Skip to main content

Part of the book series: Physics and Chemistry of Materials with Low-Dimensional Structures ((PCMALS,volume 23))

Abstract

A broad review of the structure and properties of carbon nanotubes is presented. Particular emphasis is given to the singularities in the one-dimensional density of states predicted for single-wall nanotubes of small diameter. The evidence provided by scanning tunneling microscopy and resonant Raman scattering experiments in support of these singularities in the one-dimensional density of states is presented. The remarkable electronic and mechanical properties of carbon nanotubes are also briefly reviewed and some potential applications for the nanotubes are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Iijima, Nature (London) 354, 56 (1991).

    ADS  Google Scholar 

  2. T. W. Ebbesen and P. M. Ajayan, Nature (London) 358, 220 (1992).

    ADS  Google Scholar 

  3. T. W. Ebbesen, H. Hiura, J. Pujita, Y. Ochiai, S. Matsui, and K. Tanigaki, Chem. Phys. Lett. 209, 83–90 (1993).

    ADS  Google Scholar 

  4. S. Iijima and T. Ichihashi, Nature (London) 363, 603 (1993).

    ADS  Google Scholar 

  5. D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature (London) 363, 605 (1993).

    ADS  Google Scholar 

  6. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273, 483–487 (1996).

    ADS  Google Scholar 

  7. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, Nature (London) 388, 756–758 (1997).

    ADS  Google Scholar 

  8. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon 33, 883–891 (1995).

    Google Scholar 

  9. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Phys. Rev. B 45, 6234 (1992).

    ADS  Google Scholar 

  10. M. Endo, H. Fujiwara, and E. Fukunaga, Meeting of Japanese Carbon Society pages 34–35 (1991) (unpublished).

    Google Scholar 

  11. M. Endo, H. Fujiwara, and E. Fukunaga, Second C60 Symposium in Japan pages 101–104 (1992) (unpublished).

    Google Scholar 

  12. T. W. Ebbesen, Annu. Rev. Mater. Sci. 24, 235–264 (1994).

    ADS  Google Scholar 

  13. M. Endo, CHEMTECH 18, 568 (1988).

    Google Scholar 

  14. T. Guo, C.-M. Jin, and R. E. Smalley, Chem. Phys. Lett. 243, 49–54 (1995).

    Google Scholar 

  15. H. M. Cheng, F. Li, X. Sun, S. D. M. Brown, M. A. Pimenta, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, Chem. Phys. Lett. 289, 602–610 (1998).

    Google Scholar 

  16. J. C. Charlier and J. P. Michenaud, Phys. Rev. Lett. 70, 1858–1861 (1993).

    ADS  Google Scholar 

  17. J.-C. Charlier, T. W. Ebbesen, and Ph. Lambin, Phys. Rev. B 53, 11108 (1996).

    ADS  Google Scholar 

  18. A. Kasuya, Y. Sasaki, Y. Saito, K. Tohji, and Y. Nishina, Phys. Rev. Lett. 78, 4434 (1997).

    ADS  Google Scholar 

  19. H. Kataura, A. Kimura, Y. Maniwa, S. Suzuki, H. Shiromaru, T. Wakabayashi, S. Iijima, and Y. Achiba, unpublished (1997).

    Google Scholar 

  20. R. Bacon, J. Appl. Phys. 31, 283–290 (1960).

    ADS  Google Scholar 

  21. J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature (London) 391, 59–62 (1998).

    ADS  Google Scholar 

  22. T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Nature (London) 391, 62–64 (1998).

    ADS  Google Scholar 

  23. K. Sattler, Carbon 33, 915–920 (1995).

    Google Scholar 

  24. R. Saito, M. Pujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204–2206 (1992).

    ADS  Google Scholar 

  25. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, 1996).

    Google Scholar 

  26. S. G. Louie. In Physics and Chemistry of Materials with Low-Dimensional Structures: Fullerene-Based Materials, edited by Wanda Andreoni, (Kluwer, Dordrecht, 1999) Chapter 9 of this volume.

    Google Scholar 

  27. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Chem. Phys. Lett. 195, 537 (1992).

    ADS  Google Scholar 

  28. J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett. 68, 631–634 (1992).

    ADS  Google Scholar 

  29. T. Hamada, M. Furuyama, T. Tomioka, and M. Endo, J. Mater. Res. 7, 1178–1188 (1992). ibid., 2612-2620.

    ADS  Google Scholar 

  30. K. Harigaya, Chem. Phys. Lett. 189, 79 (1992).

    ADS  Google Scholar 

  31. K. Tanaka, M. Okada, K. Okahara, and T. Yamabe, Chem. Phys. Lett. 191, 469 (1992).

    ADS  Google Scholar 

  32. R. Saito, M. Pujita, G. Dresselhaus, and M. S. Dresselhaus. In Electrical, Optical and Magnetic Properties of Organic Solid State Materials, MRS Symposia Proceedings, Boston, edited by L. Y. Chiang, A. F. Garito, and D. J. Sandman (Materials Research Society Press, Pittsburgh, 1992) 333.

    Google Scholar 

  33. Riichiro Saito, Mitsutaka Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 46, 1804–1811 (1992).

    ADS  Google Scholar 

  34. G. S. Painter and D. E. Ellis, Phys. Rev. B 1, 4747 (1970).

    ADS  Google Scholar 

  35. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Google Scholar 

  36. M. S. Dresselhaus, R. A. Jishi, G. Dresselhaus, D. Inomata, K. Nakao, and Riichiro Saito, Molecular Materials 4, 27–40 (1994).

    Google Scholar 

  37. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J. Appl. Phys. 73, 494 (1993).

    ADS  Google Scholar 

  38. K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, and F. Willaime, Science 278, 653 (1997).

    ADS  Google Scholar 

  39. M. S. Dresselhaus, Nature (London) 391, 19–20 (1998).

    ADS  Google Scholar 

  40. S. Wang and D. Zhou, Chem. Phys. Lett. 225, 165 (1994).

    ADS  Google Scholar 

  41. C. H. Oik and J. P. Heremans, J. Mater. Res. 9, 259–262 (1994).

    ADS  Google Scholar 

  42. T. Ebbesen. In Fullerenes and Nanotubes, edited by Pierre Delhaès and P. M. Ajayan (Gordon and Breach, Paris, 1998) Series: World of Carbon, Vol. 2.

    Google Scholar 

  43. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, Nature (London) 386, 474 (1997).

    ADS  Google Scholar 

  44. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, and R. Saito, Physics World 11(1), 33–38 (1998).

    Google Scholar 

  45. L. Kouwenhoven, Science 275, 1896 (1997).

    Google Scholar 

  46. S. J. Tans, R. M. Verschueren, and C. Dekker, Nature 393, 49–52 (1998).

    ADS  Google Scholar 

  47. C. T. White and T. N. Todorov, Nature (London) 393, 240 (1998).

    ADS  Google Scholar 

  48. S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science 280, 1744 (1998).

    ADS  Google Scholar 

  49. L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 76, 971–974 (1996).

    ADS  Google Scholar 

  50. W. Tian and S. Dalla, Phys. Rev. B 49, 5097 (1994).

    ADS  Google Scholar 

  51. M. F. Lin and K. W.-K. Shung, Phys. Rev. B 51, 7592 (1995).

    ADS  Google Scholar 

  52. M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, and R. E. Smalley, Science 275, 1922–1924 (1997).

    Google Scholar 

  53. S. J. Tans, M. H. Devoret, R. J. A. Groeneveld, and C. Dekker, Nature 394, 761–764 (1998).

    ADS  Google Scholar 

  54. M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, Nature (London) 397, 598–601 (1999).

    ADS  Google Scholar 

  55. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).

    ADS  Google Scholar 

  56. H. Dai, E. W. Wong, and C. M. Lieber, Science 272, 523–526 (1994).

    ADS  Google Scholar 

  57. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature (London) 382, 54–56 (1996).

    ADS  Google Scholar 

  58. L. Langer, V. Bayot, E. Grivei, J. P. Issi, J. P. Heremans, C. H. Olk, L. Stockman, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev. Lett. 76, 479–482 (1996).

    ADS  Google Scholar 

  59. M. S. Dresselhaus, Physics World 9(5), 18–19 (1996).

    Google Scholar 

  60. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 53, 2044–2050 (1996).

    ADS  Google Scholar 

  61. Ph. Lambin, A. Fonseca, J. P. Vigneron, J. B. Nagy, and A. A. Lucas, Chem. Phys. Lett. 245, 85–89 (1995).

    ADS  Google Scholar 

  62. J.-C. Charlier and Ph. Lambin, Phys. Rev. B 57, R15037 (1998).

    Google Scholar 

  63. P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, Science 278, 5335 (1997).

    Google Scholar 

  64. A. B. Kaiser, G. Dusberg, and S. Roth, Phys. Rev. B 57, 1418 (1998).

    ADS  Google Scholar 

  65. J. Hone, M. S. Fuhrer, K. Khazeni, and A. Zettl, Phys. Rev. Lett. 80, 5560 (1998).

    Google Scholar 

  66. L. Grigorian, K. A. Williams, S. Fang, G. U. Sumanasekera, A. L. Loper, E. C. Dickey, S. J. Pennycook, and P. C. Eklund, Phys. Rev. Lett. 80, 5560 (1998).

    ADS  Google Scholar 

  67. R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess, and R. E. Smalley, Nature (London) 388, 255 (1997).

    ADS  Google Scholar 

  68. J. E. Fischer, H. Dai, A. Thess, N. M. Hanjani, D. L. Dehaas, and R. E. Smalley, Phys. Rev. B 55, R4921 (1997).

    Google Scholar 

  69. P. Delaney, H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Nature (London) 391, 466 (1998).

    ADS  Google Scholar 

  70. Y. K. Kwon, S. Saito, and D. Tomanek, Phys. Rev. B 58, R133114 (1998).

    Google Scholar 

  71. L. Grigorian, G. U. Sumanasekera, A. L. Loper, S. Fang, J. L. Allen, and P. C. Eklund, Science (1999) submitted.

    Google Scholar 

  72. L. Grigorian, G. U. Sumanasekera, A. L. Loper, S. Fang, J. L. Allen, and P. C. Eklund, Phys. Rev. B 58, R4195 (1998).

    ADS  Google Scholar 

  73. R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Chem. Phys. Lett. 209, 77–82 (1993).

    ADS  Google Scholar 

  74. E. Richter and K. R. Subbaswamy, Phys. Rev. Lett. 79, 2738 (1997).

    ADS  Google Scholar 

  75. R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 57, 4145–4153 (1998).

    ADS  Google Scholar 

  76. R. A. Jishi, D. Inomata, K. Nakao, M. S. Dresselhaus, and G. Dresselhaus, J. Phys. Soc. Jpn. 63, 2252–2260 (1994).

    ADS  Google Scholar 

  77. M. S. Dresselhaus, G. Dresselhaus, M. A. Pimenta, and P. C. Eklund. pages 367–434, Blackwell Science Ltd., Oxford, UK, 1999. Analytical Applications of Raman Spectroscopy.

    Google Scholar 

  78. A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. W. Williams, M. Menon, K. R. Subbaswamy, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Science 275, 187–191 (1997).

    Google Scholar 

  79. P. C. Eklund, J. M. Holden, and R. A. Jishi, Carbon 33, 959 (1995).

    Google Scholar 

  80. E. Richter and P. C. Eklund, Phys. Rev. Lett. (1999) submitted.

    Google Scholar 

  81. Y. Saito, Y. Tani, N. Miyagawa, K. Mitsushima, A. Kasuya, and Y. Nishina, Chem. Phys. Lett. 294, 593–598 (1998).

    ADS  Google Scholar 

  82. M. Sugano, A. Kasuya, K. Tohji, Y. Saito, and Y. Nishina, Chem. Phys. Lett. 292, 575–579 (1998).

    ADS  Google Scholar 

  83. H. Kuzmany, B. Burger, M. Hulmán, J. Kurti, A. G. Rinzler, and R. E. Smalley, Europhys. Lett. 44, 518–524 (1998).

    ADS  Google Scholar 

  84. A. Kasuya, M. Sugano, Y. Sasaki, T. Maeda, Y. Saito, K. Tohji, H. Takahashi, Y. Sasaki, M. Pukushima, Y. Nishina, and C. Horie, Phys. Rev. B 57, 4999 (1998).

    ADS  Google Scholar 

  85. E. Anlaret, N. Bendiab, T. Guillard, C. Journet, G. Flamant, D. Laplaze, P. Bernier, and J-L Sauvajol, Carbon 36, 1815–1820 (1998).

    Google Scholar 

  86. H. Kuzmany, B. Burger, A. Thess, and R. E. Smalley, Carbon 36, 709–712 (1998).

    Google Scholar 

  87. H. Hiura, T. W. Ebbesen, K. Tanigaki, and H. Takahashi, Chem. Phys. Lett. 202, 509 (1993).

    ADS  Google Scholar 

  88. N. Chandrabhas, A. K. Sood, D. Sundararaman, S. Raju, V. S. Raghunathan, G. V. N. Rao, V. S. Satry, T. S. Radhakrishnan, Y. Hariharan, A. Bharathi, and C. S. Sundar, PRAMANA-Journal of Phys. 42, 375–385 (1994).

    ADS  Google Scholar 

  89. J. M. Holden, Ping Zhou, Xiang-Xin Bi, P. C. Eklund, Shunji Bandow, R. A. Jishi, K. Das Chowdhury, G. Dresselhaus, and M. S. Dresselhaus, Chem. Phys. Lett. 220, 186–191 (1994).

    ADS  Google Scholar 

  90. R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 59, 2388–2392 (1999).

    ADS  Google Scholar 

  91. Jean-Christophe Charlier. Private communication.

    Google Scholar 

  92. M. A. Pimenta, A. Marucci, S. D. M. Brown, M. J. Matthews, A. M. Rao, P. C. Eklund, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, J. Mater. Research 13, 2396–2404 (1998).

    ADS  Google Scholar 

  93. M. A. Pimenta, A. Marucci, S. Empedocles, M. Bawendi, E. B. Hanlon, A. M. Rao, P. C. Eklund, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 58, R16012-R16015 (1998).

    Google Scholar 

  94. A. S. Barker and R. Loudon, Rev. Mod. Phys. 44, 18 (1972).

    ADS  Google Scholar 

  95. T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A. Rinzler, and R. E. Smalley, Phys. Rev. Lett. 80, 4729 (1998).

    ADS  Google Scholar 

  96. A. M. Rao, P. C. Eklund, S. Bandow, A. Thess, and R. E. Smalley, Nature (London) 388, 257 (1997).

    ADS  Google Scholar 

  97. M. S. Dresselhaus and G. Dresselhaus, Advances in Phys. 30, 139–326 (1981).

    ADS  Google Scholar 

  98. J. L. AUen, G. Sumanasekara, A. M. Rao, A. Loper, and P. C. Eklund, J. Phys. Chem. (1999) submitted.

    Google Scholar 

  99. G. Sumanasekara, J. L. Allen, A. M. Rao, S. Fang, and P. C. Eklund, J. Phys. Chem. (1999) submitted.

    Google Scholar 

  100. M. S. Dresselhaus and G. Dresselhaus, Light Scattering in Solids III 51, edited by M. Cardona and G. Guntherodt (Springer, Berlin, 1982) Vol. 51, Topics in Applied Physics.

    Google Scholar 

  101. P. C. Eklund and G. L. Doll. In Graphite Intercalation Compounds II: Transport and Electronic Properties, edited by H. Zabel and S. A. Solin, (Springer, Berlin, 1992) Vol. 18, Springer Series in Materials Science, 105–162.

    Google Scholar 

  102. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, and H. A. Goldberg, Graphite Fibers and Filaments (Springer, Berlin, 1988), Vol. 5, Springer Series in Materials Science.

    Google Scholar 

  103. Z. Ya. Kosakovskaya, L. A. Chernozatonskii, and E. A. Fedorov, JETP Lett. (Pis’ma Zh. Eksp. Teor.) 56, 26 (1992).

    ADS  Google Scholar 

  104. M. R. Falvo, G. J. Clary, R. M. Taylor II, V. Chi, F. P. Brooks, S Washburn, and R. Superfine, Nature (London) 385 (1997).

    Google Scholar 

  105. M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, and H. W. Kroto, J. Phys. Chem. Solids 54, 1841–1848 (1994).

    Google Scholar 

  106. J. Tersoffand R. S. Ruoff, Phys. Rev. Lett. 73, 676 (1994).

    ADS  Google Scholar 

  107. R. S. Ruoff and D. C. Lorents, Carbon 33, 925 (1995).

    Google Scholar 

  108. J. W. Mintmire and C. T. White, Carbon 33, 893 (1995).

    Google Scholar 

  109. B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76, 2511 (1996).

    ADS  Google Scholar 

  110. B. T. Kelly, in Physics of Graphite, (Applied Science, London, 1981).

    Google Scholar 

  111. D. H. Robertson, D. W. Brenner, and J. W. Mintmire, Phys. Rev. B 45, 12592 (1992).

    ADS  Google Scholar 

  112. J. Tersoff, Phys. Rev. B 46, 15546 (1992).

    ADS  Google Scholar 

  113. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature (London) 381, 678 (1996).

    ADS  Google Scholar 

  114. O. Lourie and H. D. Wagner, J. Mater. Res. 13, 2418 (1998).

    ADS  Google Scholar 

  115. L. S. Schadler, S. C. Giannaris, and P. Ajayan, Appl. Phys. Lett. 73, 3842–3844 (1998).

    ADS  Google Scholar 

  116. B. I. Yakobson and R. E. Smalley, American Scientist 85, 324 (1997).

    ADS  Google Scholar 

  117. D. L. Carroll, P. Redlich, P. M. Ajayan, J. C. Charlier, X. Blase, A. De Vita, and R. Car, Phys. Rev. Lett. 78, 2811–2814 (1997).

    ADS  Google Scholar 

  118. W. A. de Heer, A. Châtelain, and D. Ugarte, Science 270, 1179 (1995); see also ibid, p. 1119.

    ADS  Google Scholar 

  119. A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, Science269, 1550 (1995).

    ADS  Google Scholar 

  120. P. G. Collins and A. Zettl, Appl. Phys. Lett. 69, 1969 (1996).

    ADS  Google Scholar 

  121. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Casswell, and H. Dai, Science 283, 512–514 (1999).

    ADS  Google Scholar 

  122. J. Kong, H. T. Soh, A. M. Casswell, C. F. Quate, and H. Dai, Nature (London) 395, 878–881 (1998).

    ADS  Google Scholar 

  123. A. C. Dillon, K. M. Jones T. A. Bekkedahl, C.-H. Kiang, D. S. Bethune, and M. J. Heben, Nature (London) 386, 377 (1996).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C., Rao, A.M. (2000). Carbon Nanotubes. In: Andreoni, W. (eds) The Physics of Fullerene-Based and Fullerene-Related Materials. Physics and Chemistry of Materials with Low-Dimensional Structures, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4038-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4038-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5780-6

  • Online ISBN: 978-94-011-4038-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics