Skip to main content

Photobioreactors for Microalgal Biofuel Production

  • Chapter
  • First Online:
Algae for Biofuels and Energy

Part of the book series: Developments in Applied Phycology ((DAPH,volume 5))

Abstract

Many different PBR designs have been proposed for biofuel production, few of them have been tested at pilot-scale, none developed at the (large) scale necessary for a complete and correct evaluation. Thus the main issues that impact on the reactor’s performance (i.e., suitable construction materials, efficient mixing, heating/cooling, CO2 supply and oxygen removal), although explored at pilot level, still await evaluation at real scale. Although the main limitations of PBR are the high cost and the reduced scalability, with few exceptions, R&D on photobioreactor design is aimed at achieving high photosynthetic efficiencies and at pushing productivity beyond that currently attainable. The main strategies explored to this end are intensive mixing, light dilution via large external surfaces or internal light conducting structures. This chapter reviews and examined recent advances and innovations in photobioreactor design and operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The power input in bubbled panels can be calculated from the following formula: P G=  V L ρ L g U G (Chisti and Moo-Young 1989) where:

    • PG is the power input due to aeration (W)

    • VL is the culture volume (m3)

    • ρL is the water density (1,000 kg m−3)

    • g is the gravitational acceleration (9.8 m s−2)

    • UG is the superficial gas velocity (m s−1)

References

  • Acién Fernández FG (2008) Valorization of CO2 from flue gases using microalgae. Retrieved from http://www.centrodeinvestigacionlaorden.es/archivos/Valorization_of_CO2_from_flue_gases_using_microalgae.pdf. On 18 Jan 2011

  • Aflalo C, Meshulam Y, Zarka A, Boussiba S (2007) On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol Bioeng 98:300–305

    Article  CAS  Google Scholar 

  • Ahrens T (2010) BioProcess Algae: the future of algae. In: Fourth annual algae biomass summit, September 28–30, 2010, Phoenix, AZ

    Google Scholar 

  • Ahrens T, Fowler B, Gay M, Heifetz PB, Lewnard JJ, Lockwood K, Prapas J, Pulz O, Walker M, Wilson C (2009) Photobioreactor systems and methods incorporating cultivation matrices. PCT Patent Application WO2009/129396 (22 October 2009)

    Google Scholar 

  • Bassi N (2010) Energetic and economic assesment of a disposable panel reactor for Nannochloropsis sp. biomass production. PhD thesis, University of Florence, Florence, Italy

    Google Scholar 

  • Bassi N, Rodolfi L, Chini Zittelli G, Sampietro G, Del Bimbo L, Tredici MR (2010) The “Green Wall Panel”: potential and limitations of a low-cost disposable photobioreactor. In: Fourth annual algae biomass summit, September 28–30, 2010, Phoenix, AZ

    Google Scholar 

  • Bayless DJ, Vis-Chiasson M, Kremer GG (2002) Photosynthetic carbon dioxide mitigation. PCT Patent Application WO2002/05932 (24 January 2002)

    Google Scholar 

  • Bayless DJ, Kremer G, Vis-Chiasson M, Stuart B, Shi L, Ono E, Cuello J (2006) Photosynthetic CO2 mitigation using a novel membrane-based photobioreactor. J Environ Eng Manag 16:209–215

    CAS  Google Scholar 

  • Berzin I (2005) Photobioreactor and process for biomass production and mitigation of pollutants in flue gases. US Patent Application 2005/0260553 (24 November 2005)

    Google Scholar 

  • Bondioli P, Della Bella L, Rivolta G, Casini D, Prussi M, Chiramonti D, Chini Zittelli G, Bassi N, Rodolfi L, Tredici MR (2010) Oil production by the marine microalga Nannochloropsis sp. F&M-M24. In: Proceedings of the 18th European biomass conference, May 3–7, 2010, Lyon, France, pp 538–541

    Google Scholar 

  • Borowitzka MA, Moheimani NR (2010) Sustainable biofuels from algae. Mitig Adaptation Strateg Global Change. doi:10.1007/s11027-010-9271-9

  • Boussiba S, Zarka A (2005) Flat panel photobioreactor. PCT Patent Application WO2005/006838 (27 January 2005)

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Buehner MR, Young PM, Willson B, Rausen D, Schoonover R, Babbit G, Bunch S (2009) Microalgae growth modeling and control for a vertical flat panel photobioreactor. In: Proceedings of the American control conference, St. Louis, MO, June 10–12, 2009, pp 2301–2306

    Google Scholar 

  • Carlozzi P (2003) Dilution of solar radiation through culture lamination in photobioreactor rows facing south–north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnol Bioeng 81:305–315

    Article  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    CAS  Google Scholar 

  • Chaumont D, Gudin C, Thepenier C (1988) Scaling up of a tubular photobioreactor for continuous culture of Porphyridium cruentum – from laboratory to pilot plant. In: Stadler T, Morillon J, Verdus MC, Karamanos W, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, London, pp 199–208

    Google Scholar 

  • Chisti Y, Moo-Young M (1989) On the calculation of shear rate and apparent viscosity in airlift and bubble column bioreactors. Biotechnol Bioeng 34:1391–1392

    Article  CAS  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  CAS  Google Scholar 

  • Cuello JL, Ley JW (2010) The Accordion photobioreactor for production of algae biofuels and bioproducts. In: Fourth annual algae biomass summit, September 28–30, 2010, Phoenix, Arizona

    Google Scholar 

  • Darzins A, Pienkos P, Edye L (2010) Current status and potential for algal biofuels production. BioIndustry Partners & NREL, Bioenergy Task 39, 6 August 2010, pp 131

    Google Scholar 

  • Degen J, Uebele A, Retze A, Schmid-Staiger U, Trösch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92:89–94

    Article  CAS  Google Scholar 

  • Fernández-Sevilla JM, Acién Fernández FG, Perez-Parra J, Magán Cañadas JJ, Granado-Lorencio F, Olmedilla B (2008) Large-scale production of high-content lutein extracts from S. almeriensis. Book of abstracts of the 11th International Conference on Applied Phycology, June 22–27, 2008, Galway, Ireland, pp 49–50

    Google Scholar 

  • Fernández-Sevilla JM, Acién Fernández FG, Molina Grima E (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86:27–40

    Article  Google Scholar 

  • Feuermann D, Gordon JM, Huleihil M (2002) Solar fiber-optic mini-dish concentrators: first experimental results and field experience. Sol Energy 72:459–472

    Article  Google Scholar 

  • Giudici P, Tredici MR (2010) Fotobioreattore tubolare per la produzione di microalghe. Italian Patent FI 2010A000216 (25 October 2010)

    Google Scholar 

  • Gordon JM (2002) Tailoring optical systems to optimized photobioreactors. Int J Hydrogen Energy 27:1175–1184

    Article  CAS  Google Scholar 

  • Haley JW (2010) Systems, apparatuses and methods for cultivating microorganisms and mitigation of gases. PCT Patent Application WO2010/048525 (29 April 2010)

    Google Scholar 

  • Huesemann MH, Benemann JR (2009) Biofuels from microalgae: review of products, processes, and potential, with special focus on Dunaliella sp. In: Ben-Amotz A, Polle JEW, Subba Rao DV (eds) The Alga Dunaliella: Biodiversity, Physiology, Genomics, and Biotechnology. Science Publishers, New Hampshire, pp 445–474

    Google Scholar 

  • Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adaption Strateg Glob Change 12:573–608

    Article  Google Scholar 

  • Huntley ME, Redalje DG (2010) Continuous-batch hybrid process for production of oil, and other useful products from photosynthetic microbes. US Patent 2010/7770322 (10 August 2010)

    Google Scholar 

  • Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210

    Article  CAS  Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    Article  CAS  Google Scholar 

  • Kanellos M (2009) GreenFuel Technologies closing down. Retrieved from http://www.greentechmedia.com/articles/read/greenfuel-technologies-closing-down-4670/. On 23 Jan 2011

  • Kertz MG (2007) Method and apparatus for CO2 sequestration. PCT Patent Application WO2007147028 (21 December 2007)

    Google Scholar 

  • Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481

    Article  CAS  Google Scholar 

  • Lee YK, Low CS (1991) Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture. Biotechnol Bioeng 38:995–1000

    Article  CAS  Google Scholar 

  • Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20:280–285

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Mears BM (2008) Design, construction and testing of pilot scale photobioreactor subsystems. PhD thesis, Russ College of Engineering and Technology of Ohio University, Athens

    Google Scholar 

  • Meiser A, Schmid-Staiger U, Trösch W (2004) Optimization of eicosapentaenoic acid production by Phaeodactylum tricornutum in the flat panel airlift (FPA) reactor. J Appl Phycol 16:215–225

    Article  CAS  Google Scholar 

  • Metcalf & Eddy, Inc. (2003) Wastewater engineering: treatment and reuse. The McGraw-Hill Companies, Columbus, 1819 pp

    Google Scholar 

  • Michiels M (2009) Bioreactor. EP Patent 2039753 (25 March 2009)

    Google Scholar 

  • Mohr M, Emminger F (2009) Method and device for photochemical process. PCT Patent Application WO2009/094680 (6 August 2009)

    Google Scholar 

  • Molina Grima E (2006) Production of microalgae biomass (Scenedesmus almeriensis) in a farmer greenhouse. 2nd International Symposium Desertification and Migrations, 25–27 October 2006, Almeria, Spain. Retrieved from http://www.sidym2006.com/imagenes/pdf/presentaciones/20_se.pdf. On 18 Feb 2011

  • Molina Grima E (2009) Algae biomass in Spain: a case study. First European Algae Biomass Association conference & general assembly, 3–4 June 2009, Florence, Italy

    Google Scholar 

  • Molina Grima E, Fernández J, Acién Fernández FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131

    Article  Google Scholar 

  • Mori K (1985) Photoautotrophic bioreactor using visible solar rays condensed by Fresnel lenses and transmitted through optical fibers. Biotechnol Bioeng Symp 15:331–345

    Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    Article  CAS  Google Scholar 

  • Ogbonna JC, Soejima T, Tanaka H (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. J Biotechnol 70:289–297

    Article  CAS  Google Scholar 

  • Oswald WJ (1988) Large-scale algal culture system (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 357–394

    Google Scholar 

  • Pirt SJ, Lee YK, Walach MR, Pirt MW, Balyuzi HH, Bazin MJ (1983) A tubular bioreactor for photosynthetic production from carbon dioxide: design and performances. J Chem Technol Biotechnol 33B:35–58

    CAS  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177

    Article  CAS  Google Scholar 

  • Pulz O (2007) Performance summary report. Evaluation of GreenFuel’s 3D matrix algae growth engineering scale unit. Performance summary report, IGV Institut für Getreideverarbeitung GmbH, Germany

    Google Scholar 

  • Pulz O, Scheibenbogen K (1998) Photobioreactors: design and performance with respect to light energy input. In: Scheper T (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 123–152

    Google Scholar 

  • Qiang H, Faiman D, Richmond A (1998) Optimal tilt angles of enclosed reactors for growing photoautotrophic microorganisms outdoors. J Ferment Bioeng 85:230–236

    Article  CAS  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  Google Scholar 

  • Richmond A (2004) Biological principles of mass cultivation. In: Richmond A (ed) Handbook of microalgal cultures, biotechnology and applied phycology. Blackwell, Oxford, pp 125–177

    Google Scholar 

  • Ripplinger P (2009) Industrial production of microalgae biomass with flat-panel airlift Photobioreactors. Retrieved from http://global.subitec.com/pdf/Subitec_ALGAE_2009.pdf. On 17 Jan 2011

  • Rodolfi L, Chini Zittelli G, Biondi N, Tredici MR (2006) High surface-to-volume ratio photobioreactors used at the University of Florence for the cultivation of microalgae. Abstracts of Aqua 2006 International Conference & Exhibition, Florence, Italy, 9–13 May 2006, p 795

    Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Del Bimbo L, Tredici MR (2008) The “Green Wall” panel. Book of abstracts of the 11th International Conference on Applied Phycology, 22–27 June 2008, Galway, Ireland, p 93

    Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  Google Scholar 

  • Sánchez Mirón A, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270

    Article  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high efficiency microalgae for biodiesel production. Bioenergy Resour 1:20–43

    Article  Google Scholar 

  • Sears JT (2007) Method, apparatus and system for biodiesel production from algae. PCT Patent Application WO2007/025145 (1 March 2007)

    Google Scholar 

  • Sears JT (2009) Oxyfuel engineering assessment. Retrieved from http://www.algaeatwork.com/page_attachments/A2BEOxyFuel.pdf. On 23 Jan 2011

  • Shigematsu S, Eckelberry N (2009) Apparatus and method for ­optimizing photosynthetic growth in a photobioreactor. US Patent Application 2009/0291485 (26 November 2009)

    Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  CAS  Google Scholar 

  • Sierra E, Acíen Fernández FG, Fernández JM, García JL, Gonzáles C, Molina Grima E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138:136–147

    Article  CAS  Google Scholar 

  • Sims B (2011) HR BioPetroleum acquires Shell stake in Collana. Retrieved from http://www.biodieselmagazine.com/articles/7561/hr-biopetroleum-acquires-shell-stake-in-cellana. On 18 Feb 2011

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Stammbach MR, De Nys P, Heimann K, Rogers A (2010) Method of culturing photosynthetic organisms. PCT Patent Application WO2010/132917 (25 November 2010)

    Google Scholar 

  • Sula V (2010) OriginOil. Retrieved from http://www.originoil.com/pdf/Beacon_OOIL_100201.pdf. On 4 Feb 2011

  • Torrey M (2008) Algae in the tank. TLT Tribiol Lubr Technol 64(2):26–32

    CAS  Google Scholar 

  • Torzillo G, Carlozzi P, Pushparaj B, Montaini E, Materassi R (1993) A two-plane tubular photobioreactor for outdoor culture of Spirulina. Biotechnol Bioeng 42:891–898

    Article  CAS  Google Scholar 

  • Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal cultures. Biotechnology and applied phycology. Blackwell, Oxford, pp 178–214

    Google Scholar 

  • Tredici MR (2009) Microalgae cultures: limitation and potential. In: First European Algal Biomass Association conference & general assembly, 3–4 June 2009, Florence, Italy

    Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Future Sci Biofuels 1:143–162

    Article  CAS  Google Scholar 

  • Tredici MR, Chini Zittelli G (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197

    Article  CAS  Google Scholar 

  • Tredici MR, Rodolfi L (2004) Reactor for industrial culture of photosynthetic micro-organisms. PCT Patent Application WO2004/074423 (2 September 2004)

    Google Scholar 

  • Tredici MR, Carlozzi P, Chini Zittelli G, Materassi R (1991) A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresour Technol 38:153–159

    Article  Google Scholar 

  • Tredici MR, Biondi N, Chini Zittelli G, Ponis E, Rodolfi L (2009) Advances in microalgal culture for aquaculture feed and other uses. In: Burnell G, Allan G (eds) New technologies in aquaculture: improving production efficiency, quality and environmental management. Woodhead Publishing Ltd/CRC Press LLC, Boca Raton, pp 610–676

    Chapter  Google Scholar 

  • Tredici MR, Chini Zittelli G, Rodolfi L (2010) Photobioreactors. In: Flickinger MC, Anderson S (eds) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology, vol 6. Wiley, Hoboken, pp 3821–3838

    Google Scholar 

  • Tredici MR, Rodolfi L, Sampietro G, Bassi N (2011) Low-cost photobioreactor for microalgae cultivation. PCT Patent Application WO2011/013104 (03 February 2011)

    Google Scholar 

  • Trösch W (2002) Bio-reactor for the cultivation of micro-organisms and methods for the production thereof. PCT Patent Application 2002/31102 (04 April 2002)

    Google Scholar 

  • Trösch W (2009) Energy efficiency and economics of the production of microalgae biomass with a flat panel-airlift photobioreactor. Retrieved from http://global.subitec.com/pdf/subitec_achema_130509.pdf. On 17 Jan 2011

  • Ugwu CU, Ogbonna JC, Tanaka H (2002) Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biotechnol 58:600–607

    Article  CAS  Google Scholar 

  • Van Aken M (2009) SBAE Industries NV. Retrieved from ­www.ten-info.com/upload/dir/6_datas/sbae_presentation.pdf. On 13 Feb 2011

  • Van de Ven M, Van de Ven JMF (2009) Photobioreactor with a cleaning system and method for cleaning such a reactor. PCT Patent Application WO2009/051478 (23 April 2009)

    Google Scholar 

  • Van den Dorpel P (2010) AlgaeLink®. Fourth annual algae biomass summit, 28–30 September 2010, Phoenix, AZ

    Google Scholar 

  • Vanhoutte J, Vanhoutte K (2009) Modular continuous production of micro-organisms. US patent 2009/0162920 (25 June 2009)

    Google Scholar 

  • Vanhoutte K, Vanhoutte J (2010) Method for harvesting algae or plants and device used thereby. US Patent Application 2010/0281836 (11 November 2010)

    Google Scholar 

  • Vunjak-Novakovic G, Kim Y, Wu X, Berzin I, Merchuk JC (2005) Air-lift bioreactors for algal growth on flue gas: mathematical modeling and pilot-plant studies. Ind Eng Chem Res 44:6154–6163

    Article  CAS  Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    Article  CAS  Google Scholar 

  • Watanabe Y, Saiki H (1997) Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas. Energy Convers Manag 38:S499–S503

    Article  CAS  Google Scholar 

  • Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization and oxygen accumulation. Biotechnol Bioeng 31:336–344

    Article  CAS  Google Scholar 

  • Weyer KM, Bush DR, Darzins A, Willson B (2010) Theoretical maximum algal oil production. Bioenergy Res 3:204–213

    Article  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  Google Scholar 

  • Williams PRD, Inman D, Aden A, Heath GA (2009) Environmental and sustainability factors associated with next-generation biofuels in the U.S.: what do we really know? Environ Sci Technol 43:4763–4775

    Article  CAS  Google Scholar 

  • Willson B (2009a) The Solix AGS system: a low-cost photobioreactor system for production of biofuels from microalgae. Climate change: global risks, challenges and decisions IOP publishing IOP conference series: Earth and environmental science 6 (2009): 192015. doi:10.1088/1755-1307/6/9/192015

  • Willson B (2009b) Large scale production of microalgae for biofuels. International symposium on algal fuel research, 27 July 2009, Tsukuba, Japan. Retrieved from http://www.sakura.cc.tsukuba.ac.jp/∼eeeforum/3rd3EF/IS2.pdf. On 17 Jan 2011

  • Willson B, Babbitt G, Turner CW, Letvin P, Weyer-Geigel K, Ettinger A, Boczon A, Rancis N, Murphy J (2008) Improved diffuse light extended surface area water-supported photobioreactor. PCT Patent Application WO2008/079724 (3 July 2008)

    Google Scholar 

  • Willson B, Turner CW, Babbitt GR, Letvin PA, Wickrmasinghe SR (2009) Permeable membranes in film photobioreactors. US Patent 2009/0305389 (10 December 2009)

    Google Scholar 

  • Willson B, Buehner MR, Young PM, Rausen DJ, Babbitt GR, Schoonover R, Weyer-Geigel K, Sherman DE (2010) Model based controls for use with bioreactors. PCT Patent Application WO2010/002745 (7 January 2010)

    Google Scholar 

  • Zhang CW, Zmora O, Kopel R, Richmond A (2001) An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture 195:35–49

    Article  Google Scholar 

  • Zijffers JWF (2009) The Green Solar Collector: optimization of microalgal areal productivity. PhD thesis, Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Zijffers JWF, Janssen M, Tramper J, Wijffels RH (2008a) Design process of an area-efficient photobioreactor. Mar Biotechnol 10:404–415

    Article  CAS  Google Scholar 

  • Zijffers JWF, Salim S, Janssen M, Tramper J, Wijffels RH (2008b) Capturing sunlight into a photobioreactor: ray tracing simulations of the propagation of light from capture to distribution into the reactor. Chem Eng J 145:316–327

    Article  CAS  Google Scholar 

  • Zweig YF (2010) Light concentrator, redirector and distributor. PCT Patent Application WO2010/134069 (25 November 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario R. Tredici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zittelli, G.C., Rodolfi, L., Bassi, N., Biondi, N., Tredici, M.R. (2013). Photobioreactors for Microalgal Biofuel Production. In: Borowitzka, M., Moheimani, N. (eds) Algae for Biofuels and Energy. Developments in Applied Phycology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5479-9_7

Download citation

Publish with us

Policies and ethics