Journal of the Mechanics and Physics of Solids, 13, 223–227.CrossRef Budiansky, B. (1965). On the elastic moduli of some heterogeneous materials. Journal of the Mechanics and Physics of Solids, 13, 223–227.CrossRef
Zurück zum Zitat Budiansky, B., & O’Connell, R. J. (1976). Elastic moduli of a cracked solid. International Journal of Solids and Structures, 12, 81–97.CrossRefMATH Budiansky, B., & O’Connell, R. J. (1976). Elastic moduli of a cracked solid. International Journal of Solids and Structures, 12, 81–97.CrossRefMATH
Zurück zum Zitat Chen, T., Dvorak, G. J., & Benveniste, Y. (1990). Stress fields in composites reinforced by coated cylindrically orthotropic fibers. Mechanics of Materials, 9, 17–32.CrossRef Chen, T., Dvorak, G. J., & Benveniste, Y. (1990). Stress fields in composites reinforced by coated cylindrically orthotropic fibers. Mechanics of Materials, 9, 17–32.CrossRef
Zurück zum Zitat Chen, T., Dvorak, G. J., & Benveniste, Y. (1992). Mori-Tanaka estimates of the overall elastic moduli of certain composite materials. ASME Journal of Applied Mechanics, 59, 539–546.CrossRefMATH Chen, T., Dvorak, G. J., & Benveniste, Y. (1992). Mori-Tanaka estimates of the overall elastic moduli of certain composite materials. ASME Journal of Applied Mechanics, 59, 539–546.CrossRefMATH
Zurück zum Zitat Christensen, R. M. (1990). A critical evaluation for a class of micromechanics models. Journal of the Mechanics and Physics of Solids, 38, 379–404.CrossRef Christensen, R. M. (1990). A critical evaluation for a class of micromechanics models. Journal of the Mechanics and Physics of Solids, 38, 379–404.CrossRef
Zurück zum Zitat Christensen, R. M., & Lo, K. H. (1979). Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 27, 315–330. Erratum ibid. 34, 639 (1986). Christensen, R. M., & Lo, K. H. (1979). Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 27, 315–330. Erratum ibid. 34, 639 (1986).
Zurück zum Zitat Christensen, R. M., & Waals, F. M. (1972). Effective stiffness of randomly oriented fiber composites. Journal of Composite Materials, 6, 518–532. Christensen, R. M., & Waals, F. M. (1972). Effective stiffness of randomly oriented fiber composites. Journal of Composite Materials, 6, 518–532.
Zurück zum Zitat Christensen, R. M., Schantz, H., & Schapiro, J. (1992). On the range of validity of the Mori-Tanaka method. Journal of the Mechanics and Physics of Solids, 40, 69–73.CrossRef Christensen, R. M., Schantz, H., & Schapiro, J. (1992). On the range of validity of the Mori-Tanaka method. Journal of the Mechanics and Physics of Solids, 40, 69–73.CrossRef
Zurück zum Zitat Cleary, M. P., Chen, I. W., & Lee, S. M. (1980). Self-consistent techniques for heterogeneous solids. ASCE Journal of Engineering Mechanics, 106, 861–867. Cleary, M. P., Chen, I. W., & Lee, S. M. (1980). Self-consistent techniques for heterogeneous solids. ASCE Journal of Engineering Mechanics, 106, 861–867.
Zurück zum Zitat Daniel, I. M., & Ishai, O. (2006). Engineering mechanics of composite materials (2nd ed.). New York: Oxford University Press. Daniel, I. M., & Ishai, O. (2006). Engineering mechanics of composite materials (2nd ed.). New York: Oxford University Press.
Zurück zum Zitat Drugan, W. J., & Willis, J. R. (1996). A micromechanics-based nonlocal constituive equation and estimates of representative volume element size for elastic composites. Journal of the Mechanics and Physics of Solids, 44, 497–524.MathSciNetCrossRefMATH Drugan, W. J., & Willis, J. R. (1996). A micromechanics-based nonlocal constituive equation and estimates of representative volume element size for elastic composites. Journal of the Mechanics and Physics of Solids, 44, 497–524.MathSciNetCrossRefMATH
Zurück zum Zitat Dunn, M., & Ledbetter, H. (2000). Micromechanically based acoustic characterization of the fiber orientation distribution of morphologically textured short fiber composites: Prediction of thermomechanical and physical properties. Materials Science and Engineering A, 285, 56–61.CrossRef Dunn, M., & Ledbetter, H. (2000). Micromechanically based acoustic characterization of the fiber orientation distribution of morphologically textured short fiber composites: Prediction of thermomechanical and physical properties. Materials Science and Engineering A, 285, 56–61.CrossRef
Zurück zum Zitat Einstein, A. (1905). Eine neue Berechnung der Moleküldimensionen. Annales de Physique, 19, 289–306. Einstein, A. (1905). Eine neue Berechnung der Moleküldimensionen. Annales de Physique, 19, 289–306.
Zurück zum Zitat Ferrari, M., & Johnson, G. C. (1989). Effective elasticities of short-fiber composites with arbitrary orientation distribution. Mechanics of Materials, 8, 67–73.CrossRef Ferrari, M., & Johnson, G. C. (1989). Effective elasticities of short-fiber composites with arbitrary orientation distribution. Mechanics of Materials, 8, 67–73.CrossRef
Zurück zum Zitat Finot, M., & Suresh, S. (1996). Small and large deformation of thick and thin-film multi-layers: Effects of layer geometry, plasticity and compositional gradients. Journal of the Mechanics and Physics of Solids, 44, 683–722.CrossRef Finot, M., & Suresh, S. (1996). Small and large deformation of thick and thin-film multi-layers: Effects of layer geometry, plasticity and compositional gradients. Journal of the Mechanics and Physics of Solids, 44, 683–722.CrossRef
Zurück zum Zitat Fukui, Y., Takashima, K., & Ponton, C. B. (1994). Measurement of Young’s modulus and internal friction of an in situ Al-Al/Ni functionally gradient material. Journal of Materials Science, 29, 2281–2288.CrossRef Fukui, Y., Takashima, K., & Ponton, C. B. (1994). Measurement of Young’s modulus and internal friction of an in situ Al-Al/Ni functionally gradient material. Journal of Materials Science, 29, 2281–2288.CrossRef
Zurück zum Zitat Giannakopoulos, A. E., Suresh, S., Finot, M., & Olsson, M. (1995). Elastoplastic analysis of thermal cycling: Layered materials with compositional gradients. Acta Metallurgica et Materialia, 43, 1335–1354.CrossRef Giannakopoulos, A. E., Suresh, S., Finot, M., & Olsson, M. (1995). Elastoplastic analysis of thermal cycling: Layered materials with compositional gradients. Acta Metallurgica et Materialia, 43, 1335–1354.CrossRef
Zurück zum Zitat Gusev, A. A. (1997). Representative volume element size for elastic composites: A numerical study. Journal of the Mechanics and Physics of Solids, 45, 1449–1459.CrossRefMATH Gusev, A. A. (1997). Representative volume element size for elastic composites: A numerical study. Journal of the Mechanics and Physics of Solids, 45, 1449–1459.CrossRefMATH
Zurück zum Zitat Hashin, Z. (1972). Theory of fiber reinforced materials. NASA CR-1974. Washington, DC: National Aeronautics and Space Administration, 690. Hashin, Z. (1972). Theory of fiber reinforced materials. NASA CR-1974. Washington, DC: National Aeronautics and Space Administration, 690.
Zurück zum Zitat Hashin, Z. (1988). The differential scheme and its application to cracked materials. Journal of the Mechanics and Physics of Solids, 36, 719–734.MathSciNetCrossRefMATH Hashin, Z. (1988). The differential scheme and its application to cracked materials. Journal of the Mechanics and Physics of Solids, 36, 719–734.MathSciNetCrossRefMATH
Zurück zum Zitat Hashin, Z., & Rosen, B. W. (1964). The elastic moduli of fiber reinforced materials. ASME Journal of Applied Mechanics 31E, 223–232. Errata, 1965, ibid., 32E, 219. Hashin, Z., & Rosen, B. W. (1964). The elastic moduli of fiber reinforced materials. ASME Journal of Applied Mechanics 31E, 223–232. Errata, 1965, ibid., 32E, 219.
Zurück zum Zitat Hashin, Z., & Shtrikman, S. (1962a). On some variational principles in anisotropic and nonhomogeneous elasticity. Journal of the Mechanics and Physics of Solids, 10, 335–342.MathSciNetCrossRef Hashin, Z., & Shtrikman, S. (1962a). On some variational principles in anisotropic and nonhomogeneous elasticity. Journal of the Mechanics and Physics of Solids, 10, 335–342.MathSciNetCrossRef
Zurück zum Zitat Hashin, Z., & Shtrikman, S. (1962b). A variational approach to the theory of the elastic behaviour of polycrystals. Journal of the Mechanics and Physics of Solids, 10, 343–352.MathSciNetCrossRef Hashin, Z., & Shtrikman, S. (1962b). A variational approach to the theory of the elastic behaviour of polycrystals. Journal of the Mechanics and Physics of Solids, 10, 343–352.MathSciNetCrossRef
Zurück zum Zitat Hatta, H., & Taya, M. (1986). Equivalent inclusion method for steady state heat conduction in composites. International Journal of Engineering Science, 24, 1159–1172.CrossRefMATH Hatta, H., & Taya, M. (1986). Equivalent inclusion method for steady state heat conduction in composites. International Journal of Engineering Science, 24, 1159–1172.CrossRefMATH
Zurück zum Zitat Herakovich, C. T. (1998). Mechanics of fibrous composites. New York: Wiley. Herakovich, C. T. (1998). Mechanics of fibrous composites. New York: Wiley.
Zurück zum Zitat Hershey, A. V. (1954). The elasticity of an isotropic aggregate of anisotropic cubic crystals. ASME Journal of Applied Mechanics, 21, 236–240.MATH Hershey, A. V. (1954). The elasticity of an isotropic aggregate of anisotropic cubic crystals. ASME Journal of Applied Mechanics, 21, 236–240.MATH
Zurück zum Zitat Hill, R. (1963a). Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11, 357–372 [1]. Hill, R. (1963a). Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11, 357–372 [1].
Zurück zum Zitat Hill, R. (1964). Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior. Journal of the Mechanics and Physics of Solids, 12, 199–212.MathSciNetCrossRef Hill, R. (1964). Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior. Journal of the Mechanics and Physics of Solids, 12, 199–212.MathSciNetCrossRef
Zurück zum Zitat Hill, R. (1965a). Continuum micromechanics of elastic-plastic polycrystals. Journal of the Mechanics and Physics of Solids, 13, 89–101.CrossRefMATH Hill, R. (1965a). Continuum micromechanics of elastic-plastic polycrystals. Journal of the Mechanics and Physics of Solids, 13, 89–101.CrossRefMATH
Zurück zum Zitat Hill, R. (1965b). Theory of mechanical properties of fibre-strengthened materials – III. Self-consistent model. Journal of the Mechanics and Physics of Solids, 13, 189–198.CrossRef Hill, R. (1965b). Theory of mechanical properties of fibre-strengthened materials – III. Self-consistent model. Journal of the Mechanics and Physics of Solids, 13, 189–198.CrossRef
Zurück zum Zitat Hill, R. (1965c). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13, 213–222.CrossRef Hill, R. (1965c). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13, 213–222.CrossRef
Zurück zum Zitat Hirano, T., & Wakashima, K. (1995). Mathematical modeling and design. MRS Bulletin, 40-42. Hirano, T., & Wakashima, K. (1995). Mathematical modeling and design. MRS Bulletin, 40-42.
Zurück zum Zitat Hirano, T., Teraki, J., & Yamada, T. (1990). On the design of functionally gradient materials. In: M. Yamanouchi, M. Koizumi, T. Hirai, & I. Shiota (Eds.), Proceedings of the 1st International Symposium on Functionally Gradient Materials, pp. 5-10. Hirano, T., Teraki, J., & Yamada, T. (1990). On the design of functionally gradient materials. In: M. Yamanouchi, M. Koizumi, T. Hirai, & I. Shiota (Eds.), Proceedings of the 1st International Symposium on Functionally Gradient Materials, pp. 5-10.
Zurück zum Zitat Hori, M., & Nemat-Nasser, S. (1993). Double-inclusion model and overall moduli of multi-phase composites. Mechanics of Materials, 14, 189–206.CrossRef Hori, M., & Nemat-Nasser, S. (1993). Double-inclusion model and overall moduli of multi-phase composites. Mechanics of Materials, 14, 189–206.CrossRef
Zurück zum Zitat Hu, G. K., & Weng, G. J. (2000). The connections between the double inclusion model and the Ponte Castaneda-Willis, Mori Tanaka, and Kuster-Toksoz models. Mechanics of Materials, 32, 495–503.CrossRef Hu, G. K., & Weng, G. J. (2000). The connections between the double inclusion model and the Ponte Castaneda-Willis, Mori Tanaka, and Kuster-Toksoz models. Mechanics of Materials, 32, 495–503.CrossRef
Zurück zum Zitat Kerner, E. H. (1956). The elastic and thermo-elastic properties of composite media. Proceedings of the Royal Society London, B69, 808–813.CrossRef Kerner, E. H. (1956). The elastic and thermo-elastic properties of composite media. Proceedings of the Royal Society London, B69, 808–813.CrossRef
Zurück zum Zitat Kröner, E. (1958). Berechnung der elastischen Konstanten der Vielkristalls aus den Konstanten der Einkristalls. Zeitschrift für Physik, 151, 504–518.CrossRef Kröner, E. (1958). Berechnung der elastischen Konstanten der Vielkristalls aus den Konstanten der Einkristalls. Zeitschrift für Physik, 151, 504–518.CrossRef
Zurück zum Zitat Kröner, E., Datta, B. K., & Kessel, D. (1966). On the bounds of the shear modulus of macroscopically isotropic aggregates of cubic crystals. Journal of the Mechanics and Physics of Solids, 14, 21–24.CrossRef Kröner, E., Datta, B. K., & Kessel, D. (1966). On the bounds of the shear modulus of macroscopically isotropic aggregates of cubic crystals. Journal of the Mechanics and Physics of Solids, 14, 21–24.CrossRef
Zurück zum Zitat Laws, N. (1973). On thermostatics of composite materials. Journal of the Mechanics and Physics of Solids, 21, 9–17.CrossRef Laws, N. (1973). On thermostatics of composite materials. Journal of the Mechanics and Physics of Solids, 21, 9–17.CrossRef
Zurück zum Zitat Laws, N. (1974). The overall thermoelastic moduli of transversely isotropic composites according to the self-consistent method. International Journal of Engineering Science, 12, 79–87.CrossRefMATH Laws, N. (1974). The overall thermoelastic moduli of transversely isotropic composites according to the self-consistent method. International Journal of Engineering Science, 12, 79–87.CrossRefMATH
Zurück zum Zitat Laws, N. (1980). The elastic response of composite materials. Physics of Modern Materials, I. International Atomic Energy Agency, Vienna, IAEA-SMR 46/107, pp. 465–520. Laws, N. (1980). The elastic response of composite materials. Physics of Modern Materials, I. International Atomic Energy Agency, Vienna, IAEA-SMR 46/107, pp. 465–520.
Zurück zum Zitat Laws, N., & Dvorak, G. J. (1987). The effect of fiber breaks and penny shaped cracks on the stiffness and energy release in unidirectional composites. International Journal of Solids and Structures, 23, 1269–1283.CrossRef Laws, N., & Dvorak, G. J. (1987). The effect of fiber breaks and penny shaped cracks on the stiffness and energy release in unidirectional composites. International Journal of Solids and Structures, 23, 1269–1283.CrossRef
Zurück zum Zitat Laws, N., & McLaughlin, R. (1978). Self-consistent estimates for viscoelastic creep compliances of composite materials. Proceedings of the Royal Society of London, A359, 251–273.MathSciNet Laws, N., & McLaughlin, R. (1978). Self-consistent estimates for viscoelastic creep compliances of composite materials. Proceedings of the Royal Society of London, A359, 251–273.MathSciNet
Zurück zum Zitat Laws, N., & McLaughlin, R. (1979). The effect of fiber length on the overall moduli of composite materials. Journal of the Mechanics and Physics of Solids, 27, 1–13.CrossRefMATH Laws, N., & McLaughlin, R. (1979). The effect of fiber length on the overall moduli of composite materials. Journal of the Mechanics and Physics of Solids, 27, 1–13.CrossRefMATH
Zurück zum Zitat Laws, N., Dvorak, G. J., & Hejazi, M. (1983). Stiffness changes in composites caused by crack systems. Mechanics of Materials, 2, 123–137.CrossRef Laws, N., Dvorak, G. J., & Hejazi, M. (1983). Stiffness changes in composites caused by crack systems. Mechanics of Materials, 2, 123–137.CrossRef
Zurück zum Zitat Lee, Y. -D., & Erdogan, F. (1994/1995). Residual thermal stresses in FGM and laminated thermal barrier coatings. International Journal of Fracture, 69, 145-165. Lee, Y. -D., & Erdogan, F. (1994/1995). Residual thermal stresses in FGM and laminated thermal barrier coatings. International Journal of Fracture, 69, 145-165.
Zurück zum Zitat Markworth, A. J., & Saunders, J. H. (1995). A model of structure optimization for a functionally graded material. Materials Letters, 22, 103–107.CrossRef Markworth, A. J., & Saunders, J. H. (1995). A model of structure optimization for a functionally graded material. Materials Letters, 22, 103–107.CrossRef
Zurück zum Zitat Markworth, A. J., Parks, W. P., & Ramesh, K. S. (1995). Review: Modelling studies applied to functionally graded materials. Journal of Materials Science, 30, 2183–2193.CrossRef Markworth, A. J., Parks, W. P., & Ramesh, K. S. (1995). Review: Modelling studies applied to functionally graded materials. Journal of Materials Science, 30, 2183–2193.CrossRef
Zurück zum Zitat McLaughlin, R. (1977). A study of the differential scheme for composite materials. International Journal of Engineering Science, 15, 237–244.CrossRefMATH McLaughlin, R. (1977). A study of the differential scheme for composite materials. International Journal of Engineering Science, 15, 237–244.CrossRefMATH
Zurück zum Zitat Milton, G. W. (2002). The theory of composites. Cambridge: Cambridge University Press.CrossRefMATH Milton, G. W. (2002). The theory of composites. Cambridge: Cambridge University Press.CrossRefMATH
Zurück zum Zitat Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21, 571–574.CrossRef Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21, 571–574.CrossRef
Zurück zum Zitat Nemat-Nasser, S., & Hori, M. (1999). Micromechanics: Overall properties of hetero-geneous materials (2nd ed.). Amsterdam: Elsevier. Nemat-Nasser, S., & Hori, M. (1999). Micromechanics: Overall properties of hetero-geneous materials (2nd ed.). Amsterdam: Elsevier.
Zurück zum Zitat Norris, A. N. (1985). A differential scheme for effective moduli of composites. Mechanics of Materials, 4, 1–16.CrossRef Norris, A. N. (1985). A differential scheme for effective moduli of composites. Mechanics of Materials, 4, 1–16.CrossRef
Zurück zum Zitat Norris, A. N. (1989). An examination of the Mori-Tanaka effective medium approximation for multiphase composites. ASME Journal of Applied Mechanics, 56, 83–88.CrossRefMATH Norris, A. N. (1989). An examination of the Mori-Tanaka effective medium approximation for multiphase composites. ASME Journal of Applied Mechanics, 56, 83–88.CrossRefMATH
Zurück zum Zitat Norris, A. N., Callegari, A. J., & Sheng, P. (1985). A generalized differential effective medium theory. Journal of the Mechanics and Physics of Solids, 33(6), 525–543.CrossRefMATH Norris, A. N., Callegari, A. J., & Sheng, P. (1985). A generalized differential effective medium theory. Journal of the Mechanics and Physics of Solids, 33(6), 525–543.CrossRefMATH
Zurück zum Zitat Oskay, C., & Fish, J. (2007). Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 196, 1216–1243.MathSciNetCrossRefMATH Oskay, C., & Fish, J. (2007). Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 196, 1216–1243.MathSciNetCrossRefMATH
Zurück zum Zitat Ozisik, M. N. (1968). Boundary value problems of heat conduction. Scranton: International Textbook Co. Ozisik, M. N. (1968). Boundary value problems of heat conduction. Scranton: International Textbook Co.
Zurück zum Zitat Ponte Castaneda, P., & Willis, J. R. (1995). The effect of spatial distribution on the effective behavior of composite materials and cracked media. Journal of the Mechanics and Physics of Solids, 43, 1919–1951.MathSciNetCrossRefMATH Ponte Castaneda, P., & Willis, J. R. (1995). The effect of spatial distribution on the effective behavior of composite materials and cracked media. Journal of the Mechanics and Physics of Solids, 43, 1919–1951.MathSciNetCrossRefMATH
Zurück zum Zitat Postma, G. W. (1955). Wave propagation in a stratified medium. Geophysics, 20, 780–806.CrossRef Postma, G. W. (1955). Wave propagation in a stratified medium. Geophysics, 20, 780–806.CrossRef
Zurück zum Zitat Reiter, T., & Dvorak, G. J. (1998). Micromechanical models for graded composite materials: II Thermomechanical loading. Journal of the Mechanics of Physics of Solids, 46, 1655–1673.CrossRefMATH Reiter, T., & Dvorak, G. J. (1998). Micromechanical models for graded composite materials: II Thermomechanical loading. Journal of the Mechanics of Physics of Solids, 46, 1655–1673.CrossRefMATH
Zurück zum Zitat Reiter, T., Dvorak, G. J., & Tvergaard, V. (1997). Micromechanical models for graded composite materials. Journal of the Mechanics and Physics of Solids, 45, 1281–1302.CrossRef Reiter, T., Dvorak, G. J., & Tvergaard, V. (1997). Micromechanical models for graded composite materials. Journal of the Mechanics and Physics of Solids, 45, 1281–1302.CrossRef
Zurück zum Zitat Roscoe, R. (1952). The viscosity of suspensions of rigid spheres. British Journal of Applied Physics, 3, 267–269.CrossRef Roscoe, R. (1952). The viscosity of suspensions of rigid spheres. British Journal of Applied Physics, 3, 267–269.CrossRef
Zurück zum Zitat Russel, W. B. (1973). On the effective moduli of composite materials: Effect of fiber length and geometry at dilute concentrations. Zeitschrift für Angewandte Mathematik und Physik, 24, 581.CrossRef Russel, W. B. (1973). On the effective moduli of composite materials: Effect of fiber length and geometry at dilute concentrations. Zeitschrift für Angewandte Mathematik und Physik, 24, 581.CrossRef
Zurück zum Zitat Sanchez-Palencia, E. (1980). Homogenization techniques and vibration theory. Lecture Notes in Physics No. 127. Berlin: Springer. Sanchez-Palencia, E. (1980). Homogenization techniques and vibration theory. Lecture Notes in Physics No. 127. Berlin: Springer.
Zurück zum Zitat Sasaki, M., & Hirai, T. (1991). Fabrication and properties of functionally gradient materials. Journal of the Ceramic Society of Japan, 99, 1002–1013.CrossRef Sasaki, M., & Hirai, T. (1991). Fabrication and properties of functionally gradient materials. Journal of the Ceramic Society of Japan, 99, 1002–1013.CrossRef
Zurück zum Zitat Sayers, C. M. (1992). Elastic anisotropy of short-fibre reinforced composites. Journal of the Mechanics and Physics of Solids, 29, 2933–2944.MATH Sayers, C. M. (1992). Elastic anisotropy of short-fibre reinforced composites. Journal of the Mechanics and Physics of Solids, 29, 2933–2944.MATH
Zurück zum Zitat Suquet, P. (1987). Elements of homogenization for inelastic solid mechanics. In E. Sanchez-Palencia & A. Zaoui (Eds.), Homogenization techniques for composite media. New York: Springer. Suquet, P. (1987). Elements of homogenization for inelastic solid mechanics. In E. Sanchez-Palencia & A. Zaoui (Eds.), Homogenization techniques for composite media. New York: Springer.
Zurück zum Zitat Tanaka, K., & Mori, M. (1972). Note on volume integrals of the elastic field around an ellipsoidal inclusion. Journal of Elasticity, 2, 199–200.CrossRef Tanaka, K., & Mori, M. (1972). Note on volume integrals of the elastic field around an ellipsoidal inclusion. Journal of Elasticity, 2, 199–200.CrossRef
Zurück zum Zitat Tanaka, K., Tanaka, Y., Enomoto, K., Poterasu, V. F., & Sugano, Y. (1993a). Design of thermoelastic materials using direct sensitivity and optimization methods: Reduction of thermal stresses in functionally gradient materials. Computer Methods in Applied Mechanics and Engineering, 106, 271–284.CrossRefMATH Tanaka, K., Tanaka, Y., Enomoto, K., Poterasu, V. F., & Sugano, Y. (1993a). Design of thermoelastic materials using direct sensitivity and optimization methods: Reduction of thermal stresses in functionally gradient materials. Computer Methods in Applied Mechanics and Engineering, 106, 271–284.CrossRefMATH
Zurück zum Zitat Tanaka, K., Tanaka, Y., Watanabe, H., Poterasu, V. F., & Sugano, Y. (1993b). An improved solution to thermoelastic material design infunctionally gradient materials: Scheme to reduce thermal stresses. Computer Methods in Applied Mechanics and Engineering, 109, 377–389.CrossRefMATH Tanaka, K., Tanaka, Y., Watanabe, H., Poterasu, V. F., & Sugano, Y. (1993b). An improved solution to thermoelastic material design infunctionally gradient materials: Scheme to reduce thermal stresses. Computer Methods in Applied Mechanics and Engineering, 109, 377–389.CrossRefMATH
Zurück zum Zitat Walpole, L. J. (1969). On the overall elastic moduli of composite materials. Journal of the Mechanics and Physics of Solids, 17, 235–251.CrossRefMATH Walpole, L. J. (1969). On the overall elastic moduli of composite materials. Journal of the Mechanics and Physics of Solids, 17, 235–251.CrossRefMATH
Zurück zum Zitat Walpole, L. J. (1981). Elastic behavior of composite materials: Theoretical foundations. In Advances in applied mechanics. New York: Academic, 21, 169–242. Walpole, L. J. (1981). Elastic behavior of composite materials: Theoretical foundations. In Advances in applied mechanics. New York: Academic, 21, 169–242.
Zurück zum Zitat Walpole, L. J. (1984). Fourth-rank tensors of the thirty-two crystal classes; multiplication tables. Proceedings of the Royal Society London A, 391, 149–179.MathSciNetCrossRefMATH Walpole, L. J. (1984). Fourth-rank tensors of the thirty-two crystal classes; multiplication tables. Proceedings of the Royal Society London A, 391, 149–179.MathSciNetCrossRefMATH
Zurück zum Zitat Walpole, L. J. (1985c). The analysis of the overall elastic properties of composite materials. In B. A. Bilby, K. J. Miller, & J. R. Willis (Eds.), Fundamentals of deformation and fracture: Eshelby memorial symposium (pp. 91–107). Cambridge: Cambridge University Press. Walpole, L. J. (1985c). The analysis of the overall elastic properties of composite materials. In B. A. Bilby, K. J. Miller, & J. R. Willis (Eds.), Fundamentals of deformation and fracture: Eshelby memorial symposium (pp. 91–107). Cambridge: Cambridge University Press.
Zurück zum Zitat Walsh, J. B. (1965). The effect of cracks on the compressibility of rock. Journal of Geophysical Research, 70, 381.CrossRefMATH Walsh, J. B. (1965). The effect of cracks on the compressibility of rock. Journal of Geophysical Research, 70, 381.CrossRefMATH
Zurück zum Zitat Weng, G. J. (1984). Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. International Journal of Engineering Science, 22, 845–856.CrossRefMATH Weng, G. J. (1984). Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. International Journal of Engineering Science, 22, 845–856.CrossRefMATH
Zurück zum Zitat Weng, G. J. (1990). The theoretical connection between Mori-Tanaka’s theory and the Hashin-Shtrikman-Walpole bounds. International Journal of Engineering Science, 28, 1111–1120.MathSciNetCrossRefMATH Weng, G. J. (1990). The theoretical connection between Mori-Tanaka’s theory and the Hashin-Shtrikman-Walpole bounds. International Journal of Engineering Science, 28, 1111–1120.MathSciNetCrossRefMATH
Zurück zum Zitat Weng, G. J. (1992). Explicit evaluation of Willis’ bounds with ellipsoidal inclusions. International Journal of Engineering Science, 30, 83–92.MathSciNetCrossRefMATH Weng, G. J. (1992). Explicit evaluation of Willis’ bounds with ellipsoidal inclusions. International Journal of Engineering Science, 30, 83–92.MathSciNetCrossRefMATH
Zurück zum Zitat Williamson, R. L., Rabin, B. H., & Drake, J. T. (1993). Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part 1. Model description and geometrical effects. Journal of Applied Physics, 74, 1311–1320.CrossRef Williamson, R. L., Rabin, B. H., & Drake, J. T. (1993). Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part 1. Model description and geometrical effects. Journal of Applied Physics, 74, 1311–1320.CrossRef
Zurück zum Zitat Willis, J. R. (1980). A polarization approach to the scattering of elastic waves – I. Scattering by a single inclusion. II. Multiple scattering from inclusions. Journal of the Mechanics and Physics of Solids, 28, 287–327.MathSciNetCrossRefMATH Willis, J. R. (1980). A polarization approach to the scattering of elastic waves – I. Scattering by a single inclusion. II. Multiple scattering from inclusions. Journal of the Mechanics and Physics of Solids, 28, 287–327.MathSciNetCrossRefMATH
Zurück zum Zitat Willis, J. R. (1981). Variational and related method for the overall properties of composites. In Advances in applied mechanics, 21, 1–78. Academic Press. Willis, J. R. (1981). Variational and related method for the overall properties of composites. In Advances in applied mechanics, 21, 1–78. Academic Press.
Zurück zum Zitat Withers, P. J. (1989). The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Philosophical Magazine, 59, 759–781.CrossRef Withers, P. J. (1989). The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Philosophical Magazine, 59, 759–781.CrossRef
Zurück zum Zitat Wu, T. T. (1966). The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids and Structures, 2, 1–8.CrossRef Wu, T. T. (1966). The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids and Structures, 2, 1–8.CrossRef
Zurück zum Zitat Zhao, Y. H., Tandon, G. P., & Weng, G. J. (1989). Elastic moduli for a class of porous materials. Acta Mechanica, 76, 105–130.CrossRefMATH Zhao, Y. H., Tandon, G. P., & Weng, G. J. (1989). Elastic moduli for a class of porous materials. Acta Mechanica, 76, 105–130.CrossRefMATH
Zurück zum Zitat Zohdi, T. I., & Wriggers, P. (2005). An introduction to computational micromechanics. Berlin: Springer.CrossRef Zohdi, T. I., & Wriggers, P. (2005). An introduction to computational micromechanics. Berlin: Springer.CrossRef
Zurück zum Zitat Zohdi, T. I., Oden, J. T., & Rodin, G. J. (1996). Hierarchical modeling of heterogeneous bodies. Computer Merthods in Applied Mechanics and Engineering, 138, 273–298.MathSciNetCrossRefMATH Zohdi, T. I., Oden, J. T., & Rodin, G. J. (1996). Hierarchical modeling of heterogeneous bodies. Computer Merthods in Applied Mechanics and Engineering, 138, 273–298.MathSciNetCrossRefMATH
Zurück zum Zitat Walker, K. P. (1993) Fourier integral representation of the Green function for anisotropic elastic half-space. Proc. Roy. Soc. London, A433, 367–389.CrossRef Walker, K. P. (1993) Fourier integral representation of the Green function for anisotropic elastic half-space. Proc. Roy. Soc. London, A433, 367–389.CrossRef
Zurück zum Zitat Ghosh, S., Lee, K., Raghavan, P. (2001). A multi-level computational model for multi-scale damage analysis in composite and porous materials Intl. J. Solids. Struct., 38, 2335–2385.CrossRefMATH Ghosh, S., Lee, K., Raghavan, P. (2001). A multi-level computational model for multi-scale damage analysis in composite and porous materials Intl. J. Solids. Struct., 38, 2335–2385.CrossRefMATH
Metadaten
Titel
Estimates of Mechanical Properties of Composite Materials
verfasst von
George J. Dvorak
Copyright-Jahr
2013
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-4101-0_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.