Skip to main content

Microbe-microbe interactions

  • Chapter

Abstract

The previous chapters have shown that the rumen harbours a large number of different species of bacteria, phycomycete fungi and protozoa. Metabolic interactions between these different populations are essential for sustaining the microbial community and its collective activities. Products of the metabolism of some species of microorganisms are sources of energy for other species. Similarly, products of vitamin synthesis and nitrogen metabolism of some species become the sources of the vitamins and nitrogen compounds required by other microorganisms. The kinds and extents of these microbial interactions regulate the concentrations and activities of individual species and the qualitative and quantitative nature of the products of the fermentation of dietary substrates. Products that are used by, and are essential for, the ruminant include acetate, propionate and butyrate and the constituents of microbial cells. The amounts of CH4 and CO2 produced by the fermentation are determined by the same microbial interactions. The purpose of this chapter is to describe the major metabolic interactions that define the nature of the microbial community and its contributions to the host. Some of these interactions have, of necessity, been mentioned in connection with the topics of other chapters in the book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M. (1971). Microbial Ecology. John Wiley, New York.

    Google Scholar 

  • Allison, M. J. (1969). Biosynthesis of amino acids by ruminai microorganisms. J. Anim. Sci., 29, 797–807.

    PubMed  CAS  Google Scholar 

  • Balch, W. E. and Wolfe, R. S. (1979). Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid). J. Bacteriol., 137, 256–63.

    PubMed  CAS  Google Scholar 

  • Balch, W. E., Fox, G. E., Magrum, L. J. et al. (1979). Methanogens: reevaluation of a unique biological group. Microbiol. Rev., 43, 260–96.

    PubMed  CAS  Google Scholar 

  • Bauchop, T. and Mountfort, D. O. (1981). Cellulose fermentation by a rumen anaerobic fungus in both the absence and presence of rumen methanogens. Appl Environ. Microbiol., 42, 1103–10.

    PubMed  CAS  Google Scholar 

  • Bernalier, A., Fonty, G., Bonnemoy, F. and Gouet, P. (1993). Inhibition of the cellulolytic activity of Neocallimastix frontalis by Ruminococcus flavefaciens. J. Gen. Microbiol., 139, 873–80.

    PubMed  CAS  Google Scholar 

  • Bhat, S., Wallace, R. J. and Orskov, E. R. (1988). Study of the relation between straw quality and its colonisation by rumen microorganisms. J. Agric. Sci. (Camb.), 110, 562–5.

    Article  Google Scholar 

  • Blackburn, T. H. and Hungate, R. E. (1963). Succinic acid turnover and propionate production in the bovine rumen. Appl. Microbiol., 11, 132–5.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P. (1965). Rumen methanogenic bacteria. In Physiology of Digestion in the Ruminant, ed. R. W. Dehority, R. S. Allen, W. Burroughs et al. Butterworths, Washington, DC, pp. 441–18.

    Google Scholar 

  • Bryant, M. P. (1974). Nutritional features and ecology of predominant anaerobic bacteria of the intestinal tract. Am. J. Clin. Nutr., 27, 1313–19.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P. and Wolin, M. J. (1975). Rumen bacteria and their metabolic interactions. In Proceedings of First lntersectional Congress of IAMS, Vol. 2, Developmental Microbiology Ecology, ed. T. Hasegawa. Science Council of Japan, Tokyo, pp. 297–306.

    Google Scholar 

  • Caldwell, D. R., White, D. C., Bryant, M. P. and Doetsch, R. N. (1965). Specificity of the heme requirement for growth ofBacteroides ruminicola. J. Bacteriol., 90, 1645–54.

    PubMed  CAS  Google Scholar 

  • Chen, M. and Wolin, M. J. (1977). Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium. Appl. Environ. Microbiol., 34, 756–9.

    PubMed  CAS  Google Scholar 

  • Chen, M. and Wolin, M. J. (1979). Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria. Appl. Environ. Microbiol., 38, 72–7.

    PubMed  CAS  Google Scholar 

  • Chen, M. and Wolin, M. J. (1981). Influence of heme and vitamin B12 on growth and fermentations ofBacteroides species. J. Bacteriol., 145, 466–71.

    PubMed  CAS  Google Scholar 

  • Cotta, M. A. (1992). Interaction of ruminai bacteria in the production and utilization of maltooligosaccharides from starch. Appl Environ. Microbiol., 58, 48–54.

    PubMed  CAS  Google Scholar 

  • Cotta, M. A. (1993). Utilisation of xylooligosaccharides by selected ruminal bacteria. Appl. Environ. Microbiol., 59, 3557–63.

    PubMed  CAS  Google Scholar 

  • De Freitas, M. J. and Fredrickson, A. G. (1978). Inhibition as a factor in the maintenance of the diversity of microbial ecosystems. J. Gen. Microbiol., 106, 307–20.

    Google Scholar 

  • Forsberg, C. W. (1978). Nutritional characteristics of Megasphaera elsdenii. Can. J. Microbiol., 24, 981–5.

    Article  PubMed  CAS  Google Scholar 

  • Glass, T. L., Bryant, M. P. and Wolin, M. J. (1977). Partial purification of ferredoxin from Ruminococcus albus and its role in pyruvate metabolism and reduction of nicotinamide adenine dinucleotide by H2. J. Bacteriol., 131, 463–72.

    PubMed  CAS  Google Scholar 

  • Gomez-Alarcon, R. A., O’Dowd, C., Leedle, J. A. and Bryant, M. P. (1982). 1,4-Naphthoquinone and other nutrient requirements ofSuccinivibrio dextrinosolvens. Appl. Environ. Microbiol., 44, 346–50.

    PubMed  CAS  Google Scholar 

  • Hespell, R. B. and Smith, C. J. (1983). Utilization of nitrogen sources by gastrointestinal tract bacteria. In Human Intestinal Microflora in Health and Disease, ed. D. J. Hentges. Academic Press, New York, pp. 167–87.

    Google Scholar 

  • Hoover, D. and Steenson, L. (1993). Bacteriocins of Lactic Acid Bacteria. Academic Press, New York.

    Google Scholar 

  • Hungate, R. E. (1966). The Rumen and Its Microbes. Academic Press, New York.

    Google Scholar 

  • Hungate, R. E. (1967). Hydrogen as an intermediate in the rumen fermentation. Arch. Mikrobiol., 59, 158–64.

    Article  PubMed  CAS  Google Scholar 

  • Iverson, W. G. and Mills, M. F. (1976). Bacteriocins from Streptococcus bovis. Can. J. Microbiol., 40, 592–6.

    Google Scholar 

  • Johns, A. T. (1951). The mechanism of propionic acid formation by Veillonella gazogenes. J. Gen. Microbiol., 5, 326–36.

    PubMed  CAS  Google Scholar 

  • Jost, J. L., Drake, J. F., Frederickson, A. G. and Tsuchiya, H. M. (1973). Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter vinelandii, and glucose in a minimal medium. J. Bacteriol., 113, 834–40.

    PubMed  CAS  Google Scholar 

  • Kopecny, J., Hodrova, B. and Stewart, C. S. (1996). The effect of rumen chitinolytic bacteria on cellulolytic anaerobic fungi. Lett. Appl. Microbiol., 23, 199–202.

    Article  PubMed  CAS  Google Scholar 

  • Krumholz, L. R., Forsberg, C. W. and Veira, D. M. (1983). Association of methanogenic bacteria with rumen protozoa. Can. J. Microbiol., 29, 676–80.

    Article  PubMed  CAS  Google Scholar 

  • Latham, M. J. and Wolin, M. J. (1977). Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl. Environ. Microbiol., 34, 297–301.

    PubMed  CAS  Google Scholar 

  • Latham, M. J., Sharpe, M. E. and Sutton, J. D. (1971). The microbial flora of the rumen of cows fed hay and high cereal rations and its relationship to the rumen fermentaion. J. Appl. Bacteriol., 2, 425–34.

    Google Scholar 

  • Latham, M. J., Brooker, B. E., Pettipher, G. L. and Harris, P. J.(1978). Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl. Environ. Microbiol., 35, 1166–73.

    PubMed  CAS  Google Scholar 

  • Ljungdahl, L. G. (1986). The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu. Rev. Microbiol., 40, 415–50.

    Article  PubMed  CAS  Google Scholar 

  • Lovley, D. R., Greening, R. C. and Ferry, J. G. (1984). Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl. Environ. Microbiol., 48 81–7.

    PubMed  CAS  Google Scholar 

  • Marvin-Sikkema, F. D., Richardson, A. J., Stewart, C. S. et al. (1990). Influence of hydrogenconsuming bacteria on cellulose degradation by anaerobic fungi. Appl. Environ. Microbiol., 56, 3793–7.

    PubMed  CAS  Google Scholar 

  • Marvin-Sikkema, F. D., Rees, E., Kraak, M. N. et al. (1993). Influence of metronidazole, CO, C02, and methanogens on the fermentative metabolism of the anaerobic fungus Neocallimastix frontalis strain L2.Appl. Environ. Microbiol., 59, 2678–83.

    PubMed  CAS  Google Scholar 

  • Miller, T. L. (1995). Ecology of methane production and hydrogen sinks in the rumen. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction, ed. W. V. Engelhardt, S. Leonhardt-Marek, G. Breves and D. Gieseke. Ferdinad Enke Verlag, Stuttgart, pp. 317–31.

    Google Scholar 

  • Miller, T. L. and Jenesel, S. E. (1979). Enzymology of butyrate formation by Butyrivibrio fibrisolvens. J. Bacteriol., 138, 99–104.

    PubMed  CAS  Google Scholar 

  • Miller, T. L. and Wolin, M. J. (1973). Formation of hydrogen and formate by Ruminococcus albus. J. Bacteriol., 116, 836–46.

    PubMed  CAS  Google Scholar 

  • Miller, T. L., Wolin, M. J., Hongxue, Z. and Bryant, M. P. (1986). Characteristics of methanogens isolated from bovine rumen. Appl Environ. Microbiol., 51, 201–2.

    PubMed  CAS  Google Scholar 

  • Moomaw, C. R. and Hungate, R. E. (1963). Ethanol conversion in the rumen. J. Bacteriol., 85, 721–2.

    PubMed  CAS  Google Scholar 

  • Morgavi, D. P., Sakurada, M., Tomita, Y. and Onodera, R. (1994). Presence of chitinase in rumen bacterial and protozoal populations. Microbiology, 140, 631–6.

    Article  PubMed  CAS  Google Scholar 

  • Morris, E. J. and Van Gylswyk, N. O. (1980). Comparison of the action of rumen bacteria on cell walls from Eragrostis tef. J. Agric. Sci. (Camb.), 95, 313–23.

    Article  CAS  Google Scholar 

  • Mountfort, D. O. and Asher, R. A. (1983). Role of catabolite regulatory mechanisms in control of carbohydrate utilisation by the rumen anaerobic fungus Neocallimastix frontalis. Appl. Environ. Microbiol., 46, 331–8.

    Google Scholar 

  • Odenyo, A. A., Mackie, R. I., Stahl, D. A. and White, B. A. (1994). The use of 16S rRNA probes to study competition between rumen fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production. Appl. Environ. Microbiol., 60, 3688–96.

    PubMed  CAS  Google Scholar 

  • Patterson, J. A. and Hespell, R. B. (1979). Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri. Curr. Microbiol., 3, 79–83.

    Article  CAS  Google Scholar 

  • Pavlostathis, S. G., Miller, T. L. and Wolin, M. J. (1990). Cellulose fermentation by continuous cultures of Ruminococcus albus and Methanobrevibacter smithii. Appl. Microbiol. Biotechnol. 33, 109–16.

    Article  CAS  Google Scholar 

  • Paynter, M. J. B. and Elsden, S. R. (1970). Mechanism of propionate formation by Selenomonas ruminantium, a rumen microorganism. J. Gen. Microbiol., 61, 1–7.

    PubMed  CAS  Google Scholar 

  • Paynter, M. J. B. and Hungate, R. E. (1968). Characterization of Methanobacterium mobilis, sp. n., isolated from the bovine rumen. J. Bacteriol., 95, 1943–51.

    PubMed  CAS  Google Scholar 

  • Pittman, K. A., Lakshmanan, S. and Bryant, M. P. (1967). Oligopeptide uptake by Bacteroides ruminicola. J. Bacteriol., 93, 1499–508.

    PubMed  CAS  Google Scholar 

  • Prins, R. A., Van Vught, F., Hungate, R. E. and Van Vorstenbosch, C. J. A. H. V. (1972). A comparison of strains of Eubacterium cellulolsolvens from the rumen. Antonie. v. Leeuw., 38, 151–61.

    Google Scholar 

  • Reddy, C. A. and Bryant, M. P. (1977). Deoxyribonucleic acid base composition of certain species of the genus Bacteroides. Can. J. Microbiol., 23, 1252–6.

    Article  CAS  Google Scholar 

  • Rumney, C. J., Duncan, S. H., Henderson, C. and Stewart, C. S. (1995). Isolation and characteristics of a wheatbran-degrading Butyrivibrio from human faeces. Lett. Appl. Microbiol., 20, 232–6.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. B. (1985). Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria. Appl. Environ. Microbiol., 49, 572–6.

    PubMed  CAS  Google Scholar 

  • Saluzzi, L. (1993). Ecophysiology of cellulolytic bacteria in the rumen. PhD thesis, University of Aberdeen.

    Google Scholar 

  • Saluzzi, L., Smith, A. and Stewart, C. S. (1993). Analysis of bacterial phospholipid markers and plant monosaccharides during forage degradation by Ruminococcus flavefaciens and Fibrobacter succinogenes in co-culture. J. Gen. Microbiol., 139, 2865–73.

    PubMed  CAS  Google Scholar 

  • Scheifinger, C. C. (1974). Propionate formation from cellulose and soluble sugars through interspecies interaction ofBacteroides succinogenes and Selenomonas ruminantium. PhD thesis, University of Illinois, Urbana.

    Google Scholar 

  • Scheifinger, C. C. and Wolin, M. J. (1973). Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Appl. Microbiol., 26, 789–95.

    PubMed  CAS  Google Scholar 

  • Scheifinger, C. C., Linehan, B. and Wolin, M. J. (1975). H2 production by Selenomonas ruminantium in the presence and absence of methanogenic bacteria.Appl. Microbiol, 29, 480–3.

    PubMed  CAS  Google Scholar 

  • Slyter, L. L. and Weaver, J.M. (1977). Tetrahydrofolate and other growth requirements of certain strains of Ruminococcus flavefaciens. Appl Environ. Microbiol, 33, 363–9.

    PubMed  CAS  Google Scholar 

  • Smith, P. H. and Hungate, R. E. (1958). Isolation and characterization of Methanobacterium ruminantium. n. sp.J. Bacteriol, 75, 713–18.

    PubMed  CAS  Google Scholar 

  • Sowers, K. R. and Schreier, H. J. (1995). Archaea: Methanogens: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Plainview, New York.

    Google Scholar 

  • Stewart, C. S. (1975). Some effects of phosphate and volatile fatty acid salts on the growth of rumen bacteria. J. Gen. Microbiol., 89, 319–26.

    Google Scholar 

  • Stewart, C. S., and Richardson, A. J. (1989). Enhanced resistance of anaerobic rumen fungi to the ionophores monensin and lasalocid in the presence of methanogenic bacteria. J. Appl. Bacteriol, 66, 85–93.

    PubMed  CAS  Google Scholar 

  • Stewart, C. S., Duncan, S. H. and Flint, H. J. (1990). The properties of forms of Ruminococcus flavefaciens which differ in their ability to degrade cotton cellulose. FEMS Microbiol. Lett., 72, 47–50.

    Article  CAS  Google Scholar 

  • Stewart, C. S., Duncan, S. H., Richardson, A. J. et al. (1992). The inhibition of fungal cellulolysis by cell-free preparations from ruminococci. FEMS Microbiol. Lett. 97, 83–8.

    Article  CAS  Google Scholar 

  • Stumm, C. K., Gijzen, H. J. and Vogels, G. D. (1982). Association of methanogenic bacteria with ovine rumen ciliates. Br. J. Nutr., 47, 95–9.

    Article  PubMed  CAS  Google Scholar 

  • Van Gylswyk, N. O. (1995). Succiniclasticum ruminis gen. nov. sp. nov., a rumen bacterium converting succinate to propionate as sole energy-yielding mechanism. Int. J. Syst. Bacteriol., 45, 297–300.

    Article  PubMed  Google Scholar 

  • Van Gylswyk, N. O., Wejdemar, K. and Kulander, K. (1992). Comparative growth rates of various rumen bacteria in clarified rumen fluid from cows and sheep fed different diets. Appl. Environ. Microbiol., 58, 99–105.

    Google Scholar 

  • Wells, J. W., Russell, J. B., Shi, Y. and Weimer, P. J. (1995). Celldextrin efflux by the cellulolytic ruminal bacterium Fibrobacter succinogenes and its potential role in the growth of non-adherent bacteria. Appl. Environ. Microbiol., 61, 1757–62.

    PubMed  CAS  Google Scholar 

  • Williams, A. G. (1986). Rumen holotrich ciliate protozoa.Microbiol. Rev., 50, 25–9.

    PubMed  CAS  Google Scholar 

  • Woese, C. R. and Wolfe, R. S. (1985). The Bacteria: A Treatise on Structure and Function, Vol. VIII, Archaebacteria. Academic Press, New York and Washington.

    Google Scholar 

  • Wolin, M. J. (1969). Volatile fatty acids and the inhibition of Escherichia coli growth by rumen fluid. Appl. Microbiol., 17, 83–7.

    PubMed  CAS  Google Scholar 

  • Wolin, M. J. (1979). The rumen fermentation: a model for microbial interactions in anaerobic ecosystems. In Advances in Microbial Ecology, Vol. 3, ed. M. Alexander. Plenum, New York and London, pp. 49–77.

    Google Scholar 

  • Wolin, M. J. and Miller, T. L. (1985). Methanogens. In Biology of Industrial Microorganisms, ed. A. L. Demain and N. A. Solomon. Benjamin/Cummings, Menlo Park, California, pp. 189–221.

    Google Scholar 

  • Wolin, M. J. and Miller, T. L. (1987). Bioconversion of organic carbon to CH4 and C02. Geomicrobiol. J., 5, 239–59.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Wolin, M.J., Miller, T.L., Stewart, C.S. (1997). Microbe-microbe interactions. In: Hobson, P.N., Stewart, C.S. (eds) The Rumen Microbial Ecosystem. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1453-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1453-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7149-9

  • Online ISBN: 978-94-009-1453-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics