Skip to main content

Open Pond Culture Systems

  • Chapter
  • First Online:
Algae for Biofuels and Energy

Part of the book series: Developments in Applied Phycology ((DAPH,volume 5))

Abstract

Open pond culture systems are the main type of culture system used in the commercial-scale culture of microalgae and because of their relatively low cost are the systems most likely to be used for the production of microalgae for biofuels. These ‘open’ systems can be broadly classified as shallow lagoons and ponds, inclined (cascade) systems, circular central-pivot ponds, simple mixed ponds, and ‘raceway’ ponds. The raceway ponds are by far the most commonly used. This Chapter describes these systems in detail as well as their advantages and disadvantages. The management of such systems to achieve reliable, long-term, high-productivity cultures is a challenge, especially on the large scale and the various options and strategies available are reviewed as are options for maximizing algae productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The growth yield (Yx/s , g cell biomass g−1 substrate) is an expression of the conversion efficiency of the substrate to biomass and is defined as the amount of biomass produced (dX) through the consumption of a unit quantity of a substrate (ds), i.e. Yx/s  =  dX/ds. For the bioenergetic growth yield the substate is light.

  2. 2.

    Acclimation, as defined by Raven and Geider (2003), is the change of the macromolecular composition of an organism that occurs in response to variation of environmental conditions.

References

  • Adey WH (1982) Algal turf scrubber. US Patent 4,333,263

    Google Scholar 

  • Adey WH, Kangas PC, Mulbry W (2011) Algal turf scrubbing: cleaning surface waters with solar energy while producing a biofuel. Bioscience 61:434–441

    Google Scholar 

  • Altona RE, Bosman J, Breyer-Menke CJ, Lever NA (1983) Disposal of wastewater from modderfontein factory: review of the biological nitrogen removal systems. Water SA 9:125–130

    CAS  Google Scholar 

  • An JY, Sim SJ, Lee JS, Kim BW (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green alga botryococcus braunii. J Appl Phycol 15:185–191

    CAS  Google Scholar 

  • Ayala F, Vargas T, Cardenas A (1988) Chilean experiences on microalgae culture. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, London, pp 229–236

    Google Scholar 

  • Azov Y, Shelef G, Moraine R, Oron G (1980) Alternative operating strategies for high-rate sewage oxidation ponds. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 523–529

    Google Scholar 

  • Banse K (1976) Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size – a review. J Phycol 12:135–140

    Google Scholar 

  • Becker EW (1994) Microalgae. Biotechnology and Microbiology. Cambridge University Press, Cambridge, p 293

    Google Scholar 

  • Belay A (1997) Mass culture of spirulina outdoors – the earthrise farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 131–158

    Google Scholar 

  • Belay A, Fogg GE (1978) Photoinhibition of photosynthesis in Asterionella formosa (bacillariophyceae). J Phycol 14:341–347

    CAS  Google Scholar 

  • Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero MG (2007) Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol 73:1259–1266

    CAS  Google Scholar 

  • Borowitzka MA (1997) Algae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Google Scholar 

  • Borowitzka MA (1998) Limits to growth. In: Wong YS, Tam NFY (eds) Wastewater treatment with algae. Springer, Berlin, pp 203–226

    Google Scholar 

  • Borowitzka MA (1999a) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    CAS  Google Scholar 

  • Borowitzka MA (1999b) Economic evaluation of microalgal processes and products. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 387–409

    Google Scholar 

  • Borowitzka MA (1999c) Production of microalgal concentrates for aquaculture. Part 1: Algae culture. FRDC Project 93/123: Final report, pp 1–90

    Google Scholar 

  • Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, London, pp 205–218

    Google Scholar 

  • Borowitzka MA, Moheimani NR (2010) Sustainable biofuels from algae. Mitigation and Adaptation Strategies for Global Change:1–13. doi:10.1007/s11027-010-9271-9

  • Borowitzka LJ, Borowitzka MA (1989) ß-carotene (provitamin a) production with algae. In: Vandamme EJ (ed) Biotechnology of vitamins, pigments and growth factors. Elsevier Applied Science, London, pp 15–26

    Google Scholar 

  • Borowitzka LJ, Borowitzka MA (1990) Commercial production of ß-carotene by Dunaliella salina in open ponds. Bull Mar Sci 47:244–252

    Google Scholar 

  • Borowitzka MA, Hallegraeff G (2007) Economic importance of algae. In: McCarthy PM, Orchard AE (eds) Algae of Australia: introduction. ABRS, Canberra, pp 594–622

    Google Scholar 

  • Bosma R, Miazek K, Willemsen SM, Vermuë MH, Wijffels RH (2008) Growth inhibition of Monodus subterraneus by free fatty acids. Biotech Bioeng 101:1108–1114

    CAS  Google Scholar 

  • Boussiba S, Sandbank E, Shelef G, Cohen Z, Vonshak A, Ben Amotz A, Arad S, Richmond A (1988) Outdoor cultivation of the marine microalga Isochrysis galbana in open reactors. Aquaculture 72:247–253

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extraction of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    CAS  Google Scholar 

  • Brown TE, Richardson FL (1968) The effect of growth environment on the physiology of algae: light intensity. J Phycol 4:38–54

    Google Scholar 

  • Cadenus E (2005) Biochemistry of oxygen toxicity. Ann Rev Biochem 58:79–110

    Google Scholar 

  • Cañizares-Villanueva RO, Ramos A, Lemus R, Gomez-Lojero C, Travieso L (1994) Growth of Phormidium sp in aerobic secondary piggery waste-water. Appl Microbiol Biotechnol 42:487–491

    Google Scholar 

  • Cárdenas A, Markovits A (1987) Mixing power characteristics of drag board device in shallow pool. Biotech Bioeng 30:60–65

    Google Scholar 

  • Cavalho A, Malcata F (2001) Transfer of carbon dioxide within cultures of microalgae: plain bubbling versus hollow fiber modules. Biotech Prog 17:265

    Google Scholar 

  • Cheeke PR, Gasper E, Boersma L, Oldfield JE (1977) Nutritional evaluation with rats of algae Chlorella grown on swine manure. Nutr Rep Int 16:579–585

    CAS  Google Scholar 

  • Chen F, Wang K, Huang S, Cai H, Zhao M, Jiao N, Wommak KE (2009) Diverse and dynamic populations of cyanobacterial podoviruses in the Cheasapeake Bay unveiled through DNA polymerase gene sequences. Environ Microbiol 11:2884–2892

    Google Scholar 

  • Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47:551–578

    CAS  Google Scholar 

  • Clement G, Van Landeghem H (1970) Spirulina: ein günstiges Object für die Massenkultur von Mikroalgen. Ber Deutsch Bot Ges 83:559–565

    CAS  Google Scholar 

  • Cohen Z, Vonshak A, Boussiba S, Richmond A (1988) The effect of temperature and cell concentration on the fatty acid composition of outdoor cultures of Porphyridium cruentum. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, London, pp 421–429

    Google Scholar 

  • Cottrell MT, Suttle CA (1991) Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter, Micromonas pusilla. Mar Ecol Prog Ser 78:1–9

    Google Scholar 

  • Craggs RJ, Davies-Colley RJ, Tanner CC, Sukias JP (2003) Advanced pond system: performance with high rate ponds of different depths and areas. Water Sci Technol 48:259–267

    CAS  Google Scholar 

  • D’Elia CF, Guillard RRL, Nelson DM (1979) Growth and competition of the marine diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. 1. Nutrient effects. Mar Biol 50:305–312

    Google Scholar 

  • de la Noüe J, Clouthier-Mantha L, Walsh P, Picard G (1984) Influence of agitation and aeration modes on biomass production by Oocystis sp. grown on wastewaters. Biomass 4:43–58

    Google Scholar 

  • Dilov C, Georgiev D, Bozhkova M (1985) Cultivation and application of microalgae in the People’s Republic of Bulgaria. Arch Hydrobiol Beih 20:35–38

    Google Scholar 

  • Dodd JC (1986) Elements of pond design and construction. In: Richmond A (ed) CRC handbook of microalgal mass culture. CRC Press, Boca Raton, pp 265–283

    Google Scholar 

  • Doucha J, Livansky K (1995) Novel outdoor thin-layer high density microalgal culture system: productivity and operational parameters. Algol Stud 76:129–147

    Google Scholar 

  • Doucha J, Livansky K (1999) Process of outdoor thin-layer cultivation of microalgae and blue-green algae and bioreactor for performing the same. US Patent 5,981,271

    Google Scholar 

  • Doucha J, Livansky K (2006) Productivity, CO2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a middle and southern European climate. J Appl Phycol 18:811–826

    CAS  Google Scholar 

  • Durand-Chastel H (1980) Production and use of Spirulina in Mexico. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 51–64

    Google Scholar 

  • Falkowski PG, Dubinsky Z, Santostefano G (1985) Light-enhanced dark respiration in phytoplankton. Int Ver Theor Angew Limnol Verh 22:2830–2833

    Google Scholar 

  • Fournadzhieva P, Pilarsky P (1993) Mass culture and application of algae in Bulgaria. In: Abstracts of the 6th International Conference on Applied Algology. Ceske Budejovike, Czech Republic, p 20

    Google Scholar 

  • Fournadzhieva S, Pilarsky P, Arvanitis A, M Fytikas M,Koultsiakis E (2002) Use of geothermal fluids for cultivation of the microalga Spirulina in Nigrita – Serres. In: Proceedings of 7th National Conference on Renewable Energy Sources (Patras 6-8/11/2002), Institute of Solar Technology, vol B, pp 97–104

    Google Scholar 

  • Fournadzieva S, Petkov G, Pilarski P, Andreeva R (1999) Use of geothermal fluids and energy for mass microalgal cultivation (results from Bulgaria and Greece). In: Popovski K, Lund J, Gibson DJ, Boyd TL (eds) Direct utilization of geothermal energy. Oregon Inst. Technol, Oregon, pp 175–179

    Google Scholar 

  • Foy RH, Gibson CE (1982) Photosynthetic characteristics of planktonic blue-green algae: changes in photosynthetic capacity and pigmentation of Oscillatoria reidekei van Gloor under high and low light. Br Phycol J 17:183–193

    Google Scholar 

  • Fulks W, Main KL (1991) The design and operation of commercial-scale live feeds production systems. In: Fulks W, Main KL (eds) Rotifer and microalgae culture systems. The Oceanic Institute, Honolulu, pp 3–52

    Google Scholar 

  • Garcia G, Moreno J, Canavate JP, Anguis V, Prieto A, Manzano C, Florencio FJ, Guerrero MG (2003) Conditions for open-air outdoor culture of Dunaliella salina in southern Spain. J Appl Phycol 15:177–184

    Google Scholar 

  • Gardner M (2011) The effectiveness of hollow fibremembranes in transferring flue gas into microalgal culture for sequestration purposes. Master of Applied Science thesis, Dalhousie University, Canada

    Google Scholar 

  • Geider RJ, Osborne BA (1989) Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth. New Phytol 112:327–341

    Google Scholar 

  • Goldman JC, Mann R (1980) Temperature-influenced variations in speciation and chemical composition of marine phytoplankton in outdoor mass cultures. J Exp Mar Biol Ecol 46:29–39

    CAS  Google Scholar 

  • Goldman JC, Ryther JH (1976) Temperature-influenced species competition in mass culture of marine phytoplankton. Biotech Bioeng 18:1125–1144

    Google Scholar 

  • Gonen-Zurgil Y, Carmeli Y, Sukenik A (1996) The selective effect of the herbicide DCMU on unicellular algae – a potential tool to maintain a monoalgal culture of Nannochloropsis. J Appl Phycol 8:415–419

    CAS  Google Scholar 

  • Grobbelaar JU (2009) Upper limits of productivity and problems of scaling. J Appl Phycol 21:519–522

    Google Scholar 

  • Grobbelaar JU, Soeder CJ (1985) Respiration losses in planktonic green algae cultivated in raceway ponds. J Plankton Res 7:497–506

    Google Scholar 

  • Grobbelaar JU, Soeder CJ, Stengel E (1990) Modeling algal productivity in large outdoor cultures and waste treatment systems. Biomass 21:297–314

    Google Scholar 

  • Gummert F, Meffert ME, Stratmann H (1953) Nonsterile large-scale culture of Chlorella in greenhouse and open air. In: Burlew JS (ed) Algal culture. From laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, pp 166–176

    Google Scholar 

  • Harris DO (1971) Growth inhibition produced by the green alga (Volvocaceae). Arch Mikrobiol 76:47–50

    CAS  Google Scholar 

  • Hartig P, Grobbelaar JU, Soeder CJ, Groeneweg J (1988) On the mass culture of microalgae: areal density as an important factor for achieving maximal productivity. Biomass 15:211–221

    Google Scholar 

  • Hase R, Oikawa H, Sasao C, Morita M, Watanabe Y (2000) Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai city. J Biosci Bioeng 89:157–163

    CAS  Google Scholar 

  • Heussler P (1985) Aspects of sloped algae pond engineering. Arch Hydrobiol Ergeb Limnol Beih 20:71–83

    Google Scholar 

  • Heussler P, Castillo JS, Merino FM, Vasquez VV (1978) Improvements in pond construction and CO2 supply for the mass production of microalgae. Ergeb Limnol 11:254–258

    Google Scholar 

  • Houdan A, Bonnard A, Fresnel J, Fouchard C, Billard C, Probert I (2004) Toxicity of coastal coccolithophores (Prymnesiophyceae, Haptophyta). J Plankton Res 26:875–883

    Google Scholar 

  • Hough RA, Wetzel RG (1978) Photorespiration and CO2 compensation point in Najas flexilis. Limnol Oceanogr 23:719–724

    CAS  Google Scholar 

  • Hu Q, Richmond A (1994) Optimising the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. J Appl Phycol 6:391–396

    Google Scholar 

  • Hu Q, Guterman H, Richmond A (1996) Physiological characteristics of Spirulina platensis (Cyanobacteria) cultured at ultrahigh cell densities. J Phycol 32:1066–1073

    Google Scholar 

  • Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998a) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662

    CAS  Google Scholar 

  • Hu Q, Zarmi Y, Richmond A (1998b) Combined effects of light intensity, light-path, and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur J Phycol 32:165–171

    Google Scholar 

  • Huesemann M, Hausmann T, Bartha R, Aksoy M, Weismann JC, Benemann JR (2009) Biomass productivities in wild type and pigment mutant of Cyclotella sp. (Diatom). Appl Biochem Biotechnol 157:507–526

    CAS  Google Scholar 

  • Ikawa M, Sasner JJ, Haney JF (1997) Inhibition of Chlorella growth by degradation and related products of linoleic and linolenic acids and the possible significance of polyunsaturated fatty acids in phytoplankton ecology. Hydrobiologia 356:143–148

    CAS  Google Scholar 

  • Inderjit DKMM (1994) Algal allelopathy. Bot Rev 60:182–196

    Google Scholar 

  • Iwamoto H (2004) Industrial production of microalgal cell-mass and secondary products – major industrial species: Chlorella. In: Richmond A (ed) Microalgal culture: Biotechnology and applied phycology. Blackwell Science, Oxford, pp 255–263

    Google Scholar 

  • Janssen M, Tramper J, Mur LR, Wijffels RH (2002) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotech Bioeng 81:193–210

    Google Scholar 

  • Jaquet S, Zhong X, Parvathi A, Ram ASP (2012) First description of a cyanophage infecting the cyanobacterium Arthropsira platensis (Spirulina). J Appl Phycol. doi:10/1007/s10811-012-9853-x

  • Jimenez C, Cossío BR, Labella D, Niell FX (2003) The feasibility of industrial production of Spirulina (Arthrospira) in southern Spain. Aquaculture 217:179–190

    Google Scholar 

  • Kanazawa T, Yuhara T, Sasa T (1958) Mass culture of unicellular algae using the “open circulation method”. J Gen Appl Microbiol 4:135–152

    Google Scholar 

  • Kosaric N, Nguyon HT, Bergougnou MA (1974) Growth of Spirulina maxima algae in effluents of secondary waste water treatment plants. Biotech Bioeng 16:881–896

    CAS  Google Scholar 

  • Krause GH (1994) The role of oxygen in photoinhibition of photosynthesis. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration defence systems in plants. CRC Press, Boca Raton, pp 43–76

    Google Scholar 

  • Krauss RW (1962) Mass culture of algae for food and other organic compounds. Am J Bot 49:425–435

    Google Scholar 

  • Kromkamp JC, Beardall J, Sukenik A, Kopecky J, Masojidek J, Van Bergeijk S, Gabai S, Shaham E, Yamshon A (2009) Short-term variations in photosynthetic parameters of Nannochloropsis cultures grown in two types of outdoor mass cultivation systems. Aquat Microb Ecol 56:309–322

    Google Scholar 

  • Laliberté G, Olguin EJ, de la Noüe J (1997) Mass culture and wastewater treatment using Spirulina. In: Vonshak A (ed) Spirulina platensis (Arthrospira}: Physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 159–173

    Google Scholar 

  • Laws EA, Berning JL (1991) A study of the energetics and economics of microalgal mass culture with the marine chlorophyte Tetraselmis suecica: implications for use of power plant stack gases. Biotech Bioeng 37:936–947

    CAS  Google Scholar 

  • Laws EA, Terry KL, Wickman J, Chalup MS (1983) A simple algal production system designed to utilize the flashing light effect. Biotech Bioeng 25:2319–2335

    CAS  Google Scholar 

  • Lee YK (1997) Commercial production of microalgae in the Asia-pacific rim. J Appl Phycol 9:403–411

    Google Scholar 

  • Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Google Scholar 

  • Lee YK, Hing HK (1989) Supplying CO2 to photosynthetic algal cultures by diffusion through gas-permeable membranes. Appl Microbiol Biotechnol 31:298–301

    CAS  Google Scholar 

  • Leverenz JW, Falk S, Pilström CM, Samuelsson G (1990) The effect of photoinhibition on the photosynthetic light-response curve of green plant cells (Chlamydomonas reinhardii). Planta 182:161–168

    CAS  Google Scholar 

  • Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR (2012) Effect of light intensity on algal biomass accumulation and biodiesel production for mixothrophic strains Chlorella kessleri and Chlorella protothecoides cultivayed in highly concentrated municipal wastewater. Biotech Bioeng 109:2222–2229

    Google Scholar 

  • Lincoln EP, Hall TW, Koopman B (1983) Zooplankton control in algal cultures. Aquaculture 32:331–337

    Google Scholar 

  • Loosanoff VL, Hanks JE, Ganaros AE (1957) Control of certain forms of zooplankton in algal cultures. Science 125:1092–1093

    Google Scholar 

  • Lu C, Vonshak A (1999) Photoinhibition in outdoor Spirulina platensis cultures asessed by polyphasic chlorophyll fluorescence transients. J Appl Phycol 11:355–359

    Google Scholar 

  • Malin G, Turner S, Liss P, Holligan P, Harbour D (1993) Dimethylsulphide and dimethylsulphoniopropionate in the northeast Atlantic during the summer coccolithophore bloom. Deep-Sea Res Part I 40:1487–1508

    CAS  Google Scholar 

  • Märkl H, Mather M (1985) Mixing and aeration of shallow open ponds. Arch Hydrobiol Ergeb Limnol 20:85–93

    Google Scholar 

  • Marshall WA, Chalmers MO (1997) Airborne dispersal of Antarctic terrestrial algae and cyanobacteria. Ecography 20:585–594

    Google Scholar 

  • Masojidek J, Vonshak A, Torzillo G (2010) Chlorophyll fluorescence applications in microalgal mass cultures. In: Suggett DJ, Prásil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic science: methods and applications. Springer, Dordrecht, pp 277–292

    Google Scholar 

  • Matsumoto H, Shioji N, Hamasaki A, Ikuta Y, Fukuda Y, Sato M, Endo N, Tsukamoto T (1995) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 51(52):681–692

    Google Scholar 

  • Meeson BW, Sweeney BM (1982) Adaptation of Ceratium furca and Gonyaulax polyedra (Dinophyceae) to different temperatures and irradiances: growth rate and cell volumes. J Phycol 18:241–245

    Google Scholar 

  • Min-Thein U (1993) Production of Spirulina in Myanmar (Burma). Bull Inst Oceanogr Monaco 12:175–178

    Google Scholar 

  • Mitchell SA (1992) The effect of pH on Brachionus calyciflorus Pallas (Rotifera). Hydrobiologia 245:87–93

    CAS  Google Scholar 

  • Mituya A, Nyunoya T, Tamiya H (1953) Pre-pilot-plant experiments on algal mass culture. In: Burlew JS (ed) Algal culture. From laboratory to pilot plant. Carnegie Institution, Washington, DC, pp 273–281

    Google Scholar 

  • Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Google Scholar 

  • Moheimani NR, Borowitzka MA (2007) Limits to growth of Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotech Bioeng 96:27–36

    CAS  Google Scholar 

  • Moreno J, Vargas MA, Rodriguez H, Rivas J, Guerrero MG (2003) Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomol Eng 20:191–197

    CAS  Google Scholar 

  • Moreno-Garrido I, Cañavate JP (2001) Assessing chemical compounds for controlling predator ciliates in outdoor mass cultures of the green algae Dunaliella salina. Aquac Eng 24:107–114

    Google Scholar 

  • Morris E, Kronkamp J (2003) Influence of temperature on the relationship between oxygen- and fluorescence-based estimates of photosynthetic parameters in a marine benthic diatom (Cylindrotheca closterium). Eur J Phycol 38:133–142

    Google Scholar 

  • Myers J, Graham J (1958) On the mass culture of algae II. Yield as a function of cell concentration under continuous sunlight irradiance. Plant Physiol 34:345–352

    Google Scholar 

  • O’Brien WJ, DeNoyelles F (1972) Photosynthetically elevated pH as a factor in zooplankton mortality in nutrient enriched ponds. Ecology 53:605–614

    Google Scholar 

  • Ogawa T, Fujii T, Aiba S (1980) Effect of oxygen on the growth (yield) of Chlorella vulgaris. Arch Microbiol 127:25–31

    CAS  Google Scholar 

  • Olaizola M, Yamamoto HY (1994) Short-term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros muelleri (Bacillariophyceae). J Phycol 30:606–612

    CAS  Google Scholar 

  • Olguin EJ, Galicia S, Mercado G, Perez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical condition. J Appl Phycol 15:249–257

    CAS  Google Scholar 

  • Oswald WJ (1988) Large-scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 357–394

    Google Scholar 

  • Paresh M, Smith J, Struttner S, Radaelli G (2010) Systems, methods, and media for circulating fluid in an algae cultivation pond. PCT Patent Application WO2010/147648

    Google Scholar 

  • Payer HD, Pithakpol B, Nguitragool M, Prabharaksa C, Thananunkul D, Chavana S (1978) Major results of the Thai-German microalgae project at Bangkok. Arch Hydrobiol Beih 11:41–55

    Google Scholar 

  • Pedersen MF, Hansen PJ (2003) Effects of high pH on the growth and survival of six marine heterotrophic protists. Mar Ecol Prog Ser 260:33–41

    Google Scholar 

  • Pedroni PM, Lamenti G, Prosperi G, Ritorto L, Scolla G, Capuano F, Valdiserri M (2004) Enitecnologie R&D project on microalgae biofixation of CO2: Outdoor comparative tests of biomass productivity using flue gas CO2 from a NGCC power plant. In: Proceedings of the seventh international conference on Greenhouse Gas Control Technologies (GHGT-7). Vancouver, Canada

    Google Scholar 

  • Persoone G, Morales J, Verlet H, De Pauw N (1980) Air-lift pumps and the effect of mixing on algal growth. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomed, Amsterdam, pp 505–522

    Google Scholar 

  • Phang SM, Miah MS, Yeoh BG, Hashim MA (2000) Spirulina cultivation in digested sago starch factory wastewater. J Appl Phycol 12:395–400

    Google Scholar 

  • Pirt SJ, Lee YK, Richmond A, Pirt MW (1980) The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilization. J Chem Technol Biotechnol 30:25–34

    CAS  Google Scholar 

  • Prezelin BB (1976) The role of Peridinin-Chlorophyll a proteins in the photosynthetic light adaption of the marine dinoflagellate, Glenodinium sp. Planta 130:225–233

    CAS  Google Scholar 

  • Pushparaj B, Pelosi E, Tredici MR, Pinzani E, Materassi R (1997) An integrated culture system for outdoor production of microalgae and cyanobacteria. J Appl Phycol 9:113–119

    Google Scholar 

  • Querijero-Palacpac N, Martinez M, Boussiba S (1990) Mass cultivation of the cyanobacterium Gloeotrichia natans indigenous to rice fields. J Appl Phycol 2:318–325

    Google Scholar 

  • Raven JA (1981) Respiration and photorespiration. In: Platt T (ed) Physiological bases of phytoplankton ecology, vol 210. Department of Fisheries and Oceans, Ottawa, pp 55–82

    Google Scholar 

  • Raven JA, Geider RJ (2003) Adaptation, acclimation and regulation in algal photosynthesis. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp 385–412

    Google Scholar 

  • Richmond A (2004) Biological principles of mass cultivation. In: Richmond A (ed) Microalgal culture: Biotechnology and applied phycology. Blackwell Science, Oxford, pp 125–177

    Google Scholar 

  • Richmond A, Vonshak A (1978) Spirulina culture in Israel. Arch Hydrobiol 11:274–280

    Google Scholar 

  • Richmond A, Vonshak A, Arad S (1980) Environmental limitations in outdoor production of algal biomass. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 65–72

    Google Scholar 

  • Richmond A, Karg S, Boussiba S (1982) Effects of bicarbonate and carbo n dioxide on the competition between Chlorella vulgaris and Spirulina platensis. Pl Cell Physiol 23:1411–1417

    CAS  Google Scholar 

  • Richmond A, Lichtenberg E, Stahl B, Vonshak A (1990) Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J Appl Phycol 2:195–206

    Google Scholar 

  • Ritchie RJ (2010) Modelling photosynthetic photon flux density and maximum potential gross photosynthesis. Photosynthetica 48:596–609

    CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Barsanti L, Rosati C, Tredeci MR (2003) Growth medium recycling in Nannochloropsis sp. Mass culture. Biomol Eng 20:243–248

    CAS  Google Scholar 

  • Rohani A, Geetha S, Phang SM, Mukherjee TK (1994) Livestock manure as substrate for algal growth. In: Phang SM, Lee YK, Borowitzka MA, Whitton BA (eds) Algal biotechnology in the Asia-Pacific region. Institute of Advanced Studies, University of Malaya, Kuala Lumpur, pp 332–338

    Google Scholar 

  • Rose PD, Cowan AK (1992) A process for treating saline effluents. European Patent Application 0523883

    Google Scholar 

  • Rothbard S (1975) Control of Eupolotes sp. By formalin in growth tanks of Chlorella sp. Used as growth medium for the rotifer Brachionus plicatilis which serves as feed for hatchlings. Isr J Aquac Bamidgeh 27:100–109

    Google Scholar 

  • Sánchez Mirón A, Cerón García MC, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297

    Google Scholar 

  • Sawayama S, Minowa T, Dote Y, Yokoyama S (1992) Growth of the hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl Microbiol Biotechnol 38:135–138

    CAS  Google Scholar 

  • Sawayama S, Inoue S, Yokoyama S (1994) Continuous culture of hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl Microbiol Biotechnol 41:729–731

    CAS  Google Scholar 

  • Setlík I, Sust V, Malek I (1970) Dual purpose open circulation units for large scale culture of algae in temperate zones. I. Basic design considerations and scheme of pilot plant. Algol Stud 11:111–164

    Google Scholar 

  • Sharma NK, Rai AK, Singh S, Brown RM Jr (2007) Airborne algae: their present status and relevance. J Phycol 43:615–627

    Google Scholar 

  • Shimamatsu H (2004) Mass production of Spirulina, an edible alga. Hydrobiologia 512:39–44

    Google Scholar 

  • Singh DP, Singh N, Verma K (1995) Photooxidative damage to the cyanobacterium Spirulina platensis mediated by singlet oxygen. Curr Microbiol 31:44–48

    CAS  Google Scholar 

  • Sladekova A, Marvan P, Vymazal J (1983) The utilization of periphyton in waterworks pre-treatment for nutrient removal from enriched influents. In: Wetzel RG (ed) Periphyton of freshwater ecosystems. W. Junk, Jena, pp 299–305

    Google Scholar 

  • Soeder CJ (1980) Massive cultivation of microalgae: results and prospects. Hydrobiologia 72:197–209

    CAS  Google Scholar 

  • Su Z, Kang R, Shi S, Cong W, Cai Z (2008) An economical device for carbon supplement in large-scale micro-algae production. Bioprocess Biosyst Eng 31:641–645

    CAS  Google Scholar 

  • Sukenik A, Levy RS, Levy Y, Falkowski PG, Dubinsky Z (1991) Optimizing algal biomass production in an outdoor pond – a simulation model. J Appl Phycol 3:191–201

    Google Scholar 

  • Sukenik A, Beardall J, Kromkamp JC, Kopecky J, Masojídek J, Van Bergeijk S, Gabai S, Shaham E, Yamshon A (2009) Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Aquat Microb Ecol 56:297–308

    Google Scholar 

  • Tamiya H (1957) Mass culture of algae. Annu Rev Pl Physiol 8:309–344

    CAS  Google Scholar 

  • Tanticharoen M, Bunnag B, Vonshak A (1993) Cultivation of Spirulina using secondary treated starch wastewater. Australas Biotechnol 3:223–226

    Google Scholar 

  • Thyrhaug R, Larsen A, Thingstad TF, Bratbak G (2003) Stable coexistence in marine algal host-virus systems. Mar Ecol Prog Ser 254:27–35

    Google Scholar 

  • Torzillo G, Sacchi A, Materassi R, Richmond A (1991) Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. J Appl Phycol 3:103–109

    Google Scholar 

  • Torzillo G, Accolla P, Pinzani E, Masojidek J (1996) In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stress in Spirulina cultures grown outdoors in photobioreactors. J Appl Phycol 8:283–291

    CAS  Google Scholar 

  • Tsukuda O, Kawahara T, Miyachi S (1977) Mass culture of Chlorella in Asian countries. In: Mitsui A, Miyachi S, San Pietro A, Tamura S (eds) Biological solar energy conversion. Academic, New York, pp 363–365

    Google Scholar 

  • Valderrama A, Cárdenas A, Markovits A (1987) On the economics of Spirulina production in Chile with details on drag-board mixing in shallow ponds. Hydrobiologia 151/152:71–74

    Google Scholar 

  • Van Etten JL (1995) Giant chlorella viruses. Mol Cells 5:99–106

    Google Scholar 

  • Vasquez V, Heussler P (1985) Carbon dioxide balance in open air mass culture of algae. Arch Hydrobiol Ergeb Limnol Beih 20:95–113

    Google Scholar 

  • Vendlova J (1969) Les problêmes de la technologie de la culture des algues sur une grande échelle dans les installations au dehors. Annal Di Microbiol 19:1–12

    Google Scholar 

  • Verity PG (1981) Effects of temperature, irradiance, and day length on the marine diatom Leptocylindrus danicus Cleve. I. Photosynthesis and cellular composition. J Exp Mar Biol Ecol 55:79–91

    CAS  Google Scholar 

  • Vick B (2009) Glyphosate applications in aquaculture. Australia Patent Application 2009274500

    Google Scholar 

  • Vonshak A, Guy R (1992) Photoadaptation, photoinhibition and productivity in the blue-green alga, Spirulina platensis grown outdoors. Pl Cell Environ 15:613–616

    Google Scholar 

  • Vonshak A, Torzillo G (2004) Environmental stress physiology. In: Richmond A (ed) Handbook of microalgal culture: Biotechnology and applied phycology. Blackwell Science, Oxford, pp 57–62

    Google Scholar 

  • Vonshak A, Abeliovich A, Boussiba S, Arad S, Richmond A (1982) Production of Spirulina biomass: effects of environmental factors and population density. Biomass 2:175–185

    Google Scholar 

  • Vonshak A, Torzillo G, Tomaseli L (1994) Use of chlorophyll fluorescence to estimate the effect of photoinhibition in outdoor cultures of Spirulina platensis. J Appl Phycol 6:31–34

    Google Scholar 

  • Vonshak A, Torzillo G, Masojidek J, Boussiba S (2001) Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Pl Cell Environ 24:1113–1118

    Google Scholar 

  • Walker DA (2009) Biofuels, facts, fantasy and feasibility. J Appl Phycol 21:508–517

    Google Scholar 

  • Walmsley RD, Shillinglaw SN (1984) Mass algal culture in outdoor plastic-covered miniponds. Ann Appl Biol 104:185–197

    Google Scholar 

  • Weger HG, Herzig R, Falkowski P, Turpin DH (1989) Respiratory losses in the light in a marine diatom: measurements by short-term mass spectrometry. Limnol Oceanogr 34:1153–1161

    CAS  Google Scholar 

  • Weisse T, Stadler P (2006) Effect of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distribution. Limnol Oceanogr 51:1708–1715

    CAS  Google Scholar 

  • Weissman J, Radaelli G, Rice D (2010) Systems and methods for maintaining the dominance and increasing the biomass production of Nannochloropsis in an algae cultivation system. PCT Patent Application WO2010/090760

    Google Scholar 

  • Wozniak B, Dera J, Ficek D, Ostrowska M, Majchrowski R (2002) Dependence of the photosynthesis quantum yield in oceans on environmental factors. Oceanologia 44:439–459

    Google Scholar 

  • Yamada N, Murakami N, Morimoto T, Sakakibara J (1993) Auto-growth inhibitory substance from the fresh-water cyanobacterium Phormidium tenue. Chem Pharm Bull 41:1863–1865

    CAS  Google Scholar 

  • Yingying S, Changhai W, Jing C (2008) Growth inhibition of eight species of microalgae by growth inhibitor from the culture of Isochrysis galbana and its isolation and identification. J Appl Phycol 20:315–321

    Google Scholar 

  • Zmora O, Richmond A (2004) Microalgae for aquaculture. Microalgae production for aquaculture. In: Richmond A (ed) Microalgal culture: Biotechnology and applied phycology. Blackwell Science, Oxford, pp 365–379

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Borowitzka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Borowitzka, M.A., Moheimani, N.R. (2013). Open Pond Culture Systems. In: Borowitzka, M., Moheimani, N. (eds) Algae for Biofuels and Energy. Developments in Applied Phycology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5479-9_8

Download citation

Publish with us

Policies and ethics