Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 548))

Abstract

Kuga-Satake varieties are abelian varieties associated to certain weight two Hodge structures, for example the second cohomology group of a K3 surface. We start with an introduction to Hodge structures and we give a detailed account of the construction of KugaSatake varieties. The Hodge conjecture is discussed in section2. An excellent survey of the Hodge conjecture for abelian varieties is [G].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Carlson, A. Kasparian, D. Toledo, Variations of Hodge structure of maximal dimension, Duke Math. J. 58 669–694 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  2. J.W.S. Cassels, Rational Quadratic Forms, LMS Monographs 13, Academic Press, London, (1978).

    Google Scholar 

  3. P. Deligne, La conjecture de Weil pour les surfaces K3, Invent. Math. 15 206–226 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Deligne et al, Hodge Cycles, Motives and Shimura Varieties, LNM 900, Springer-Verlag, Berlin etc. (1982).

    MATH  Google Scholar 

  5. W. Fulton and J. Harris, Representation Theory, GTM 129, Springer-Verlag, Berlin etc. (1991).

    Book  MATH  Google Scholar 

  6. B. van Geemen, An introduction to the Hodge conjecture for abelian va-rieties. In: Algebraic Cycles and Hodge Theory, LNM 1594, Springer-Verlag, Berlin etc. (1994).

    Google Scholar 

  7. B. B. Gordon, A survey of the Hodge conjecture for Abelian Varieties, Duke preprint alg-geom 9709030, to appear in the second edition of `A survey of the Hodge conjecture’ by James D. Lewis.

    Google Scholar 

  8. P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley and Sons, New York (1978).

    MATH  Google Scholar 

  9. M. Kuga and I. Satake, Abelian varieties associated to polarized K 3 sur-faces, Math. Ann. 169 239–242 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Y. Lam, The algebraic theory of quadratic forms, W. A. Benjamin, Inc., Reading (1973).

    MATH  Google Scholar 

  11. G. Lombardo, to appear.

    Google Scholar 

  12. K. Matsumoto, Theta functions on the bounded symmetric domain of type I 2,2 and the period map of a 4-parameter family of K3 surfaces, Math. Ann. 295, 383–409 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Mayer, Coupled contact systems and rigidity of maximal dimensional variations of Hodge structure, Trans. Amer. Math. Soc., to appear (eprint alg-geom/9712001).

    Google Scholar 

  14. B.J.J. Moonen and Yu.G. Zarhin, Hodge and Tate classes on simple abelian fourfolds, Duke Math. J. 77 553–581 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  15. B.J.J. Moonen and Yu.G. Zarhin, Hodge classes on abelian varieties of low dimension, eprint math/9901113

    Google Scholar 

  16. K. Paranjape, Abelian varieties associated to certain K3 surfaces, Corn-pos. Math. 68 11–22 (1988).

    MathSciNet  Google Scholar 

  17. I. Satake, Clifford algebras and families of abelian varieities, Nagoya J. Math. 27 435–446 (1966).

    MathSciNet  Google Scholar 

  18. W. Scharlau, Quadratic and Hermitian Forms,Grundlehren der Math. Wiss. 270, Springer-Verlag, Berlin etc. (1985).

    Book  MATH  Google Scholar 

  19. C. Schoen, Hodge classes on self-products of a variety with an automorphism, Compos. Math. 65 3–32 (1988).

    MathSciNet  MATH  Google Scholar 

  20. C. Schoen, Varieties dominated by product varieties, Int. J. Math. 7 541–571 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Schoen, Addendum to: hodge classes on self-products of a variety with an automorphism, Compos. Math. 114 329–336 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  22. J.-P. Serre, A Course in Arithmetic, GTM 7, Springer Verlag, Berlin etc. (1973).

    Book  MATH  Google Scholar 

  23. C. Voisin, Remarks on zero-cycles of self-products of varieties. M. Maruyama (ed.), Moduli of vector bundles. (35th Taniguchi symposium, 1994). Lect. Notes Pure Appl. Math. 179, 265–285. Marcel Dekker, New York (1996).

    Google Scholar 

  24. A. Weil, Varietès Kähleriennes. Hermann, Paris (1971).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Geemen, B. (2000). Kuga-Satake Varieties and the Hodge Conjecture. In: Gordon, B.B., Lewis, J.D., Müller-Stach, S., Saito, S., Yui, N. (eds) The Arithmetic and Geometry of Algebraic Cycles. NATO Science Series, vol 548. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4098-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4098-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6194-7

  • Online ISBN: 978-94-011-4098-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics