Skip to main content

2012 | OriginalPaper | Buchkapitel

2. Quantum Transport Simulations Based on Time Dependent Density Functional Theory

verfasst von : Thomas A. Niehaus, GuanHua Chen

Erschienen in: Quantum Simulations of Materials and Biological Systems

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

First principles simulations of electronic quantum transport through nanostructured materials have become an area of intense research over the past years. Energy based approaches in the spirit of Landauer theory are well established in this field, but recently also methods that aim at the solution of the time dependent many electron problem become increasingly popular and highlight conduction as a dynamical process. In the first part of this chapter, we review the corresponding literature with a focus on time dependent density functional theory (TDDFT) as electronic structure method. The covered material is categorized according to the way the open boundary conditions are implemented. This division is not a mere technical point but also helps to elucidate conceptual and fundamental differences between the methods. In the second part a more detailed overview is given over one of the possible approaches: the Liouville-von Neumann scheme in TDDFT. We discuss the foundations of the method in terms of the holographic electron density theorem for open systems and present the relevant equations of motion as well as appropriate approximations. The chapter closes with a sample application of this method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In general, the treatment of finite electric fields under periodic boundary conditions requires special care, as the electronic ground state may become unbound (see for instance [50]).
 
Literatur
1.
Zurück zum Zitat Aviram A, Ratner M (1974) Molecular rectifiers. Chem Phys Lett 29(2):277–283 CrossRef Aviram A, Ratner M (1974) Molecular rectifiers. Chem Phys Lett 29(2):277–283 CrossRef
2.
Zurück zum Zitat Song H, Reed M, Lee T (2011) Single molecule electronic devices. Adv Mater 14:1583 CrossRef Song H, Reed M, Lee T (2011) Single molecule electronic devices. Adv Mater 14:1583 CrossRef
3.
Zurück zum Zitat Cuevas JC, Scheer E (2010) Molecular electronics: an introduction to theory and experiment. World Scientific, Singapore CrossRef Cuevas JC, Scheer E (2010) Molecular electronics: an introduction to theory and experiment. World Scientific, Singapore CrossRef
4.
Zurück zum Zitat Dulić D, Van der Molen S, Kudernac T, Jonkman H, De Jong J, Bowden T, Van Esch J, Feringa B, Van Wees B (2003) One-way optoelectronic switching of photochromic molecules on gold. Phys Rev Lett 91:207402 CrossRef Dulić D, Van der Molen S, Kudernac T, Jonkman H, De Jong J, Bowden T, Van Esch J, Feringa B, Van Wees B (2003) One-way optoelectronic switching of photochromic molecules on gold. Phys Rev Lett 91:207402 CrossRef
5.
Zurück zum Zitat Gesquiere A, Park S, Barbara P (2004) F-V/SMS: a new technique for studying the structure and dynamics of single molecules and nanoparticles. J Phys Chem B 108:10301–10308 CrossRef Gesquiere A, Park S, Barbara P (2004) F-V/SMS: a new technique for studying the structure and dynamics of single molecules and nanoparticles. J Phys Chem B 108:10301–10308 CrossRef
6.
Zurück zum Zitat Guhr D, Rettinger D, Boneberg J, Erbe A, Leiderer P, Scheer E (2007) Influence of laser light on electronic transport through atomic-size contacts. Phys Rev Lett 99:86801 CrossRef Guhr D, Rettinger D, Boneberg J, Erbe A, Leiderer P, Scheer E (2007) Influence of laser light on electronic transport through atomic-size contacts. Phys Rev Lett 99:86801 CrossRef
7.
Zurück zum Zitat Guo X, Dong Z, Trifonov A, Yokoyama S, Mashiko S, Okamoto T (2004) Tunneling-electron-induced molecular luminescence from a nanoscale layer of organic molecules on metal substrates. Appl Phys Lett 84:969 CrossRef Guo X, Dong Z, Trifonov A, Yokoyama S, Mashiko S, Okamoto T (2004) Tunneling-electron-induced molecular luminescence from a nanoscale layer of organic molecules on metal substrates. Appl Phys Lett 84:969 CrossRef
8.
Zurück zum Zitat Meyer C, Elzerman J, Kouwenhoven L (2007) Photon-assisted tunneling in a carbon nanotube quantum dot. Nano Lett 7:295–299 CrossRef Meyer C, Elzerman J, Kouwenhoven L (2007) Photon-assisted tunneling in a carbon nanotube quantum dot. Nano Lett 7:295–299 CrossRef
9.
Zurück zum Zitat van der Molen S, Liao J, Kudernac T, Agustsson J, Bernard L, Calame M, van Wees B, Feringa B, Schönenberger C (2008) Light-controlled conductance switching of ordered metal-molecule-metal devices. Nano Lett 9:76–80 CrossRef van der Molen S, Liao J, Kudernac T, Agustsson J, Bernard L, Calame M, van Wees B, Feringa B, Schönenberger C (2008) Light-controlled conductance switching of ordered metal-molecule-metal devices. Nano Lett 9:76–80 CrossRef
10.
Zurück zum Zitat Wakayama Y, Ogawa K, Kubota T, Suzuki H, Kamikado T, Mashiko S (2004) Optical switching of single-electron tunneling in SiO/molecule/SiO multilayer on Si (100). Appl Phys Lett 85:329 CrossRef Wakayama Y, Ogawa K, Kubota T, Suzuki H, Kamikado T, Mashiko S (2004) Optical switching of single-electron tunneling in SiO/molecule/SiO multilayer on Si (100). Appl Phys Lett 85:329 CrossRef
11.
Zurück zum Zitat Ward D, Scott G, Keane Z, Halas N, Natelson D (2008) Electronic and optical properties of electromigrated molecular junctions. J Phys Condens Matter 20:374118 CrossRef Ward D, Scott G, Keane Z, Halas N, Natelson D (2008) Electronic and optical properties of electromigrated molecular junctions. J Phys Condens Matter 20:374118 CrossRef
12.
Zurück zum Zitat Yasutomi S, Morita T, Imanishi Y, Kimura S (2004) A molecular photodiode system that can switch photocurrent direction. Science 304:1944 CrossRef Yasutomi S, Morita T, Imanishi Y, Kimura S (2004) A molecular photodiode system that can switch photocurrent direction. Science 304:1944 CrossRef
13.
Zurück zum Zitat Koentopp M, Chang C, Burke K, Car R (2008) Density functional calculations of nanoscale conductance. J Phys Condens Matter 20:083203 CrossRef Koentopp M, Chang C, Burke K, Car R (2008) Density functional calculations of nanoscale conductance. J Phys Condens Matter 20:083203 CrossRef
14.
Zurück zum Zitat Tomfohr JK, Sankey OF (2001) Time-dependent simulation of conduction through a molecule. Phys Status Solidi B 226(1):115–123 CrossRef Tomfohr JK, Sankey OF (2001) Time-dependent simulation of conduction through a molecule. Phys Status Solidi B 226(1):115–123 CrossRef
15.
Zurück zum Zitat Ullrich C (2012) Time-dependent density-functional theory: concepts and applications. Oxford University Press, USA Ullrich C (2012) Time-dependent density-functional theory: concepts and applications. Oxford University Press, USA
16.
Zurück zum Zitat Elliott P, Furche F, Burke K (2009) Excited states from time-dependent density functional theory. In: Reviews in computational chemistry, pp 91–165 Elliott P, Furche F, Burke K (2009) Excited states from time-dependent density functional theory. In: Reviews in computational chemistry, pp 91–165
17.
Zurück zum Zitat Marques M, Gross E (2004) Time-dependent density functional theory. Annu Rev Phys Chem 55:427–455 CrossRef Marques M, Gross E (2004) Time-dependent density functional theory. Annu Rev Phys Chem 55:427–455 CrossRef
18.
Zurück zum Zitat Marques M, Ullrich C, Nogueira F, Rubio A, Burke K, Gross E (2006) Time-dependent density functional theory, vol 706. Springer, Berlin CrossRef Marques M, Ullrich C, Nogueira F, Rubio A, Burke K, Gross E (2006) Time-dependent density functional theory, vol 706. Springer, Berlin CrossRef
19.
Zurück zum Zitat Evers F, Weigend F, Koentopp M (2004) Conductance of molecular wires and transport calculations based on density-functional theory. Phys Rev B 69(23):235411 CrossRef Evers F, Weigend F, Koentopp M (2004) Conductance of molecular wires and transport calculations based on density-functional theory. Phys Rev B 69(23):235411 CrossRef
20.
Zurück zum Zitat Sai N, Zwolak M, Vignale G, Di Ventra M (2005) Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems. Phys Rev Lett 94(18):186810 CrossRef Sai N, Zwolak M, Vignale G, Di Ventra M (2005) Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems. Phys Rev Lett 94(18):186810 CrossRef
21.
Zurück zum Zitat Stefanucci G, Kurth S, Gross EKU, Rubio A (2007) Time-dependent transport phenomena. Theor Comput Chem 17:247–284 CrossRef Stefanucci G, Kurth S, Gross EKU, Rubio A (2007) Time-dependent transport phenomena. Theor Comput Chem 17:247–284 CrossRef
22.
Zurück zum Zitat Vignale G, Di Ventra M (2009) Incompleteness of the Landauer formula for electronic transport. Phys Rev B 79(1):14201 CrossRef Vignale G, Di Ventra M (2009) Incompleteness of the Landauer formula for electronic transport. Phys Rev B 79(1):14201 CrossRef
23.
Zurück zum Zitat Bushong N, Sai N, Di Ventra M (2005) Approach to steady-state transport in nanoscale conductors. Nano Lett 5:2569–2572 CrossRef Bushong N, Sai N, Di Ventra M (2005) Approach to steady-state transport in nanoscale conductors. Nano Lett 5:2569–2572 CrossRef
24.
Zurück zum Zitat Landauer R (1989) Conductance determined by transmission: probes and quantised constriction resistance. J Phys Condens Matter 1:8099 CrossRef Landauer R (1989) Conductance determined by transmission: probes and quantised constriction resistance. J Phys Condens Matter 1:8099 CrossRef
25.
Zurück zum Zitat Cheng C, Evans J, Van Voorhis T (2006) Simulating molecular conductance using real-time density functional theory. Phys Rev B 74:155112 CrossRef Cheng C, Evans J, Van Voorhis T (2006) Simulating molecular conductance using real-time density functional theory. Phys Rev B 74:155112 CrossRef
26.
Zurück zum Zitat Evans J, Voorhis T (2009) Dynamic current suppression and gate voltage response in metal-molecule-metal junctions. Nano Lett 9(7):2671–2675 CrossRef Evans J, Voorhis T (2009) Dynamic current suppression and gate voltage response in metal-molecule-metal junctions. Nano Lett 9(7):2671–2675 CrossRef
27.
Zurück zum Zitat Evans J, Vydrov O, Van Voorhis T (2009) Exchange and correlation in molecular wire conductance: nonlocality is the key. J Chem Phys 131:034106 CrossRef Evans J, Vydrov O, Van Voorhis T (2009) Exchange and correlation in molecular wire conductance: nonlocality is the key. J Chem Phys 131:034106 CrossRef
28.
Zurück zum Zitat Kurth S, Stefanucci G, Khosravi E, Verdozzi C, Gross E (2010) Dynamical Coulomb blockade and the derivative discontinuity of time-dependent density functional theory. Phys Rev Lett 104(23):236801 CrossRef Kurth S, Stefanucci G, Khosravi E, Verdozzi C, Gross E (2010) Dynamical Coulomb blockade and the derivative discontinuity of time-dependent density functional theory. Phys Rev Lett 104(23):236801 CrossRef
29.
Zurück zum Zitat Zhou Z, Chu S (2009) A time-dependent momentum-space density functional theoretical approach for electron transport dynamics in molecular devices. Europhys Lett 88:17008 CrossRef Zhou Z, Chu S (2009) A time-dependent momentum-space density functional theoretical approach for electron transport dynamics in molecular devices. Europhys Lett 88:17008 CrossRef
31.
Zurück zum Zitat Baer R, Seideman T, Ilani S, Neuhauser D (2004) Ab initio study of the alternating current impedance of a molecular junction. J Chem Phys 120:3387 CrossRef Baer R, Seideman T, Ilani S, Neuhauser D (2004) Ab initio study of the alternating current impedance of a molecular junction. J Chem Phys 120:3387 CrossRef
32.
Zurück zum Zitat Fu Y, Dudley S (1993) Quantum inductance within linear response theory. Phys Rev Lett 70(1):65–68 CrossRef Fu Y, Dudley S (1993) Quantum inductance within linear response theory. Phys Rev Lett 70(1):65–68 CrossRef
33.
Zurück zum Zitat Jauho A, Wingreen N, Meir Y (1994) Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys Rev B 50(8):5528 CrossRef Jauho A, Wingreen N, Meir Y (1994) Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys Rev B 50(8):5528 CrossRef
34.
Zurück zum Zitat Wang B, Wang J, Guo H (1999) Current partition: a nonequilibrium Green’s function approach. Phys Rev Lett 82(2):398–401 CrossRef Wang B, Wang J, Guo H (1999) Current partition: a nonequilibrium Green’s function approach. Phys Rev Lett 82(2):398–401 CrossRef
35.
Zurück zum Zitat Wang B, Yu Y, Zhang L, Wei Y, Wang J (2009) Oscillation of dynamic conductance of Al–C n –Al structures: nonequilibrium Green’s function and density functional theory study. Phys Rev B 79(15):155117 CrossRef Wang B, Yu Y, Zhang L, Wei Y, Wang J (2009) Oscillation of dynamic conductance of Al–C n –Al structures: nonequilibrium Green’s function and density functional theory study. Phys Rev B 79(15):155117 CrossRef
36.
Zurück zum Zitat Yamamoto T, Sasaoka K, Watanabe S (2010) Universal transition between inductive and capacitive admittance of metallic single-walled carbon nanotubes. Phys Rev B 82(20):205404 CrossRef Yamamoto T, Sasaoka K, Watanabe S (2010) Universal transition between inductive and capacitive admittance of metallic single-walled carbon nanotubes. Phys Rev B 82(20):205404 CrossRef
37.
Zurück zum Zitat Yu Y, Wang B, Wei Y (2007) Corrected article: ac response of a carbon chain under a finite frequency bias. J Chem Phys 127:169901 CrossRef Yu Y, Wang B, Wei Y (2007) Corrected article: ac response of a carbon chain under a finite frequency bias. J Chem Phys 127:169901 CrossRef
38.
Zurück zum Zitat Varga K (2011) Time-dependent density functional study of transport in molecular junctions. Phys Rev B 83(19):195130 CrossRef Varga K (2011) Time-dependent density functional study of transport in molecular junctions. Phys Rev B 83(19):195130 CrossRef
39.
Zurück zum Zitat Yam CY, Zheng X, Chen GH, Wang Y, Frauenheim T, Niehaus TA (2011) Time-dependent versus static quantum transport simulations beyond linear response. Phys Rev B 83:245448 CrossRef Yam CY, Zheng X, Chen GH, Wang Y, Frauenheim T, Niehaus TA (2011) Time-dependent versus static quantum transport simulations beyond linear response. Phys Rev B 83:245448 CrossRef
40.
Zurück zum Zitat Sánchez CG, Stamenova M, Sanvito S, Bowler DR, Horsfield AP, Todorov TN (2006) Molecular conduction: do time-dependent simulations tell you more than the Landauer approach? J Chem Phys 124:214708 CrossRef Sánchez CG, Stamenova M, Sanvito S, Bowler DR, Horsfield AP, Todorov TN (2006) Molecular conduction: do time-dependent simulations tell you more than the Landauer approach? J Chem Phys 124:214708 CrossRef
41.
Zurück zum Zitat Kurth S, Stefanucci G, Almbladh CO, Rubio A, Gross EKU (2005) Time-dependent quantum transport: a practical scheme using density functional theory. Phys Rev B 72(3):35308 CrossRef Kurth S, Stefanucci G, Almbladh CO, Rubio A, Gross EKU (2005) Time-dependent quantum transport: a practical scheme using density functional theory. Phys Rev B 72(3):35308 CrossRef
42.
Zurück zum Zitat Zheng X, Wang F, Yam CY, Mo Y, Chen GH (2007) Time-dependent density-functional theory for open systems. Phys Rev B 75(19):195127 CrossRef Zheng X, Wang F, Yam CY, Mo Y, Chen GH (2007) Time-dependent density-functional theory for open systems. Phys Rev B 75(19):195127 CrossRef
43.
Zurück zum Zitat Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, Cambridge CrossRef Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, Cambridge CrossRef
44.
Zurück zum Zitat Castro A, Marques M, Rubio A (2004) Propagators for the time-dependent Kohn-Sham equations. J Chem Phys 121:3425 CrossRef Castro A, Marques M, Rubio A (2004) Propagators for the time-dependent Kohn-Sham equations. J Chem Phys 121:3425 CrossRef
45.
Zurück zum Zitat Stefanucci G, Kurth S, Rubio A, Gross EKU (2008) Time-dependent approach to electron pumping in open quantum systems. Phys Rev B 77(7):075339 CrossRef Stefanucci G, Kurth S, Rubio A, Gross EKU (2008) Time-dependent approach to electron pumping in open quantum systems. Phys Rev B 77(7):075339 CrossRef
46.
Zurück zum Zitat Khosravi E, Kurth S, Stefanucci G, Gross EKU (2008) The role of bound states in time-dependent quantum transport. Appl Phys A 93(2):355–364 CrossRef Khosravi E, Kurth S, Stefanucci G, Gross EKU (2008) The role of bound states in time-dependent quantum transport. Appl Phys A 93(2):355–364 CrossRef
47.
Zurück zum Zitat Khosravi E, Stefanucci G, Kurth S, Gross E (2009) Bound states in time-dependent quantum transport: oscillations and memory effects in current and density. Phys Chem Chem Phys 11:4535–4538 CrossRef Khosravi E, Stefanucci G, Kurth S, Gross E (2009) Bound states in time-dependent quantum transport: oscillations and memory effects in current and density. Phys Chem Chem Phys 11:4535–4538 CrossRef
48.
Zurück zum Zitat Kamenev A, Kohn W (2001) Landauer conductance without two chemical potentials. Phys Rev B 63(15):155304 CrossRef Kamenev A, Kohn W (2001) Landauer conductance without two chemical potentials. Phys Rev B 63(15):155304 CrossRef
49.
Zurück zum Zitat Burke K, Car R, Gebauer R (2005) Density functional theory of the electrical conductivity of molecular devices. Phys Rev Lett 94(14):146803 CrossRef Burke K, Car R, Gebauer R (2005) Density functional theory of the electrical conductivity of molecular devices. Phys Rev Lett 94(14):146803 CrossRef
50.
Zurück zum Zitat Umari P, Pasquarello A (2002) Ab initio molecular dynamics in a finite homogeneous electric field. Phys Rev Lett 89(15):157602 CrossRef Umari P, Pasquarello A (2002) Ab initio molecular dynamics in a finite homogeneous electric field. Phys Rev Lett 89(15):157602 CrossRef
51.
Zurück zum Zitat Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136(3):864 CrossRef Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136(3):864 CrossRef
52.
Zurück zum Zitat Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133 Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133
53.
Zurück zum Zitat Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52(12):997–1000 CrossRef Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52(12):997–1000 CrossRef
54.
Zurück zum Zitat Fournais S, Hoffmann-Ostenhof M, Hoffmann-Ostenhof T, Østergaard Sørensen T (2002) The electron density is smooth away from the nuclei. Commun Math Phys 228(3):401–415 CrossRef Fournais S, Hoffmann-Ostenhof M, Hoffmann-Ostenhof T, Østergaard Sørensen T (2002) The electron density is smooth away from the nuclei. Commun Math Phys 228(3):401–415 CrossRef
55.
Zurück zum Zitat Fournais S, Hoffmann-Ostenhof M, Hoffmann-Ostenhof T, Østergaard Sørensen T (2004) Analyticity of the density of electronic wavefunctions. Ark Mat 42(1):87–106 Fournais S, Hoffmann-Ostenhof M, Hoffmann-Ostenhof T, Østergaard Sørensen T (2004) Analyticity of the density of electronic wavefunctions. Ark Mat 42(1):87–106
56.
Zurück zum Zitat Jecko T (2010) A new proof of the analyticity of the electronic density of molecules. Lett Math Phys 93(1):73–83 CrossRef Jecko T (2010) A new proof of the analyticity of the electronic density of molecules. Lett Math Phys 93(1):73–83 CrossRef
57.
Zurück zum Zitat Mezey P (1999) The holographic electron density theorem and quantum similarity measures. Mol Phys 96(2):169–178 CrossRef Mezey P (1999) The holographic electron density theorem and quantum similarity measures. Mol Phys 96(2):169–178 CrossRef
58.
Zurück zum Zitat Riess J, Münch W (1981) The theorem of Kohenberg and Kohn for subdomains of a quantum system. Theor Chem Acc 58(4):295–300 CrossRef Riess J, Münch W (1981) The theorem of Kohenberg and Kohn for subdomains of a quantum system. Theor Chem Acc 58(4):295–300 CrossRef
59.
Zurück zum Zitat Zheng X, Yam CY, Wang F, Chen GH (2011) Existence of time-dependent density-functional theory for open electronic systems: time-dependent holographic electron density theorem. Phys Chem Chem Phys 13:14358 CrossRef Zheng X, Yam CY, Wang F, Chen GH (2011) Existence of time-dependent density-functional theory for open electronic systems: time-dependent holographic electron density theorem. Phys Chem Chem Phys 13:14358 CrossRef
60.
Zurück zum Zitat Zheng X, Chen GH, Mo Y, Koo SK, Tian H, Yam CY, Yan YJ (2010) Time-dependent density functional theory for quantum transport. J Chem Phys 133:114101 CrossRef Zheng X, Chen GH, Mo Y, Koo SK, Tian H, Yam CY, Yan YJ (2010) Time-dependent density functional theory for quantum transport. J Chem Phys 133:114101 CrossRef
61.
Zurück zum Zitat Jin J, Zheng X, Yan YJ (2008) Exact dynamics of dissipative electronic systems and quantum transport: hierarchical equations of motion approach. J Chem Phys 128:234703 CrossRef Jin J, Zheng X, Yan YJ (2008) Exact dynamics of dissipative electronic systems and quantum transport: hierarchical equations of motion approach. J Chem Phys 128:234703 CrossRef
62.
Zurück zum Zitat Mathews J, Walker R (1970) Mathematical methods of physics. Benjamin, New York Mathews J, Walker R (1970) Mathematical methods of physics. Benjamin, New York
64.
Zurück zum Zitat Yam CY, Mo Y, Wang F, Li X, Chen GH, Zheng X, Matsuda Y, Tahir-Kheli J, William AG III (2008) Dynamic admittance of carbon nanotube-based molecular electronic devices and their equivalent electric circuit. Nanotechnology 19:495203 CrossRef Yam CY, Mo Y, Wang F, Li X, Chen GH, Zheng X, Matsuda Y, Tahir-Kheli J, William AG III (2008) Dynamic admittance of carbon nanotube-based molecular electronic devices and their equivalent electric circuit. Nanotechnology 19:495203 CrossRef
Metadaten
Titel
Quantum Transport Simulations Based on Time Dependent Density Functional Theory
verfasst von
Thomas A. Niehaus
GuanHua Chen
Copyright-Jahr
2012
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-4948-1_2