Skip to main content

Lactic Acid Bacteria

  • Chapter

Abstract

In ancient times, the ways of preserving raw agricultural materials were essentially restricted to salting, drying and fermentation. In many parts of the world, this is also the case today. Fermentation in this sense has a meaning other than the scientific, that is, the non-respiratory metabolism of organic substrates by microorganisms. According to this definition, a food is fermented if it “has been subject to the action of microorganisms or enzymes so that desirable biochemical changes cause significant modification of the food” (Campbell-Platt, 1987). The importance of fermented foods in the human diet has been immense, perishable raw material was preserved and microbial growth often enriched the food with vitamins. Since the turn of the century, the production of fermented foods has become a significant part of the food processing industry. Along with the results of typical yeast-fermentations, such as beer, wine and leavened bread, fermentations involving lactic acid production are the most important.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adlerberth, I., Ahrné, S., Johansson, M.-L., Molin, G., Hanson, L.A. & Wold, A.E. (1996). A mannosespecific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Applied and Environmental Microbiology 62, 2244–2251.

    PubMed  CAS  Google Scholar 

  • Ahrné, S., Casas, I., Lindgren, S.E., Molin, G. & Dobrogosz, W.J. (1992). Spontaneous and SDS-induced phenotype and plasmid alterations in starter cultures of Lactobacillus plantarum. Systematic and Applied Microbiology 15, 285–288.

    Article  Google Scholar 

  • Ahrné, S., Nobaek, S., Jeppsson, B., Adlerberth, I., Wold, A. & Molin, G. (1998). The normal Lactobacillus flora of healthy human oral and rectal mucosa. Journal of Applied Microbiology 85, 88–94.

    Article  PubMed  Google Scholar 

  • Axelsson, L. (1990). Lactobacillus reuteri, a member of the gut bacterial flora. Studies on antagonism, metabolism and genetics. PhD thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden.

    Google Scholar 

  • Axelsson, L. (1998). Lactic acid bacteria: classification and physiology. In Lactic Acid Bacteria: Microbiology and Functional Aspects, 2nd Edition, Revised and Expanded, pp. 1–72. Edited by S. Salminen & A. von Wright. New York, Marcel Dekker

    Google Scholar 

  • Axelsson, L. & Lindgren, S. (1987). Characterization and DNA homology of Lactobacillus strains isolated from pig intestine. Journal of Applied Bacteriology 62, 433–438.

    Article  PubMed  CAS  Google Scholar 

  • Björkroth, K.J. & Korkeala, H.J. (1996a). rRNA gene restriction patterns as a characterization tool for Lactobacillus sakei strains producing ropy slime. International Journal of Food Microbiology 30, 293–302.

    Article  PubMed  Google Scholar 

  • Björkroth, K.J. & Korkeala, H.J. (1996b). Evaluation of Lactobacillus sakei contamination in vacuum-packaged sliced cooked meat products by ribotyping. Journal of Food Protection 59, 398–401.

    Google Scholar 

  • Björkroth, J., Ridell, J. & Korkeala, H. (1996). Characterization of Lactobacillus sakei strains associating with production of ropy slime by randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) patterns. International Journal of Food Microbiology 31, 59–68.

    Article  PubMed  Google Scholar 

  • Bloch, C., Stocker, B. & Orndorff, P. (1992). A key role for type 1 pili in enterobacterial communicability. Molecular Microbiology 6, 697–701.

    Article  PubMed  CAS  Google Scholar 

  • Campbell-Platt, G. (ed.) (1987). Fermented Foods of the World. London: Butterworths.

    Google Scholar 

  • Cavett, J.J. (1963). A diagnostic key for identifying the lactic acid bacteria out of vacuum packed bacon. Journal of Applied Bacteriology 26, 453–470.

    Article  Google Scholar 

  • Champomier, M.-C., Montel, M.-C., Grimont, F. & Grimont, P.A.D. (1987). Genomic identification of meat lactobacilli as Lactobacillus sakei. Annales Institut Pasteur (Paris) 138, 751–758.

    CAS  Google Scholar 

  • Collins, M.D., Farrow, J.A.E., Phillips, B.A., Ferusu, S. & Jones, D. (1987). Classification of Lactobacillus divergens, Lactobacillus piscicola and some catalase-negative, asporogenous, rod-shaped bacteria from poultry in a new genus, Carnobacterium. International Journal of Systematic Bacteriology 37, 310–316.

    Article  Google Scholar 

  • Collins, M.D., Samelis, J., Metaxopoulos, J. & Wallbanks, S. (1993). Taxonomic studies on some leuconostoclike organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. Journal of Applied Bacteriology 75, 595–603.

    Article  PubMed  CAS  Google Scholar 

  • Davis, J.G. (1975). The microbiology of yoghurt. In Lactic Acid Bacteria in Beverages and Food, pp. 245–263. Edited by J.G. Carr, C.V. Cutting & G.C. Whiting. London: Academic Press.

    Google Scholar 

  • Du Plessis, E.M. & Dicks, L.M.T. (1995). Evaluation of random amplified polymorphic DNA (RAPD)-PCR as a method to differentiate Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus amylovorus, Lactobacillus gallinarum, Lactobacillus gasseri, and Lactobacillus johnsonii. Current Microbiology 31, 114–118.

    Article  PubMed  CAS  Google Scholar 

  • Egan, A.F. (1983). Lactic acid bacteria of meat and meat products. Antonie van Leeuwenhoek 49, 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Ehrmann, M., Ludwig, W. & Schleifer, K.H. (1994). Reverse dot blot hybridization: a useful method for the direct identification of lactic acid bacteria in fermented food. FEMS Microbiology Letters 117, 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Fernández Gonzalez, M.J., García Garcia, P., Garrido Fernández, A. & Durán Quintana, M.C. (1993). Microflora of the aerobic preservation of directly brined green olives from Hojiblanca cultivar. Journal of Applied Bacteriology 75, 226–233.

    Article  Google Scholar 

  • Figueroa, C., Davila, A.M. & Pourquie, J. (1997). Original properties of ropy strains of Lactobacillus plantarum isolated from the sour cassava starch fermentation. Journal of Applied Microbiology 82, 68–72.

    Article  CAS  Google Scholar 

  • Finegold, S.M., Sutter, V.L. & Mathisen, G.E. (1983). Normal indigenous intestinal flora. In Human Intestinal Microflora in Health and Disease, pp. 3–31. Edited by D.J. Hentges. London: Academic Press.

    Chapter  Google Scholar 

  • Fuller, R. (1989). Probiotics in man and animals. Journal of Applied Bacteriology 66, 365–378.

    Article  PubMed  CAS  Google Scholar 

  • Gaskins, H.R., McCracken, V.J., Baldeon, M.E., Finlay, B.B. & Mackie, R.J. (1996). Adherent commensal and pathogenic bacteria differentially modulate inflammatory cytokine gene expression by colonic epithelial cells. XXIst International Congress on Microbial Ecology and Disease. October 28–30. Institut Pasteur, Paris, France.

    Google Scholar 

  • Grimont, F. & Grimont, P.A.D. (1992). Identification and typing by rRNA gene restriction patterns. In Proceedings of the Conference on Taxonomy and Automated Identification of Bacteria, pp. 15-18. Edited by J. Schindler. Prague: Czechoslovak Society for Microbiology.

    Google Scholar 

  • Gundersen, A. (1994). Lactic acid bacteria in grass silage. PhD thesis, Agricultural University of Norway, Ås.

    Google Scholar 

  • Hammes, W.P. & Hertel, C. (1996). Selection and improvement of lactic acid bacteria used in meat and sausage fermentation. Lait 76, 159–168.

    Article  CAS  Google Scholar 

  • Hammes, W.P. & Vogel, R.F. (1995). The genus Lactobacillus. In The Genera of Lactic Acid Bacteria, pp. 19–54. Edited by B.J.B. Wood & W.H. Holzapfel. London: Chapman & Hall.

    Chapter  Google Scholar 

  • Hammes, W.P., Bantleon, A. & Min, S. (1990). Lactic acid bacteria in meat fermentation. FEMS Microbiology Reviews 87, 165–173.

    Article  CAS  Google Scholar 

  • Harris, L.J., Fleming, H.P. & Klaenhammer, T.R. (1992). Novel paired starter culture system for sauerkraut, consisting of a nisin-resistant Leuconostoc mesenteroides strain and a nisin-producing Lactococcus lactis strain. Applied and Environmental Microbiology 58, 1484–1489.

    PubMed  CAS  Google Scholar 

  • Henneberg, W. (1904). Zur Kenntnis der Milchsäurebakterien der Brennerei-Maische, der Milch, des Bieres, der Presshefe, der Melasse, des Sauerkohls, der säuren Gurken und des Sauerteigs; sowie einige Bemerkungen über die Milchsäurebakterien des menschlishen Magens. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abteilung II 11, 154–170.

    Google Scholar 

  • Hentges, D.J. (ed.) (1983). Human Intestinal Microflora in Health and Disease. New York, USA: Academic Press.

    Google Scholar 

  • Hertel, C., Ludwig, W., Obst, M., Vogel, R.F., Hammes, W.P. & Schleifer, K.H. (1991). 23S rRNA-targeted oligonucleotide probes for the rapid identification of meat lactobacilli. Systematic and Applied Microbiology 14, 173–177.

    Article  CAS  Google Scholar 

  • Holzapfel, W.H. & Gerber, E.S. (1983). Lactobacillus divergens sp. nov., a new heterofermentative Lactobacillus species producing L(+)-lactate. Systematic and Applied Microbiology 4, 522–534.

    Article  PubMed  CAS  Google Scholar 

  • Ingram, M. (1975). The lactic acid bacteria — a broad view. In Lactic Acid Bacteria in Beverages and Food, pp. 1–13. Edited by J.G. Carr, C.V. Cutting & G.C. Whiting. London: Academic Press.

    Google Scholar 

  • Johansson, M.-L. (1995). Systematics and starter culture selection of Lactobacillus for human intestine and Nigerian ogi, with special reference to Lactobacillus plantarum. PhD thesis, University of Lund, Lund, Sweden.

    Google Scholar 

  • Johansson, M.-L., Molin, G., Jeppsson, B., Nobaek, S., Ahrné, S. & Bengmark, S. (1993). Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colonization of human intestinal mucosa and effect on the indigenous flora. Applied and Environmental Microbiology 59, 15–20.

    PubMed  CAS  Google Scholar 

  • Johansson, M.-L., Molin, G., Pettersson, B., Uhlén, M. & Ahrné, S. (1995a). Characterization and species recognition of Lactobacillus plantarum strains by restriction fragment length polymorphism (RFLP) of the 16S rRNA gene. Journal of Applied Bacteriology 79, 536–541.

    Article  CAS  Google Scholar 

  • Johansson, M.-L., Quednau, M., Ahrné, S. & Molin, G. (1995b). Classification of Lactobacillus plantarum by restriction endonuclease analysis of total chromosomal DNA using conventional agarose gel electrophoresis. International Journal of Systematic Bacteriology 45, 670–675.

    Article  CAS  Google Scholar 

  • Johansson, M.-L., Quednau, M., Molin, G. & Ahrné, S. (1995c). Randomly amplified polymorphic DNA (RAPD) for rapid typing of Lactobacillus plantarum strains. Letters in Applied Microbiology 21, 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, M.-L., Sanni, A., Lönner, C. & Molin, G. (1995d). Phenotypically based taxonomy using API 50CH of lactobacilli from Nigerian ogi, and the occurrence of starch fermenting strains. International Journal of Food Microbiology 25, 159–168.

    Article  PubMed  CAS  Google Scholar 

  • Kagermeier, A. (1981). Taxonomie und Vorkommen von Milchsäurebakterien in Fleischprodukten. PhD thesis, Ludwig-Maximilian University, Munich.

    Google Scholar 

  • Kandier, O. (1983). Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49, 209–224.

    Article  Google Scholar 

  • Kandier, O. & Weiss, N. (1986). Regular, non-sporing gram-positive rods. In Bergey’s Manual of Systematic Bacteriology Vol. 2, pp. 1208–1234. Edited by P.H.A. Sneath, N.S. Mair, M.E. Sharpe & J.G. Holt. Baltimore: Williams and Wilkins Co.

    Google Scholar 

  • Klein, G., Dicks, L.M.T., Pack, A., Hack, B., Zimmermann, K., Dellaglio, F. & Reuter, G. (1996). Emended descriptions of Lactobacillus sakei (Katagiri, Kitahara, and Fukami) and Lactobacillus curvatus (Abo-Elnaga and Kandier): numerical classification revealed by protein fingerprinting and identification based on biochemical patterns and DNA-DNA hybridizations. International Journal of Systematic Bacteriology 46, 367–376.

    Article  CAS  Google Scholar 

  • Klijn, N., Weerkamp, A.H. & de Vos, W.M. (1991). Identification of mesophilic lactic acid bacteria by using Polymerase chain reaction-amplified variable regions of 16S rRNA and specific DNA probes. Applied and Environmental Microbiology 57, 3390–3393.

    PubMed  CAS  Google Scholar 

  • Klijn, N., Weerkamp, A.H. & de Vos, W.M. (1995). Detection and characterization of lactose-utilizing Lactococcus spp. in natural ecosystems. Applied and Environmental Microbiology 61, 788–792.

    PubMed  CAS  Google Scholar 

  • Kröckel, L. (1995). Bacterial fermentation of meats. In Fermented Meats, pp. 69–109. Edited by G. Campbell-Platt & P.E. Cook. London: Blackie A & P.

    Google Scholar 

  • Leistner, L. & Lücke, F.-K. (1989). Bioprocessing of meat. In Biotechnology, Vol 5, pp. 273–286. Edited by S.-D. Kung, D.D. Bills & R. Quatrano. Boston: Butterworths.

    Google Scholar 

  • Lichtenstein, A.H. & Goldin, B.R. (1993). Lactic acid bacteria and intestinal drug and cholesterol metabolism. In Lactic Acid Bacteria, pp. 227–235. Edited by S. Salminen & A. von Wright. New York, Marcel Dekker, Inc.

    Google Scholar 

  • Lidbeck, A. (1991). Studies on the impact of Lactobacillus acidophilus on human microflora and some cancerrelated intestinal ecological variables. PhD thesis, Karolinska Institutet, Huddinge University Hospital, Huddinge, Sweden.

    Google Scholar 

  • Lidbeck, A., Gustafsson, J.-Å. & Nord, C.E. (1987). Impact of Lactobacillus acidophilus supplement on the human oropharyngeal and intestinal microflora. Scandinavian Journal of Infectious Disease 19, 531–537.

    Article  CAS  Google Scholar 

  • Löhnis, F. (1907). Versuch einer Gruppierung der Milchsäurebakterien. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abteilung II 18, 97–149.

    Google Scholar 

  • Metchnikoff, E. (1907). The Prolongation of Life. London: Heinemann.

    Google Scholar 

  • Mikelsaar, M. & Mändar, R. (1993). Development of individual lactic acid microflora in the human microbial ecosystem. In Lactic Acid Bacteria, pp. 237–293. Edited by S. Salminen & A. von Wright. New York: Marcel Dekker, Inc.

    Google Scholar 

  • Millière, J.B., Michel, M., Mathieu, F. & Lefebvre, G. (1994). Presence of Carnobacterium spp. in French surface mould-ripened soft-cheese. Journal of Applied Bacteriology 76, 264–269.

    Article  Google Scholar 

  • Molin, G., Jeppsson, B., Johansson, M.L., Ahrné, S., Nobaek, S., Ståhl, M. & Bengmark, S. (1993). Numerical taxonomy of Lactobacillus spp. associated with healthy and diseased mucosa of the human intestines. Journal of Applied Bacteriology 74, 314–323.

    Article  PubMed  CAS  Google Scholar 

  • Montel, M.-C., Talon, R., Fournoud, J. & Champomier, M.-C. (1991). A simplified key for identifying homofermentative Lactobacillus and Carnobacterium spp. from meat. Journal of Applied Bacteriology 70, 469–472.

    Article  PubMed  CAS  Google Scholar 

  • Moore, W.E.C. & Holdeman, L.V. (1974). Human fecal flora of 20 Japanese-Hawaiians. Applied Microbiology 27, 961–979.

    PubMed  CAS  Google Scholar 

  • Morishita, T., Deguchi, Y., Yajima, M., Sakurai, T. & Yura, T. (1981). Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways. Journal of Bacteriology 148, 64–71.

    PubMed  CAS  Google Scholar 

  • Nissen, H., Hoick, A. & Dainty, R.H. (1994). Identification of Carnobacterium spp. and Leuconostoc spp. in meat by genus-specific 16S rRNA probes. Letters in Applied Microbiology 19, 165–168.

    Article  PubMed  CAS  Google Scholar 

  • Nissen, H., Sørheim, O. & Dainty, R. (1996). Effects on vacuum, modified atmospheres and storage temperature on the microbial flora of packaged meat. Food Microbiology 13, 183–191.

    Article  Google Scholar 

  • Orla-Jensen, S. (1919). The Lactic Acid Bacteria. Copenhagen: Host and Son.

    Google Scholar 

  • Oyewole, O.B. & Odunfa, S.A. (1990). Characterization and distribution of lactic acid bacteria in cassava fermentation during fufu production. Journal of Applied Bacteriology 68, 145–152.

    Article  Google Scholar 

  • Pederson, C.S. & Albury, M.N. (1969). The sauerkraut fermentation. New York State Agricultural Experiment Station, Technical Bulletin 824, Geneva, New York State Agricultural Experiment Station.

    Google Scholar 

  • Pettersson, B. (1997). Direct solid-phase 16S rDNA sequencing: a tool in bacterial phylogeny. PhD thesis, Royal Institute of Technology, Stockholm, Sweden.

    Google Scholar 

  • Pot, B., Hertel, C., Ludwig, W., Descheemaeker, P., Kersters, K. & Schleifer, K.-H. (1993). Identification and classification of Lactobacillus acidophilus, L. gasseri and L. johnsonii strains by SDS-PAGE and rRNA-targeted oligonucleotide probe hybridization. Journal of General Microbiology 139, 513–517.

    Article  PubMed  CAS  Google Scholar 

  • Pot, B., Ludwig, W., Kersters, K. & Schleifer, K.-H. (1994). Taxonomy of lactic acid bacteria. In Bacteriocins of Lactic Acid Bacteria, pp. 13–90. Edited by L. De Vuyst & E.J. Vandamme. London: Chapman & Hall.

    Chapter  Google Scholar 

  • Priest, F.G. & Barbour, E.A. (1985). Numerical taxonomy of lactic acid bacteria and some related taxa. In Computer-assisted Bacterial Systematics., pp. 137–163. Edited by M. Goodfellow, D. Jones & F.G. Priest. London, Academic Press.

    Chapter  Google Scholar 

  • Reuter, G. (1965). Das Vorkommen von Laktobazillen in Lebensmitteln und ihr Verhalten im Menschlichen Intestinaltrakt. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abteilung I B Originale 197 S, 468–487.

    Google Scholar 

  • Reuter, G. (1975). Classification problems, ecology and some biochemical activities of lactobacilli of meat products. In Lactic Acid Bacteria in Beverages and Food, pp. 221–229. Edited by J.G. Carr, C.V. Cutting & G.C. Whiting. London, Academic Press.

    Google Scholar 

  • Salama, M.S., Sandine, W.E. & Giovannoni, S.J. (1991). Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris. Applied and Environmental Microbiology 57, 1313–1318.

    CAS  Google Scholar 

  • Salama, M.S., Sandine, W.E. & Giovannoni, S.J. (1993). Isolation of Lactococcus lactis subsp. cremoris from nature by colony hybridization with rRNA probes. Applied and Environmental Microbiology 59, 3941–3945.

    PubMed  CAS  Google Scholar 

  • Salama, M.S., Musafija-Jeknic, T., Sandine, W.E. & Giovannoni, S.J. (1995). An ecological study of lactic acid bacteria: isolation of new strains of Lactococcus including Lactococcus lactis subspecies cremoris. Journal of Dairy Science 78, 1004–1017.

    Article  CAS  Google Scholar 

  • Salovaara, H. (1993). Lactic acid bacteria in cereal-based products. In Lactic Acid Bacteria, pp. 111–126. Edited by S. Salminen & A. von Wright. New York: Marcel Dekker, Inc.

    Google Scholar 

  • Salyers, A.A. & Whitt, D.D. (1994). Escherichia coli gastrointestinal infections. In Bacterial Pathogenesis: a Molecular Approach, pp. 190–204. (Edited by A.A. Salyers & D.D. Whitt). Washington DC: ASM Press.

    Google Scholar 

  • Savage, D.C. (1977). Microbial ecology of the gastrointestinal tract. Annual Review of Microbiology 31, 107–133.

    Article  PubMed  CAS  Google Scholar 

  • Saxelin, M., Elo, S., Salminen, S. & Vapaatalo, H. (1991). Dose response colonisation of faeces after oral administration of Lactobacillus GG. Microbial Ecology in Health and Disease 4, 209–214.

    Article  Google Scholar 

  • Schleifer, K.H. & Ludwig, W. (1995a). Phylogenetic relationships of lactic acid bacteria. In The Genera of Lactic Acid Bacteria, pp. 7–18. Edited by B.J.B. Wood & W.H. Holzapfel. London: Chapman & Hall.

    Chapter  Google Scholar 

  • Schleifer, K.H. & Ludwig, W. (1995b). Phylogeny of the genus Lactobacillus and related genera. Systematic and Applied Microbiology 18, 461–467.

    Article  Google Scholar 

  • Schleifer, K.H., Ehrmann, M., Beimfohr, C., Brockmann, E., Ludwig, W. & Amann, R. (1995). Application of molecular methods for the classification and identification of lactic acid bacteria. International Dairy Journals, 1081–1094.

    Google Scholar 

  • Sgorbati, B., Biavati, B. & Palenzona, D. (1995). The genus Bifidobacterium. In The Genera of Lactic Acid Bacteria, pp. 279–306. Edited by B.J.B. Wood & W.H. Holzapfel. London: Chapman & Hall.

    Chapter  Google Scholar 

  • Sharpe, M.E. (1962). Lactobacilli in meat products. Food Manufacture 37, 582–589.

    Google Scholar 

  • Sharpe, M.E. (1981). The genus Lactobacillus. In The Pwearyotes. A Handbook on Habitats, Isolation and Identification of Bacteria, pp. 1653–1674. Edited by M.P. Starr, H. Stolp, H.G. Trüper, A. Balows & H.G. Schlegel. Berlin: Springer-Verlag.

    Google Scholar 

  • Shaw, B.G. & Harding, C.D. (1984). A numerical taxonomic study of lactic acid bacteria from vacuum-packed beef, pork, lamb and bacon. Journal of Applied Bacteriology 56, 25–40.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, B.G. & Harding, C.D. (1985). Atypical lactobacilli from vacuum-packaged meats: comparison by DNA hybridization, cell composition and biochemical tests with a description of Lactobacillus carnis sp. nov. Systematic and Applied Microbiology 6, 291–297.

    Article  CAS  Google Scholar 

  • Steinkraus, K.H. (1983). Lactic acid fermentation in the production of foods from vegetables, cereals and legumes. Antonie van Leeuwenhoek 49, 337–348.

    Article  PubMed  CAS  Google Scholar 

  • Steinkraus, K.H. (ed.) (1996). Handbook of Indigenous Fermented Food, 2nd edition. New York: Marcel Dekker, Inc.

    Google Scholar 

  • Stiles, M.E. (1996). Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek 70, 331–345.

    Article  PubMed  CAS  Google Scholar 

  • Ståhl, M. & Molin, G. (1994). Classification of Lactobacillus reute ri by restriction endonuclease analysis of chromosomal DNA. International Journal of Systematic Bacteriology 44, 9–14.

    Article  Google Scholar 

  • Ståhl, M., Molin, G., Persson, A., Ahrné, S. & Ståhl, S. (1990). Restriction endonuclease patterns and multivariate analysis as a classification tool for Lactobacillus spp. International Journal of Systematic Bacteriology 40, 189–193.

    Article  Google Scholar 

  • Stahl, M., Pettersson, B., Molin, G., Uhlén, M. & Ahrné, S. (1994). Restriction fragment length polymorphism of Lactobacillus reuteri and Lactobacillus fermentum, originating from intestinal mucosa, based on 16S rRNA genes. Systematic and Applied Microbiology 17 108–115.

    Article  Google Scholar 

  • Thornley, M.J. & Sharpe, M.E. (1959). Microorganisms from chicken meat related to both lactobacilli and aerobic sporeformers. Journal of Applied Bacteriology 22, 368–376.

    Google Scholar 

  • Vandamme, P., Pot, B., Gillis, M., de Vos, P., Kersters, K. & Swings, J. (1996). Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiological Reviews 60, 407–438.

    PubMed  CAS  Google Scholar 

  • Wallbanks, S., Martinez-Murcia, A.J., Fryer, J.L., Phillips, B.A. & Collins, M.D. (1990). 16S rRNA sequence determination for members of the genus Carnobacterium and related lactic acid bacteria and description of Vagococcus salmonarium sp. nov. International Journal of Systematic Bacteriology 40, 224–230.

    Article  PubMed  CAS  Google Scholar 

  • Weigmann, H. (1899). Versuch einer Einteilung der Milchsäurebakterien des Molkereigewerbes. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abteilung II 5, 825–831.

    Google Scholar 

  • Welsh, J. & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitraty primers. Nucleic Acids Research 18, 7213–7218.

    Article  PubMed  CAS  Google Scholar 

  • Wijtzes, T., de Wit, J.C., Huisin’t Veld, J.H.J., van’t Riet, K. & Zwietering, M.H. (1995). Modelling bacterial growth of Lactobacillus curvatus as a function of acidity and temperature. Applied and Environmental Microbiology 61, 2533–2539.

    PubMed  CAS  Google Scholar 

  • Williams, J.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A. & Tingey, S.V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R. (1987). Bacterial evolution. Microbiological Reviews 51, 221–271.

    PubMed  CAS  Google Scholar 

  • Wood, B.J.B. & Holzapfel, W.H. (eds.) (1995). The Genera of Lactic Acid Bacteria. London: Chapman & Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Axelsson, L., Ahrné, S. (2000). Lactic Acid Bacteria. In: Priest, F.G., Goodfellow, M. (eds) Applied Microbial Systematics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4020-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4020-1_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6518-1

  • Online ISBN: 978-94-011-4020-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics