Skip to main content

Picturing Weismannism: A Case Study of Conceptual Evolution

  • Chapter
What the Philosophy of Biology Is

Part of the book series: Nijhoff International Philosophy Series ((NIPS,volume 32))

Abstract

The problem of analyzing conceptual change in science has been substantially refined since its introduction by logical empiricists, particularly Karl Popper, and its radical critique by Kuhn. Recently, philosophers of biology have added to the growing wealth of conceptions of change through their studies of evolutionary biology. Those who study evolutionary theory recognize it as a very broad framework in which to characterize dynamic processes. Moreover, there have been numerous attempts to generalize evolutionary theories beyond organic adaptation to explain the origin of life (Eigen et al. 1981), the origin of moral systems (Darwin 1871), the development of reasoning faculties (Campbell 1965, 1974), the origin and spread of culture (e.g., Boyd and Richerson 1985), as well as the dynamics of scientific communities and conceptual systems (e.g., Toulmin 1972; Hull 1975, 1978, 1980, 1982, 1983, 1985, 1988; Richards 1977; 1981; see Bradie 1986 for a recent review).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography of Diagrams of Weismannism

  • Arthur W. (1987). Theories of life: Darwin, Mendel, and beyond. Middlesex: Penguin. Figure 9, p. 63: a. Organisms as lines through time. b. The Weismannian view. Figure 19, p. 135: A morphogenetic tree showing the distinction between germ-line and soma. Figure 20, p. 137: A nested morphogenetic tree system of insect development.

    Google Scholar 

  • Conklin E. (1920). Heredity and environment, 2nd ed. Princeton: Princeton University Press. (1st ed 1915.) Figure 41, p. 126: Diagram showing the ‘cell lineage’ of the body cells and germ cells in a worm or mollusk

    Google Scholar 

  • Conn H. (1906). The method of evolution. New York/London: G.P. Putnam. Figure 10, p. 167: Diagram illustrating the principle of heredity

    Google Scholar 

  • De Beer G. (1958). Embryos and ancestors, 3rd ed. London: Oxford University Press. Figure 1, p. 10 (copy from W. Garstang 1922) (also in 2nd ed., 1945, but not in 1st ed., 1930).

    Google Scholar 

  • Dendy A. (1928). Outlines of evolutionary biology. New York/London: Appleton. (1st ed. 1912.) Figure 83, p. 200: Diagram to illustrate the contrast between Darwin’s Theory of pangenesis and Weismann’s theory of the continuity of the germ-plasm.

    Google Scholar 

  • Garstang W. (1922). The theory of recapitulation: a critical re-statement of the biogenetic law. Journal of the Linnean Society of London: Zoology 35: 81–101. Figure 1, p. 83: The relations between ontogeny and phylogeny.

    Article  Google Scholar 

  • Geddes P., Thomson J. (1889). The evolution of sex. London: Walter Scott. Unnumbered figure, p. 94: The relation between reproductive cells and the ‘body’ (vertical). Unnumbered figure, p. 261: The relation between reproductive cells and the ‘body’ (horizontal).

    Google Scholar 

  • Gilbert S. (1985). Principles of embryology. Sunderland: Sinauer. Figure 1, p. 243 (redrawn from Wilson, 1896).

    Google Scholar 

  • Goldschmidt RB. (1929). Die Lehre von der Vererbung. Berlin: Springer. Abbildung 18, p. 67: Darstellung der Unsterblichkeit der Keimzellen.

    Google Scholar 

  • Herbert S. (1910). The first principles of heredity. London: A&C Black. Figure 36, p. 61 (copy of Weismann 1892, fig. 16). Figure 37, p. 62 (copy from Geddes and Thomson 1889, p. 94).

    Google Scholar 

  • Jordan D., Kellogg V. (1907). Evolution and animal life. New York: D. Appleton and Co. Figure 151, p. 266: at left, diagram illustrating the development of the spermatazoon; at right, diagram illustrating the development of the egg. (After Boveri.).

    Google Scholar 

  • Kerr J.G. (1926). Evolution. London: MacMillan. Figure 28, p. 109: Diagram to illustrate the continuous strand of gonad associated with an ancestral chain of individuals.

    Google Scholar 

  • Lock R.H. (1906). Recent progresss in the study of variation, heredity and evolution. New York: Dutton. Figure 1, p. 68: Diagram illustrating Weismann’s theory of inheritance. (Copied from Wilson, 1896.).

    Google Scholar 

  • Lull, R.S. (1917). Organic Evolution. New York: MacMillan. Figure 17, p. 144: Diagram to illustrate the continuity of the germ-plasm. (Copied from Walter 1913, fig. 3.).

    Google Scholar 

  • Maynard Smith J. (1958). The theory of evolution, 1st ed. Middlesex: Penguin. Figure 5, p. 63: Chains of causation for three kinds of inheritance in which the egg cytoplasm is important: A. Delayed gene action B. Transmission of environmentally induced changes C. Cytoplasmic inheritance. (Not in 2nd or 3rd editions.).

    Google Scholar 

  • Maynard Smith J. (1965). The theory of evolution. 2nd. ed. Middlesex: Pengun. (3rd ed. 1975). Figure 8, p. 67: Weismarm and the central dogma. (Not in 1st ed., 1958.).

    Google Scholar 

  • Maynard Smith J. (1972). John Maynard Smith on evolution. Edinburgh: Edinburgh University Press. Figure 2, p. 39: Diagram of the theory of heredity. Figure 3, p. 40: Diagram of a theory of evolution.

    Google Scholar 

  • McLaren A. (1981). Germ cells and soma. New Haven: Yale University Press. Figure 1, p. 2: Two contrasting views of the relation between germ cells and soma. Figure 2, p. 4: An alternative view of the relations between germ cells and soma.

    Google Scholar 

  • Moore J. (1972). Readings in heredity and development. London: Oxford University Press. Figure 5, p. 79 (reprint from Wilson 1896).

    Google Scholar 

  • Thomson J. (1908). Heredity. London: John Murray. Figure 9, p. 43: Diagram illustrating the idea of germinal continuity, (copied from Wilson, 1896.) Figure 35, p. 344: Diagram illustrating segregation of germ cells. Figure 43, p. 434: The relation between reproductive cells and the ‘body’. (From Geddes and Thomson 1889.).

    Google Scholar 

  • Walter H. (1922). Genetics. New York: MacMillan. (1st ed. 1913.) Figure 3, p. 14: Scheme to illustrate the continuity of the germ-plasm. Figure 14, p. 91: The theoretical results in the offspring of parental acquisitions. Figure 58, p. 224: Diagram to show typical maturation and fertilization. Figure 79, p. 256: Differentiation in somatogenesis according to Weismann. (After Conklin.) Figure 80, p. 258: Differentiation in somatogenesis according to De Vries. (After Cronklin.).

    Google Scholar 

  • Weismann A. (1892). Das Keimplasma, Eine Theorie der Vererbung. Jena: Gustav Fischer. English translation (1893) by Parker W., Ronnfeldt H. The germ-plasm, A theory of heredity. New York: Charles Scribner’s Sons. Figure 3, p. 102: Diagram of the cell-generations in the forelimb of a Triton. Figure 13, p. 193: Three early stages in the development of Sagitta. Figure 14, p. 194: Three early stages in the development of the summer eggs of Moina. Figure 15, p. 195: Stages in the segmentation of the ovum and formation of the germinal layers in Rhabditis nigrovenosa. Figure 16, p. 196: Diagram of the germ-track of Rhabditis nigrovenosa.

    Google Scholar 

  • Wells H., Huxley J., Wells G. (1929). The science of life. New York: The Literary Guild. Figure 164, p. 458: The continuity of the generations.

    Google Scholar 

  • Williams G. (1986). Comments by George C. Williams on Sober’s ‘The nature of selection’. Biology & Philosophy 1: 114–122. Figure 2, p. 117: leaves on the phylogenetic trees represent recurring physical effects of the continuity of information.

    Google Scholar 

  • Wilson E.B. (1896). The cell in development and inheritance. London: Macmillan. (2nd ed. 1900.) Figure 5, p. 13: Diagram illustrating Weismann’s theory of inheritance.

    Google Scholar 

  • Wilson E.B. (1925). The cell in development and heredity. 3rd ed. New York: MacMillan. Figure 5, p. 13: Diagram illustrating the Nussbaum-Weismann theory of heredity. Figure 135, p. 311: General diagram of the germ-line in animals.

    Google Scholar 

References

  • Alpers S. (1983). The art of describing, Dutch art in the seventeenth century. Chicago: University of Chicago Press.

    Google Scholar 

  • Arthur W. (1987). Theories of life: Darwin, Mendel, and beyond. Middlesex: Penguin.

    Google Scholar 

  • Baldwin J. (1902). Development and evolution, including psychophysical evolution, evolution by orthoplasy, and the theory of genetic modes. New York: Macmillan.

    Google Scholar 

  • Boyd R., Richerson P. (1985). Culture and the evolutionary process. Chicago: University of Chicago Press.

    Google Scholar 

  • Bradie M. (1986). Assessing evolutionary epistemology. Biology & Philosophy 1:401–459.

    Article  Google Scholar 

  • Brandon R. (1982). The levels of selection. In Asquith P., Nickles T. (eds) PSA-1982 Vol. 1, pp. 315–323. East Lansing: Philosophy of Science Association.

    Google Scholar 

  • Brandon R., Burian R. (eds) (1984). Genes, organisms, populations: controversies over the units of selection. Cambridge: MIT Press.

    Google Scholar 

  • Callon M., Courtial J., Turner, W. Bauin S. (1983). From translations to problematic networks: an introduction to co-word analysis. Social Science Information 22:191–235.

    Article  Google Scholar 

  • Callon M., Law J., Rip A. (eds) (1986). Mapping the dynamics of science and technology, Sociology of science in the real world. London: Macmillan.

    Google Scholar 

  • Campbell D. (1965). Variation and selective retention in socio-cultural evolution. In Barringer H., Blanksten G., Mack R. (eds) Social change in developing areas: a reinterpretation of evolutionary theory; 19–49. Cambridge: Schenkman.

    Google Scholar 

  • Campbell D. (1974). Evolutionary epistemology. In Schilpp P.A. (ed.) The philosophy of Karl Popper; 413–463. La Salle: Open Court Press.

    Google Scholar 

  • Churchill F. (1968). August Weismann and a break from tradition. Journal of the History of Biology 1:91–112.

    Article  Google Scholar 

  • Conklin E. (1915). Heredity and environment, in the development of men. Princeton: Princeton University Press.

    Google Scholar 

  • Conklin E. (1920). Heredity and environment 2nd ed. Princeton: Princeton University Press.

    Google Scholar 

  • Conn H. (1906). The method of evolution. New York/London: G.P. Putnam.

    Google Scholar 

  • Darwin C. (1871). The descent of man and selection in relation to sex. London: John Murray.

    Book  Google Scholar 

  • Dawkins R. (1976). The selfish gene. New York: Oxford University Press.

    Google Scholar 

  • Dendy A. (1928). Outlines of evolutionary biology. New York/London: Appleton. (1st ed. 1912.).

    Google Scholar 

  • De Beer G. (1930). Embryology and evolution. Oxford: Clarendon Press.

    Google Scholar 

  • De Beer G. (1945). Embryos and ancestors, 2nd ed. Oxford: Clarendon Press.

    Google Scholar 

  • De Beer G. (1958). Embryos and ancestors 3rd ed. London: Oxford University Press.

    Google Scholar 

  • De Vries H. (1889). Intracellular pangenesis (C. Gager’s translation, 1910). Chicago: Open Court.

    Google Scholar 

  • Edge D. (1979). Quantitative measures of communication in science: a critical review. History of Science 17:102–134.

    Google Scholar 

  • Eigen M., Gardiner W., Schuster P., Winkler-Ostwatitsch R. (1981). The origin of genetic information. Scientific American 244:88–118.

    Article  Google Scholar 

  • Falconer D. (1981). Introduction to quantitative genetics, 2nd ed. London: Longman.

    Google Scholar 

  • Fujimura J. (1987). Constructing ‘do-able’ problems in cancer research: articulating alignment Social Studies of Science17:257–293.

    Article  Google Scholar 

  • Garstang W. (1922). The theory of recapitulation: a critical re-statement of the biogenetic law. Journal of the Linnean Society of London: Zoology 35:81–101.

    Article  Google Scholar 

  • Geddes P., Thomson J. (1889). The evolution of sex. London: Walter Scott.

    Google Scholar 

  • Gerson E. (1987). Audiences and allies: the transformation of American zoology, 1880–1930. Paper read at the Summer Conference on history, philosophy and social studies of biology, Blacksburg, Va, June 1987.

    Google Scholar 

  • Gerson E. (1988). Computing and methods of social science research(book manuscript in progress).

    Google Scholar 

  • Gerson E., Star S. (1986). Analyzing due process in the workplace. ACM Transactions on Office Information Systems 4:257–270.

    Article  Google Scholar 

  • Gilbert S. (1985). Principles of embryology. Sunderland: Sinauer.

    Google Scholar 

  • Goldschmidt R.B. (1929). Die Lehre von der Vererbung. Berlin: Springer.

    Google Scholar 

  • Goodman N. (1976). Languages of art, An approach to a theory of symbols. Indianapolis: Hackett.

    Google Scholar 

  • Gould S., Lewontin R. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London B 205:581–598.

    Article  Google Scholar 

  • Gould S., Vrba E. (1982). Exaptation — A missing term in the sicence of form. Paleobiology 8:4–15.

    Google Scholar 

  • Griesemer J. (1983). Communication and scientific change: an analysis of conceptual maps in the macroevolution controversy. Unpublished Ph.D. dissertation, University of Chicago.

    Google Scholar 

  • Griesemer J. (1984). Presentations and the status of theories. In Asquith P., Kitcher P. (eds) PSA 1984Vol. 1, pp. 102–114. East Lansing: Philosophy of Science Association.

    Google Scholar 

  • Hacking I. (1982). Language, truth and reason. In Hollis M., Lukes S. (eds) Rationality and relativism; 48–66. Cambridge: MIT Press.

    Google Scholar 

  • Hanson N. (1970). A picture theory of theory meaning. In Radner M., Winokur S. (eds) Minnesota studies in the philosophy of science, Vol. IV, Analyses of theories and methods of physics and psychology; 131–141. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Herbert S. (1910). The first principles of heredity. London: A & C Black.

    Google Scholar 

  • Hull D.L. (1975). Central subjects and historical narratives. History and Theory 14:253–274.

    Article  Google Scholar 

  • Hull D.L. (1978). Altruism in science: a sociobiological model of cooperative behavior among scientists. Animal Behaviour 26:685–697.

    Article  Google Scholar 

  • Hull D.L. (1980). Individuality and selection. Annual Review of Ecology and Systematics 11:311–332.

    Article  Google Scholar 

  • Hull D.L. (1982). The naked meme. in Piotkin H. (ed.) Learning, development and culture; 273–327. London: John Wiley.

    Google Scholar 

  • Hull D.L. (1983). Exemplars and scientific change. In Asquith P., Nicies T. (eds) PSA 1982. Vol. 2, pp. 479–503. East Lansing: Philosophy of Science Association.

    Google Scholar 

  • Hull D.L. (1984). Lamarck among the Anglos, Introduction to Lamarck’s zoological philosophy; xi–1xvi Chicago: The University of Chicago Press.

    Google Scholar 

  • Hull D.L. (1985). Darwinism as an historical entity: a historiographic proposal. In Kohn D. (ed.), The Darwinian heritage; 773–812. Princeton: Princeton University Press.

    Google Scholar 

  • Hull D.L. (1988). A mechanism and its metaphysics: an evolutionary account of the social and conceptual development of science. Biology & Philosophy, 3:123–155.

    Article  Google Scholar 

  • Jordan D., Kellogg V. (1907). Evolution and animal life. New York: D. Appleton.

    Google Scholar 

  • Kerr J.G. (1926). Evolution. London: MacMillan.

    Google Scholar 

  • Kuhn T. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Kuhn T. (1970). The structure of scientific revolutions, 2nd ed. Chicago: University of Chicago Press.

    Google Scholar 

  • Lakatos L. (1970). Falsification and the methodology of scientific research programmes. In Lakatos I., Musgrave A. (eds) Criticism and the growth of knowledge; 91–196. Cambridge: Cambridge University Press.

    Google Scholar 

  • Latour B. (1987). Science in action. Cambridge: Harvard University Press.

    Google Scholar 

  • Laudan L. (1977). Progress and its problems. Berkeley: University of California Press.

    Google Scholar 

  • Lenat D. (1982). The nature of heuristics. Artificial Intelligence 19:189–249.

    Article  Google Scholar 

  • Levins R. (1968). Evolution in changing environments. Princeton: Princeton University Press.

    Google Scholar 

  • Lewontin R. (1970). The units of selection. Annual Review of Ecology and Systematics 1:1–17.

    Article  Google Scholar 

  • Lloyd E. (1988). The structure and confirmation of evolutionary theory. Greenwood Press.

    Google Scholar 

  • Lock R. (1906). Variation, heredity and evolution. New York: Dutton.

    Google Scholar 

  • Lull R.S. (1917). Organic evolution. New York: MacMillan.

    Google Scholar 

  • MacRoberts M., MacRoberts B. (1986). Quantitative measures of communication in science: a study of the formal level. Social Studies of Science 16:151–172.

    Article  Google Scholar 

  • Masterman (1970). The nature of a paradigm. In Lakatos I., Musgrave A. (eds) Criticism and the growth of knowledge; 59–89. London: Cambridge University Press.

    Google Scholar 

  • Maynard Smith J. (1958). The theory of evolution, 1st ed. Middlesex: Penguin.

    Google Scholar 

  • Maynard Smith J. (1965). The theory of evolution, 2nd ed. Middlesex: Penguin. (3rd ed. 1975.).

    Google Scholar 

  • Maynard Smith J. (1972). John Maynard Smith on evolution. Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Mayr E. (1983). Comments on David Hull’s paper on exemplars and type specimens. In Asquith P., Nicies T. (eds) PSA 1982, Vol. 2, pp. 504–511. East Lansing: Philosophy of Science Association.

    Google Scholar 

  • Mayr E. (1985). Weismann and evolution. Journal of the History of Biology 18:295–329.

    Article  Google Scholar 

  • McLaren A. (1981). Germ cells and soma. New Haven: Yale University Press.

    Google Scholar 

  • Mills S., Beatty J. (1979). The propensity interpretation of fitness. Philosophy of Science 46:263–286.

    Article  Google Scholar 

  • Moore J. (1972). Readings in heredity and development. London: Oxford University Press.

    Google Scholar 

  • Morgan T., Sturtevant A., Muller H, Bridges C. (1915). The mechanism of Mendelian heredity. New York: H. Holt.

    Google Scholar 

  • Nickles T. (ed.) (1980). Scientific discovery: case studies. Dordrecht: D. Reidel.

    Google Scholar 

  • Provine W. (1986). Sewall Wright and evolutionary biology. Chicago: University of Chicago Press.

    Google Scholar 

  • Putnam H. (1975). The meaning of ‘meaning’. In Gunderson K. (ed.) Minnesota studies in philosophy of science, vol. 7, Language, mind and knowledge. Minneapolis: University of Minnesota Press. Reprinted in Putnam H. Mind, language and reality, philosophical papers, Vol. 2, pp. 215–271. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rasmussen N. (1987). A new model of developmental constraints as applied to the Drosophila system. Journal of Theoretical Biology 127:271–301.

    Article  Google Scholar 

  • Richards R. (1977). Discussion: The natural selection model of conceptual evolution. Philosophy of Science 44:494–501.

    Article  Google Scholar 

  • Richards R. (1981). Natural selection and other models in the historiography of science. In Brewer M., Collins B. (eds) Scientific inquiry and the social sciences; 37–76. San Francisco: Jossey-Bass.

    Google Scholar 

  • Robinson G. (1979). A prelude to genetics. Theories of a material substance of heredity: Darwin to Weismann. Lawrence, Kans. Coronado Press.

    Google Scholar 

  • Rudwick M. (1985). The great Devonian controversy. Chicago: University of Chicago Press.

    Google Scholar 

  • Schank J., Wimsatt W. (1988). Generative entrenchment and evolution. In Fine A., Machamer P. (eds) PSA 1986, Vol. 2:33–60. East Lansing: Philosophy of Science Association.

    Google Scholar 

  • Shepard R., Metzler J. (1971). Mental rotation of three dimensional objects. Science 171:701–703.

    Article  Google Scholar 

  • Small H. (1977). A co-citation model of a scientific specialty: a longitudinal study of collagen research. Social Studies of Science 1:139–166.

    Article  Google Scholar 

  • Small H., Griffith B. (1974). The structure of scientific literatures I: identifying and graphing specialties. Science Studies4:17–40.

    Article  Google Scholar 

  • Sullivan D., White D.H., Barboni E.J. (1977). The state of a science: indicators in the specialty of weak interactions. Social Studies of Science 7:167–200.

    Article  Google Scholar 

  • Thomson J. (1908). Heredity. London: John Murray.

    Google Scholar 

  • Toulmin S. (1972). Human understanding, the collective use and evolution of concepts. Princeton: Princeton University Press.

    Google Scholar 

  • Tufte E. (1983). The visual display of quantitative information. Cheshire, Conn.: Graphics Press.

    Google Scholar 

  • Tversky A., Kahneman D. (1974). Judgment under uncertainty: heuristics and biases. Science 185:1124–1131.

    Article  Google Scholar 

  • Varnes D. (1974). The logic of geological maps. U.S. Geological Survey, Professional Paper 837.

    Google Scholar 

  • Walter H. (1922). Genetics. New York: MacMillan. (1st ed. 1913.).

    Google Scholar 

  • Weismann A. (1889). Essays upon heredity and kindred biological problemsPoulton E., Schonland S., Shipley A. (eds). Oxford: Clarendon Press. Reprinted and with an introduction by Mazzeo J. (1977). Oceanside: Dabor Science Publications.

    Google Scholar 

  • Weismann A. (1892). Das Keimplasma, Eine Theorie der Vererbung. Jena: Gustav Fischer. English translation (1893) by Parker W., Ronnfeldt H. The germ-plasm, A theory of heredity. New York: Charles Scribner’s Sons.

    Google Scholar 

  • Wells H., Huxley J., Wells G. (1929). The science of life. New York: The Literary Guild.

    Google Scholar 

  • Williams G. (1966). Adaptation and natural selection. Princeton: Princeton University Press.

    Google Scholar 

  • Williams G. (1986). Comments by George C. Williams on Sober’s ‘The nature of selection’. Biology & Philosophy 1:114–122.

    Google Scholar 

  • Wilson E.B. (1896). The cell in development and inheritance. London: Macmillan. (2nd ed. 1900.).

    Google Scholar 

  • Wilson EJB. (1925). The cell in development and heredity, 3rd ed. New York: MacMillan.

    Google Scholar 

  • Wimsatt W. (1980). Reductionistic research strategies and their biases in the units of selection controversy. In Nickles T. (ed.) Scientific discovery: case studies; 213–259. Dordrecht: D. Reidel.

    Google Scholar 

  • Wimsatt W. (1981a). Units of selection and the structure of the multi-level genome. In Giere R., Asquith P. (eds) ,PSA 1980, Vol. 2, pp. 122–183. East Lansing: Philosophy of Science Association.

    Google Scholar 

  • Wimsatt W. (1981b). Robustness, reliability, and overdetermination. In Brewer M., Collins B. (eds) Scientific inquiry and the social sciences; 124–163. San Francisco: Jossey-Bass.

    Google Scholar 

  • Wimsatt W. (1986a). Heuristics and the study of human behavior. In Fiske D., Shweder R. (eds) Metatheory in social science; pluralisms and subjectivities; 293–314. Chicago: University of Chicago Press.

    Google Scholar 

  • Wimsatt W. (1986b). Developmental constraints, generative entrenchment, and the innate-acquired distinction. In Bechtel W. (ed.) Integrating scientific disciplines; 185–208. Dordrecht: Martinus Nijhoff.

    Google Scholar 

  • Wimsatt W. (1986c). Generative entrenchment, scientific change, and the analytic-synthetic distinction. Unpublished manuscript.

    Google Scholar 

  • Wimsatt W. (1987). False models as means to truer theories. In Nitecki M., Hoffman A. (eds) Neutral models in biology; 23–55. New York: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Griesemer, J.R., Wimsatt, W.C. (1989). Picturing Weismannism: A Case Study of Conceptual Evolution. In: Ruse, M. (eds) What the Philosophy of Biology Is. Nijhoff International Philosophy Series, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1169-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1169-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7020-1

  • Online ISBN: 978-94-009-1169-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics