Skip to main content

Persuading Computers to Act More Like Brains

  • Chapter
  • First Online:

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 4))

Abstract

Convergent advances in neural modeling, neuroinformatics, neuromorphic engineering, materials science, and computer science will soon enable the development and manufacture of novel computer architectures, including those based on memristive technologies that seek to emulate biological brain structures. A new computational platform, Cog Ex Machina, is a flexible modeling tool that enables a variety of biological-scale neuromorphic algorithms to be implemented on heterogeneous processors, including both conventional and neuromorphic hardware. Cog Ex Machina is specifically designed to leverage the upcoming introduction of dense memristive memories close to computing cores. The MoNETA (Modular Neural Exploring Traveling Agent) model is comprised of such algorithms to generate complex behaviors based on functionalities that include perception, motivation, decision-making, and navigation. MoNETA is being developed with Cog Ex Machina to exploit new hardware devices and their capabilities as well as to demonstrate intelligent, autonomous behaviors in both virtual animats and robots. These innovations in hardware, software, and brain modeling will not only advance our understanding of how to build adaptive, simulated, or robotic agents, but will also create innovative technological applications with major impacts on general-purpose and high-performance computing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://facets.kip.uni-heidelberg.de/public/motivation/index.html

  2. 2.

    http://brainscales.kip.uni-heidelberg.de/index.html

  3. 3.

    http://facets.kip.uni-heidelberg.de/images/4/48/Public–FACETS_15879_Summary-flyer.pdf

  4. 4.

    http://etienne.ece.jhu.edu/projects/ifat/index.html

  5. 5.

    http://nl.bu.edu/

References

  1. Abrahamsen J, Hafliger P, Lande T (2004) A time domain winner-take-all network of integrate-and-fire neurons. IEEE Int Symp Circuits Syst 5:361–364

    Google Scholar 

  2. Afifi A, Ayatollahi A, Raissi F (2009) STDP implementation using memristive nano device in CMOS-Nano neuromorphic networks. IEICE Electron Express 6(3):148–153

    Article  Google Scholar 

  3. Ames H, Mingolla E, Sohail A, Chandler B, Gorchetchnikov A, Léveillé J, Livitz G, Versace M (2011) The Animat—New frontiers in whole-brain modeling. IEEE NEST (in press)

    Google Scholar 

  4. Ananthanarayanan R, Esser SK, Simon HD, Modha DS (2009) The cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses. Proceedings of the conference on high performance computing networking, storage, and analysis, pp 1–12

    Google Scholar 

  5. Andreou AG, Meitzler RC, Strohben K, Boahen KA (1995) Analog VLSI neuromorphic image acquisition and pre-processing systems. Neural Net 8(7–8):1323–1347

    Article  Google Scholar 

  6. Argyrakis P, Hamilton A, Webb B, Zhang Y, Gonos T, Cheung, R (2007) Fabrication and characterization of a wind sensor for integration with neuron circuit. Microelectron Eng 84:1749–1753

    Article  CAS  Google Scholar 

  7. Arthur J, Boahen K (2006) Learning in silicon: timing is everything. In: Weiss Y, Scholkoph B, Platt J (eds) Advances in neural information processing systems, 18. MIT Press, Cambridge, pp 1–8

    Google Scholar 

  8. Bartolozzi C, Indiveri G (2007) Synpatic dynamics in analog VLSI. Neural Comput 19(10):2581–2603

    Article  PubMed  Google Scholar 

  9. Basset DS, Greenfield DL, Meyer-Lindenberg A, Weinberg DR, Moore SW, Bullmore ET (2010) Efficient physical embedding of topologically complex information processing networks in brains and computer networks. PLoS Comput Biol e1000748

    Google Scholar 

  10. Bernabe L, Serrano-Gotarredona T (2009) Memristance can explain spike-time-dependent-plasticity in neural synapses. Nature Precedings. http://precedings.nature.com (hdl:10101/npre.2009.3010.1)

    Google Scholar 

  11. Bernabe K (1999) A throughput-on-demand address-event transmitter for neuromorphic chips. Advanced Research in VLSI, pp 72–86

    Google Scholar 

  12. Boahen K (2007) Synchrony in silicon: the gamma rhythm. IEEE Trans Neural Netw 18(6):1815–1825

    Article  PubMed  Google Scholar 

  13. Boahen K, Andreou A (1992) A contrast sensitive silicon retina with reciprocal synapses. Adv Neural Inf Process Syst 4:764–772

    Google Scholar 

  14. Brockman WH (1979) A simple electronic neuron model incorporating both active and passive responses. IEEE Trans Biomed Eng BME-26:635–639

    Article  PubMed  CAS  Google Scholar 

  15. Brüderle D, Petrovici MA, Vogginger B, Ehrlich M, Pfeil T, Millner S, Grübl A, Wendt K, Müller E, Schwartz MO, de Oliveira DH, Jeltsch S, Fieres J, Schilling M, Müller P, Breitwieser O, Petkov V, Muller L, Davison AP, Krishnamurthy P, Kremkow J, Lundqvist M, Muller E, Partzsch J, Scholze S, Zühl L, Mayr C, Destexhe A, Diesmann M, Potjans TC, Lansner A, Schüffny R, Schemmel J, Meier K (2011) A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems. Biol Cybern 104(4–5):263–96

    Article  PubMed  Google Scholar 

  16. Chan V, Liu S-C, Van Schaik A (2007) AER EAR: a matched silicon cochlea pair with address event representation interface. IEEE Trans Circuits Syst 54:48–59

    Article  Google Scholar 

  17. Chicca E, Indiveri G, Douglas R (2004) An event based VLSI network of integrate-and-fire neurons. Proceedings of IEEE international symposium on circuits and systems, pp 357–360

    Google Scholar 

  18. Chicca E, Indiveri G, Douglas R (2007a) Context dependent amplification of both rate and event-correlation in a VLSI network of spiking neurons. In: Scholkopf B, Platt, J, Hofmann, T (eds) Advances in neural information processing systems, 19. Neural Information Processing Systems Foundation, Cambridge, pp 257–264

    Google Scholar 

  19. Chicca E, Whatley AM, Dante V, Lichtsteiner P, Delbruck T, Del Giudice P, Douglas R, Indiveri G (2007b) A multi-chip pulse-based neuromorphic infrastructure and its application to a model of orientation selectivity. IEEE Trans Circuits Syst 52(6):1049–1060

    Google Scholar 

  20. Choi TYU, Merolla PA, Arthur JV, Boahen KA, Shi BE (2005) Neuromorphic implementation of orientation hyper columns. IEEE Trans Circuits Syst 52(6):1049–1060

    Article  Google Scholar 

  21. Choi H, Jung H, Lee J, Yoon J, Park J, Seong D, Lee W, Hasan M, Jung GY, Hwang H (2009) An electrically modifiable synapse array of resistive switching memory. Nanotechnology 20(34):345201 (Epub)

    Article  PubMed  Google Scholar 

  22. Chua LO (1971) Memristor—missing circuit element. IEEE Trans Circuit Theory 18(5):507–519

    Article  Google Scholar 

  23. Chua LO, Kang SM (1976) Memristive devices and systems. Proc IEEE 64(2):209–223

    Article  Google Scholar 

  24. Costas-Santos J, Serrano-Gotarredona T, Serrano-Gotarredona R, Linares-Barranco B (2007) A spatial contrast retina with on-chip calibration for neuromorphic spike-based AER vision systems. IEEE Trans Circuits Syst I 54:1444–1458

    Article  Google Scholar 

  25. Culurciello E, Etienne-Cummings R, Boahen KA (2003) A biomorphic digital image sensor. IEEE J Solid State Circuits 38:281–294

    Article  Google Scholar 

  26. Delbruck T, Mead C (1996) Analog VLSI transduction. Technical Report CNS Memo 30, California Institute of Technology and Computation and Neural Systems Program. Pasadena, CA

    Google Scholar 

  27. DeYoung MR, Findley RL, Fields C (1992) The design, fabrication, and test of a new VLSI hybrid analog-digital neural processing element. IEEE Trans Neural Netw 3(3):363–374

    Article  Google Scholar 

  28. Diorio C, Hasler P, Minch BA, Mead CA (1996) A single-transistor silicon synapse. IEEE Trans Electron Devices 43(11):1980–1982

    Article  Google Scholar 

  29. Douglas R Mahowald M (1995) Silicon neurons. In: Arbib M (ed) The handbook of brain theory and neural networks. MIT Press, Cambridg, pp 282–289

    Google Scholar 

  30. Douglas R, Mahowald M, Mead C (1995) Neuromorphic Analog VLSI. Annu Rev Neurosci 18:255–281

    Article  PubMed  CAS  Google Scholar 

  31. Elias JG (1993) Artificial dendritic trees. Neural Comput 5(4):648–664

    Article  Google Scholar 

  32. Etienne-Cummings R, Van der Spiegel, J (1996) Neuromorphic vision sensors. Sens Actuators A Phys 56(1–2):19–29

    Article  Google Scholar 

  33. Faggin F, Mead C (1995) VLSI Implementation of Neural Networks. In An Introduction to Neural and Electronic Networks. Academic Press, San Diego, pp 275–292

    Google Scholar 

  34. Fitzhugh R (1966) An electronic model of the nerve membrane for demonstration purposes. J Appl Physiol 21:305–308

    PubMed  CAS  Google Scholar 

  35. Folowosele F (2010) Neuromorphic systems: silicon neurons and neural arrays for emulating the nervous system. Neurdon. http://www.neurdon.com/2010/08/12/neuromorphic-systems-silicon-neurons-and-neural-arrays-for-emulating-the-nervous-system/

    Google Scholar 

  36. Folowosele F, Hamilton TJ, Etienne-Cummings R (2011) Silicon modeling of the Mihalaş--Niebur neuron. IEEE Trans Neural Netw 22(12):1915–1927

    Google Scholar 

  37. Fragniére E, van Schaik A, Vittoz EA (1997) Design of an analogue VLSI model of an active cochlea. Analog Integr Circuits and Signal Processing 12:19–35

    Article  Google Scholar 

  38. Furth P, Andreou AG (1995) A design framework for low power analog filter banks. IEEE Trans Circuits Syst 42(11):966–971

    Article  Google Scholar 

  39. Giulioni M, Camilleri P, Dante V, Badoni D, Indiveri G, Braun J, Del Giudice P (2008) A VLSI network of spiking neurons with plastic fully configurable “stop-learning” synapses. Proceedings of IEEE international conference on electronics, circuits and systems, pp 678–681

    Google Scholar 

  40. Glover M, Hamilton A, Smith LS (2002) Analogue VLSI leaky integrated-and-fire neurons and their use in a sound analysis system. Analog Integr Circuits Signal Processing 30(2):91–100

    Article  Google Scholar 

  41. Goldberg DH, Cauwenberghs G, Andreou AG (2001) Probabilistic synaptic weighting in a reconfigurable network of VLSI integrate-and-fire neurons. Neural Net 14:781–793

    Article  CAS  Google Scholar 

  42. Gorchetchnikov A, Hasselmo ME (2005) A biophysical implementation of a bidirectional graph search algorithm to solve multiple goal navigation tasks. Connect Sci 17(1–2):145–166

    Article  Google Scholar 

  43. Gorchetchnikov A, Versace, M, Ames H, Chandler B, Léveillé J, Livitz G, Mingolla E, Snider G, Amerson R, Carter D, Abdalla H, Qureshi MS (2011a) Review and unification of learning framework in Cog Ex Machina platform for memristive neuromorphic hardware. Proceedings of the international Joint Conference on neural networks, pp 2601–2608

    Google Scholar 

  44. Gorchetchnikov A, Léveillé J, Versace M, Ames HM, Livitz G, Chandler B, Mingolla E, Carter D, Amerson R, Abdalla H, Qureshi S, Snider G (2011b) MoNETA: massive parallel application of biological models navigating through virtual Morris water maze and beyond. BMC Neurosci 12(Suppl 1):310

    Article  Google Scholar 

  45. Grossberg S (1973) Contour enhancement, short-term memory, and constancies in reverberating neural networks. Stud Appl Math 52:213–257

    Google Scholar 

  46. Hafliger P (2007) Adaptive WTA with an analog VLSI neuromorphic learning chip. IEEE Trans Neural Netw 18(2):551–572

    Article  PubMed  Google Scholar 

  47. Hamilton TJ, Jin C, van Schaik A, Tapson J (2008) An active 2-D silicon cochlea. IEEE Trans Biomed Circuits Syst 2(1):30–43

    Article  Google Scholar 

  48. Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant squid axon of loligo. J Phys 116:449–472

    CAS  Google Scholar 

  49. Hsu D, Figueroa M, Diorio C (2002) Competitive learning with floating-gate circuits. IEEE Trans Neural Netw 13:732–744

    Article  PubMed  CAS  Google Scholar 

  50. Indiveri G (1998) Analog VLSI model of locust DCMD neuron response for computation of object approach. In: Smith L, Hamilton A (eds) Neuromorphic systems: engineering silicon from neurobiology. World Scientific, Singapore, pp 47–60

    Chapter  Google Scholar 

  51. Indiveri G, Murer R, Kramer J (2001) Active vision using an analog VLSI model of selective attention. IEEE Trans Circuits Syst II 48(5):492–500

    Article  Google Scholar 

  52. Indiveri G, Chicca E, Douglas RJ (2004) A VLSI reconfigurable network of integrate-and-fire neurons with spike-based learning synapses. European symposium on artificial neural networks, pp 405–410

    Google Scholar 

  53. Indiveri G, Chicca E, Douglas RJ (2006) A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans Neural Netw 17(1):211–221

    Article  PubMed  Google Scholar 

  54. Indiveri G, Chicca E, Douglas RJ (2009) Artificial cognitive systems: from VLSI networks of spiking neurons to neuromorphic cognition. Cognitive Comput 1:119–127

    Article  Google Scholar 

  55. Indiveri G, Linares-Barranco B, Hamilton TJ, van Schaik A, Etienne-Cummings R, Delbruck T, Liu S-C, Dudek P, Häfliger P, Renaud S, Schemmel J, Cauwenberghs G, Arthur J, Hynna K, Folowosele F, Saïghi S, Serrano-Gotarredona T, Wijekoon J, Wang Y, Boahen K (2011) Neuromorphic silicon neuron circuits. Front Neurosci 5:73

    PubMed  Google Scholar 

  56. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans PAMI 20:1254–1260

    Article  Google Scholar 

  57. Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamo-cortical systems. PNAS 105:3593–3598

    Article  PubMed  CAS  Google Scholar 

  58. Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10(4):1297–1301

    Article  PubMed  CAS  Google Scholar 

  59. Johnson RH, Hanna, GR (1969) Membrane model: a single transistor analog of excitable membrane. J Theor Biol 22:401–411

    Article  PubMed  CAS  Google Scholar 

  60. Karplus WJ, Soroka WW (1959) Analog Methods: computation and Simulation. McGraw-Hill, New York

    Google Scholar 

  61. Kogge P (2011) The tops in FLOPS. IEEE Spectr 48(2):48–54

    Article  Google Scholar 

  62. Koickal TJ, Hamilton A, Tan SL, Covington JA, Gardner JW, Pearce TC (2005) Analog VLSI circuit implementation of an adaptive neuromorphic olfaction chip. IEEE Int Symp Circuits Syst 54:60–73

    Google Scholar 

  63. Lapique L (1907) Sur l’excitation electrique des nerfs. J Physiol 9:620–635

    Google Scholar 

  64. Lazzaro J, Mead C (1989a) Silicon modeling of pitch perception. Proc Natl Acad Sci USA 86(23):9597–9601

    Article  CAS  Google Scholar 

  65. Lazzaro J, Mead C (1989b) A silicon model of auditory localization. Neural Comput 1(1):47–57

    Article  Google Scholar 

  66. Lazzaro J, Wawrzynek J (1997) Speech recognition experiments with silicon auditory models. Analog Integr Circuits 13:37–51

    Article  Google Scholar 

  67. Léveillé J, Ames H, Chandler B, Gorchetchnikov A, Livitz G, Versace M Mingolla E (2011) Object recognition and localization in a virtual animat: large-scale implementation in dense memristive memory devices. Proceedings of the international joint conference on neural networks

    Google Scholar 

  68. Lewis ER (1968) An electronic model of the neuroelectric point process. Kybernetik 5:30–46

    Article  PubMed  CAS  Google Scholar 

  69. Lichtsteiner P, Posch C, Delbruck T (2008) A 128 × 128 × 120db 15 μs latency asynchronous temporal contrast vision detector. IEEE J Solid-State Circuits 43(2):566–576

    Article  Google Scholar 

  70. Liu W, Andreou AG, Goldstein MH, Jr (1993a) Analog cochlear model for multire solution speech analysis. Adv Neural Inf Processing Syst 5:666–673

    Google Scholar 

  71. Liu W, Andreou AG, Goldstein MH, Jr (1993b) Voiced speech representation by an analog silicon model of the auditory periphery. IEEE Trans on Neural Net 3(3):477–487

    Article  Google Scholar 

  72. Liu S-C, Delbruck T (2010) Neuromorphic sensory systems. Curr Opin Neurobio 20:288–295

    Article  Google Scholar 

  73. Liu S-C, Kramer J, Indiveri G, Delbruck T, Douglas R (2002) Analog VLSI: circuits and principles. MIT Press, Cambridge

    Google Scholar 

  74. Liu S-C, Mesgarani N, Harris J, Hermansky H (2010) The use of spike-based representations for hardware auditory systems. IEEE International symposium on circuits and systems, pp 505–508

    Google Scholar 

  75. Livitz G, Ames H, Chandler B, Gorchetchnikov A, Léveillé J, Vasilkoski Z, Versace M, Mingolla E, Snider G, Amerson R, Carter D, Abdalla H, Qureshi MS (2011) Visually-guided adaptive robot (ViGuAR). Proceedings of the international joint conference on neural networks, pp 2944–2951

    Google Scholar 

  76. Lyon RF, Mead C (1988) An analog electronic cochlea. IEEE Trans Acoust 36(7):1119–1134

    Article  Google Scholar 

  77. Mahowald M, Douglas R (1991) A silicon neuron. Nature 354(6354):515–518

    Article  PubMed  CAS  Google Scholar 

  78. Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153–160

    Article  PubMed  CAS  Google Scholar 

  79. McKenzie A, Branch DW, Forsythe C, James CD (2010) Toward exascale computing through neuromorphic approaches. Sandia Report SAND2010-6312, Sandia National Laboratories

    Google Scholar 

  80. Mead C (1989) Analog VLSI and neural systems. Addison-Wesley, Boston

    Google Scholar 

  81. Mead C, Mahowald MA (1988) A silicon model of early visual processing. Neural Netw 1(1):91–97

    Article  Google Scholar 

  82. Merolla PA, Arthur JV, Shi BE, Boahen KA (2007) Expandable networks for neuromorphic chips. IEEE Trans Circuits Syst I: Fundam Theory Appl 54(2):301–311

    Article  Google Scholar 

  83. Minch BA, Hasler P, Diorio C, Mead C (1995) A silicon axon. In: Tesauro G, Touretzky DS, Leen TK (eds) Adv Neural Inf Processing Syst 7. MIT Press, Cambridge, pp 739–746

    Google Scholar 

  84. Mitra S, Fusi S, Indiveri G (2009) Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI. IEEE Trans Biomed Circuits Syst 3(1):32–42

    Article  Google Scholar 

  85. Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12(2):239–260

    Article  Google Scholar 

  86. Navaridas J, Lujan M, Miguel-Alonso J, Plana LA, Furber S (2009) Understanding the interconnection network of SpiNNaker. Proceedings of the international conference on supercomputing, p 286

    Google Scholar 

  87. Nogaret A, Lambert NJ, Bending SJ Austin J (2004) Artificial ion channels and spike computation in modulation-doped semiconductors. Europhys Lett 68(6):874–880

    Article  CAS  Google Scholar 

  88. Northmore DPM. Elias JG (1996) Spike train processing by a silicon neuromorph: the role of sub linear summation in dendrites. Neural Comput 8(6):1245–1265

    Article  PubMed  CAS  Google Scholar 

  89. Oster M, Liu SC (2004) A winner-take-all spiking network with spiking inputs. Proceedings of 11th IEEE international conference on electronics, circuits, and systems, pp 1051–1058

    Google Scholar 

  90. Pearce TC (1997) Computational parallels between the biological olfactory pathway and its analogue ‘the electric nose’: sensor based machine olfaction. Biosystems 41(2):69–90

    Article  PubMed  CAS  Google Scholar 

  91. Pearson M, Nibouche M, Gilhespy I, Gurney K, Melhuish C, Mitchison B, Pipe AG (2006) A hardware based implementation of a tactile sensory system for neuromorphic signal processing applications. Proceedings of IEEE international conference on acoustics, speech, and signal processing, p 4

    Google Scholar 

  92. Pickett MD, Strukov DB, Borghetti JL, Yang JJ, Snider GS, Stewart DR, Williams RS (2009) Switching dynamics in titanium dioxide memristive devices. J Appl Phys 106(7):074508

    Article  Google Scholar 

  93. Posch C, Matolin D, Wohlgenannt R (2010) A QVGA 143 dB DR asynchronous address-event PWM dynamic image sensor with lossless pixel-level video compression. ISSCC digest of technical papers, pp 400–401

    Google Scholar 

  94. Rasche C, Douglas RJ (2000) An improved silicon neuron. Analog Integr 23(3):227–236

    Article  Google Scholar 

  95. Rasche C, Douglas RJ (2001) Forward- and back propagation in a silicon dendrite. IEEE Trans Neural Netw 12(2):386–393

    Article  PubMed  CAS  Google Scholar 

  96. Rasche C, Douglas RJ, Mahowald M (1998) Characterization of a silicon pyramidal neuron. In: Smith LS, Hamilton A (eds) Neuromorphic systems: engineering silicon from neurobiology. World Scientific, Singapore, pp 169–177

    Chapter  Google Scholar 

  97. Roy G (1972) A simple electronic analog of the squid axon membrane: the neuro FET. IEEE Trans Biomed Eng BME-18:60–63

    Article  Google Scholar 

  98. Roy, D (2006) Design and developmental metrics of a ‘skin-like’ mutli-input quasi-compliant robotic gripper sensor using tactile matrix. J Intell Robot Syst 46(4):305–337

    Article  Google Scholar 

  99. Ruedi PF, Heim P, Kaess F, Grenet E, Heitger F, Burgi PY, Gyger S, Nussbaum P (2003) A 128 × 128 pixel 120-dB dynamic-range vision-sensor chip for image contrast and orientation extraction. IEEE J Solid-State Circuits 38:2325–2333

    Article  Google Scholar 

  100. Runge RG, Uemura M, Viglione SS (1968) Electronic synthesis of the avian retina. IEEE Trans Biomed Eng BME-15:138–151

    Article  PubMed  CAS  Google Scholar 

  101. Russell A, Orchard G, Dong Y, Mihalas S, Niebur E, Tapson J, Etienne-Cummings R (2010) optimization methods for spiking neurons and networks. IEEE Trans Neural Netw 21(12):1950–1962

    Article  PubMed  Google Scholar 

  102. Samardak A, Nogaret A, Taylor S, Austin J, Farrer I, Ritchie DA (2008) An analogue sum and threshold neuron based on the quantum tunneling amplification of neural pulses. New J Phys 10

    Google Scholar 

  103. Schemmel J, Fieres J, Meier K (2008) Wafer-scale integration of analog neural networks. Proceedings of the IEEE joint conference on neural networks, pp 431–438

    Google Scholar 

  104. Serrano-Gotarredona R, Oster M, Lichtsteiner P, Linares-Barranco A, Paz-Vicente R, Gomez-Rodriguez F, Riss HK, Delbruck T, Liu S-C, Zahnd S, Whatley AM, Douglas R, Hafliger P, Jimenz-Moreno G, Civit A, Serrano-Gotarredona T, Acosta-Jimenez A, Linares-Barranco B (2006) AER building blocks for multi-layer multi-chip neuromorphic vision systems. In: Becker S, Thrun S, Obermayer K (eds) Advances in neural information processing systems 15. MIT Press, Cambridge, pp 1217–1224

    Google Scholar 

  105. Serrano-Gotarredona R, Oster M, Lichtsteiner P, Linares-Barranco A, Paz-Vicente R, Gomez-Rodriguez F, Camunas-Mesa L, Berner R, Rivas M, Delbruck T, Liu S-C, Douglas R, Hafliger P, Jimenez-Moreno G, Civit A, Serrano-Gotarredona T, Acosta-Jimenez A, Lineares-Barranco B (2009) CAVIAR: a 45 k-neuron, 5 M-synapse, 12G-connects/s AER hardware sensory-processing-learning-actuating system for high speed visual object recognition and tracking. IEEE Trans Neural Netw 20(9):1417–1438

    Article  PubMed  Google Scholar 

  106. Shurmer HV, Gardner JW (1992).Odor discrimination with an electric nose. Sens Actuators B-Chemical, 8(11):1–11

    Google Scholar 

  107. Smith LS (2008) Neuromorphic systems: past, present, and future. In: Hussain A et al., (eds) Brain inspired cognitive systems, advances in experimental medicine and biology, 657. MIT Press, Cambridge, pp 167–182

    Google Scholar 

  108. Snider GS (2007) Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18(36):36502

    Article  Google Scholar 

  109. Snider GS (2008) Spike-timing-dependent learning in memristive nanodevices. IEEE/ACM International symposium on nanoscale architectures, pp 85–92

    Google Scholar 

  110. Snider GS (2011) Instar and outstar learning with memristive nanodevices. Nanotechnology 22:015201

    Article  PubMed  Google Scholar 

  111. Snider G, Amerson R, Carter D, Abdalla H, Qureshi S, Léveillé J, Versace M, Ames H, Patrick S, Chandler B, Gorchetchnikov A, Mingolla E (2011) Adaptive computation with memristive memory. IEEE Comput 44(2):21–28

    Article  Google Scholar 

  112. Strukov DB, Snider GS, Stewart DR, Williams SR (2008) The missing memristor found. Nature 453:80–83

    Article  PubMed  CAS  Google Scholar 

  113. Vainbrand D, Ginosar R (2010) Network-on-chip architectures for neural networks. IEEE international symposium on networks-on-chip, pp 135–144

    Google Scholar 

  114. Van Schaik A (2001) Building blocks for electronic spiking neural networks. Neural Netw 14(6–7):617–628

    Article  PubMed  Google Scholar 

  115. Van Schaik A, Vittoz E (1997) A silicon model of amplitude modulation detection in the auditory brainstem. Adv NIPS 9:741–747

    Google Scholar 

  116. Vasarhelyi G, Adam M, Vazsonyi E, Kis A, Barsony I, Ducso C (2006) Characterization of an integrable single-crystalline 3-D tactile sensor. IEEE Sens J 6(4):928–934

    Article  CAS  Google Scholar 

  117. Versace M Chandler B (2010) MoNETA: a mind made from memristors. IEEE Spectr 12:30–37

    Article  Google Scholar 

  118. Vogelstein R, Malik U, Culurciello E, Cauwenberghs G, Etienne-Cummings R (2007a) A multichip neuromorphic system for spike-based visual information processing. Neural Comput 19(9):2281–2300

    Article  Google Scholar 

  119. Vogelstein R, Malik U, Vogelstein J, Cauwenberghs G (2007b) Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses. IEEE Trans Neural Netw 18(1):253–265

    Article  Google Scholar 

  120. Watts L, Kerns D, Lyon R, Mead C (1992) Improved implementation of the silicon cochlea. IEEE J Solid-State Circ 27(5):692–700

    Article  Google Scholar 

  121. Wijekoon, JHB, Dudek, P (2008) Compact silicon neuron circuit with spiking and bursting behavior. Neural Netw 21:524–534

    Article  PubMed  Google Scholar 

  122. Wolpert S, Micheli-Tzanakou E (1996) A neuromime in VLSI. IEEE Trans Neural Netw 7(2):300–306

    Article  PubMed  CAS  Google Scholar 

  123. Xia Q, Robinett W, Cumbie MW, Banerjee N, Cardinali TJ, Yang JJ, Wu W, Li X, Tong WM, Strukov DB, Snider GS, Medeiros-Ribeiro G, Williams RS (2009) Memristor/CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett 9(10):3640–3645

    Article  PubMed  CAS  Google Scholar 

  124. Yang Z, Murray AF, Woergoetter F, Cameron KL, Boonobhak V (2006) A neuromorphic depth-from-motion vision model with STDP adaptation. IEEE Trans Neural Netw 17(2):482–495

    Article  PubMed  Google Scholar 

  125. Yang JJ, Pickett MD, Li X, Ohlberg DAA, Stewart DR, Williams RS (2008) Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnol 3:429–433

    Article  CAS  Google Scholar 

  126. Zaghloul KA, Boahen K (2006) A silicon retina that reproduces signals in the optic nerve. J Neural Eng 3:257–267

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported in part by the Center of Excellence for Learning in Education, Science and Technology (CELEST), a National Science Foundation Science of Learning Center (NSF SBE-0354378 and NSF OMA-0835976). This work was also partially funded by the DARPA SyNAPSE program, contract HR0011-09-3-0001. The views, opinions, and/or findings contained in this chapter are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the Department of Defense, or the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Versace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ames, H. et al. (2012). Persuading Computers to Act More Like Brains. In: Kozma, R., Pino, R., Pazienza, G. (eds) Advances in Neuromorphic Memristor Science and Applications. Springer Series in Cognitive and Neural Systems, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4491-2_4

Download citation

Publish with us

Policies and ethics