Skip to main content

Part of the book series: Pollution Monitoring Series ((PMS))

Abstract

There is considerable information published concerning the environmental effects of some of the toxic metals, for example, cadmium, mercury and lead, where their potency has been demonstrated to cause environmental problems. However, there is a growing need to extend our knowledge to encompass the other elements in the Periodic Table which may exhibit an unrecognized toxicity to living organisms. Any element that is biochemically active may be potentially hazardous to crops, livestock, wildlife and man himself. Many factors determine the risk potential of a particular element, whether it is bioaccumulative, mobile, persistent or continually released into the environment. For these reasons it is necessary to provide basic information about the nature of other elements so that adverse effects can be anticipated before they occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, S. N. and J. L. Honeysett (1964). Some effects of soil waterlogging on the cobalt and copper status of pasture plants grown in pots. Aust. J. agric. Res. 15: 357–67.

    Article  Google Scholar 

  • Aferov, Y. A., V. G. Zvyagin, M. V. Roslyakova, N. A. Roslyakov, L. L. Shabynin and L. Epov (1968). Gold in rocks, plants and waters of the Darasun deposit. (In Russian.) Vopr Geology Pribaikal Zabaikal. 3: 146–9.

    Google Scholar 

  • Agarwal, R. P. and I. Feldman (1968). Chelation of uranyl ions by adenine nucleotides. II. Magnetic resonance investigation of the uranyl nitrateadenosine-5-phosphate in D2O at alkaline pD. J. Am. Chem. Soc. 90: 6635–9.

    Article  Google Scholar 

  • Ahmed, S. and H. J. Evans (1960). Cobalt: A micronutrient element for the growth of soybean plants under symbiotic conditions. Soil Sci. 90: 205–10.

    Article  Google Scholar 

  • Alban, L. A. and J. Kubota (1960). A study of extractable soil cobalt in soils of the south eastern United States. Soil Sci. Soc. Amer. Proc. 24: 183–5.

    Article  Google Scholar 

  • Allen, R. W. and E. Steinnes (1978). Concentrations of some potentially toxic metals and other trace elements in wild mushrooms from Norway. Chemosphere. 4: 371–8.

    Article  Google Scholar 

  • Anderson, A. J., D. R. Meyer and F. K. Mayer (1973). Heavy metal toxicities: Levels of nickel, cobalt and chromium in the soil and plants associated with visual symptoms and variation in growth of an oat crop. Austr. J. agric. Res. 24: 557–71.

    Article  Google Scholar 

  • Andrew, C. S. (1976). Screening tropical legumes for manganese tolerance. In: Plant Adaptation to Mineral Stress in Problem Soils (M. J. Wright (ed.)), Cornell University Agricultural Experimental Station, Ithaca, pp. 329–40.

    Google Scholar 

  • Antia, N. J., R. S. Kripps and I. D. Desai (1972). L-Threonine deaminase in marine planktonic algae. III. Stimulation of activity by monovalent inorganic cations and diverse effects from other ions. Arch. Microbiol. 85: 341–54.

    Google Scholar 

  • Aripova, Kh. and R. M. Talipov (1966). Features of the concentration of gold in soils and plants of the southern part of Tamdynsk Mountain. (In Russian.) Akademy Nauk Uzbek SSR Uzbek Geology Zhur. 10: 45–51.

    Google Scholar 

  • Arnon, D. I. and G. Wessell (1953). Vanadium as an essential element for green plants. Nature. 172: 1039–40.

    Article  Google Scholar 

  • Avanzi, S. (1956). ‘Non congression’, ‘non disjunction’ and other mitotic aberrations in Allium cepa induced by thallium acetate. Caryologia. 9: 131–48.

    Google Scholar 

  • Avanzi, S. (1957). Inhibition of the cytological effect of thallium acetate by cysteine. Caryologia. 10: 96–101.

    Google Scholar 

  • Baetjer, A. M. (1974). Chromium. National Academy of Sciences, Washington, 155 pp.

    Google Scholar 

  • Baker, D. E. (1976). Acid soils. In: Plant Adaptation to Mineral Stress in Problem Soils (M.J. Wright (ed.)), Cornell University Agricultural Experimental Station, Ithaca, pp. 127–40.

    Google Scholar 

  • Bartlett, R. J. and B. James (1979). Behaviour of chromium in soils. III. Oxidation. J. Environ. Qual. 8: 31–5.

    Article  Google Scholar 

  • Bartlett, R. J. and J. M. Kimble (1976a). Behaviour of chromium in soils. I. Trivalent forms. J. Environ. Qual. 5: 379–83.

    Article  Google Scholar 

  • Bartlett, R. J. and J. M. Kimble (1976b). Behaviour of chromium in soils. II. Hexavalent forms. J. Environ. Qual. 5: 383–6.

    Article  Google Scholar 

  • Battey, M. H. (1972). Mineralogy for Students. Longman, London, 320 pp.

    Google Scholar 

  • Beeson, K. C., V. A. Lazar and S. G. Boyce (1955). Some plant accumulators of the micronutrients. Ecology. 36: 155–6.

    Article  Google Scholar 

  • Bengtsson, S. and G. Tyler (1976). Vanadium in the Environment—A Technical Report. Monitoring and Assessment Research Centre, University of London.

    Google Scholar 

  • Berrow, M. L. and J. Webber (1972). Trace elements in sewage sludge. J. Sci. Ed. Agric. 23: 93–100.

    Article  Google Scholar 

  • Bertrand, D. (1950). The biochemistry of vanadium. In: Survey of Contemporary Knowledge of Biochemistry, American Museum of Natural History, Bulletin No.94, Article 7, pp.403–56.

    Google Scholar 

  • Bertrand, D. and A. de Wolf (1965). Le chrome, oligo élément dynamique pour les végétaux supérieurs. C.R. Acad. Sci. 26: 5616–17.

    Google Scholar 

  • Bertrand, D. and A. de Wolf (1968). Nécessité de l’oligo-élément chrome pour la culture de la pomme de terre. C.R. Acad. Sci. Ser. D. 266: 1494–5.

    Google Scholar 

  • Blincoe, C. (1974). Investigations of the chemical form of chromium in lucerne. J. Sci. Ed. Agric. 25: 973–9.

    Article  Google Scholar 

  • Block, W. D., O. H. Buchanan and R. H. Freyberg (1974). A comparative study of the distribution and excretion of gold following intramuscular injection of five different gold compounds. J. Pharmacol Exp. Ther. 73: 200–4.

    Google Scholar 

  • Bolle-Jones, E. W. and V. R. Mallikarjuneswara (1957). A beneficial effect of cobalt on the growth of the rubber plant (Hevea brasiliensis). Nature (Lond.) 179: 738–9.

    Article  Google Scholar 

  • Bostian, K., G. F. Betts, W. K. Man and M. N. Hughes (1975). Thallium activation and inhibition of yeast aldehyde dehydrogenase. FEBS Letters. 59: 88–91.

    Article  Google Scholar 

  • Bourque, G., P. Vittorio and P. Weinberger (1967). Uptake of 51Cr as an indicator of metabolic change in wheat root tips. Canad. J. Physiol. Pharmacol. 45: 235–9.

    Article  Google Scholar 

  • Bové, J., C. Bové and D. Arnon (1957). Molybdenum and vanadium requirements of Azotobacter for growth and nitrogen fixation. Plant Physiol. 32: Supplementum 23.

    Google Scholar 

  • Bowen, H. J. M. (1966). Trace Elements in Biochemistry. Academic Press, London, 241 pp.

    Google Scholar 

  • Bowen, H. J. M. (1972). The determination of tin in biological material by using neutron-activation analysis. Analyst. 97: 1003–5.

    Article  Google Scholar 

  • Bowen, H. J. M. (1974). Problems in the elementary analysis of standard biological materials. J. Radioanal. Chem. 19: 215–26.

    Article  Google Scholar 

  • Bowen, H. J. M. (1978). Environmental Chemistry of the Elements, 1st ed., Academic Press, London, 333 pp.

    Google Scholar 

  • Bowen, H. J. M., P. A. Cawse and J. Thick (1962). The distribution of some inorganic elements in plant toxic extracts. J. Exp. Bot. 13: 257–67.

    Article  Google Scholar 

  • Boyle, R. W. (1968). Geochemistry of silver and its deposits with notes on geochemical prospecting for the element. Geological Survey Canada Bulletin No. 160, 164pp.

    Google Scholar 

  • Branham, S. E. (1929). The effects of certain chemical compounds upon the course of gas production by bakers yeast. J. Bacteriol. 18: 247–68.

    Google Scholar 

  • Brokaw, A. D. (1910). The solution of gold in the surface alterations of ore bodies. J. Geol. 18: 321–6.

    Article  Google Scholar 

  • Brooks, R. R. (1972). Geobotany and Biogeochemistry in Mineral Exploration. Harper and Row, New York, 290 pp.

    Google Scholar 

  • Brown, J. C. (1976). Screening plants for iron efficiency. In: Plant Adaptation to Mineral Stress in Problem Soils (M.J. Wright (ed.)), Cornell University Agricultural Experimental Station, Ithaca, pp. 355–8.

    Google Scholar 

  • Brown, J. C. and W. E. Jones (1975). Heavy metal toxicity in plants. I. A crisis in embryo. Commun. Soil Sci. Pl. Anal. 6: 421–38.

    Article  Google Scholar 

  • Brucher, E. (1961). Retention of U(IV) in humus material. Atomik Kozlemenvek. 3: 11–15.

    Google Scholar 

  • Buck, D. and C. K. Horner (1935). The specific catalytic role of molybdenum and vanadium in nitrogen fixation and amide utilisation by Azotobacter. Trans. Interna. Cong. Soil Sci., 3rd Congress, Oxford, pp. 152-5.

    Google Scholar 

  • Buczek, J. (1973). Effect of vanadium on the nitrate reductase activity in tomato leaves. Acta. Soc. Bot. Pol. 42: 224–31.

    Google Scholar 

  • Byrne, A. R. (1974). Neutron activation analysis of tin in biological materials and their ash using 123Sh and 125Sn. J. Radioanal. Chem. 20: 627–37.

    Article  Google Scholar 

  • Byrne, A. R., M. Dermelj and T. Vakselj (1981). Silver accumulation by fungi. The Ecosphere (in press).

    Google Scholar 

  • Byrne, A. R., V. Ravnik and L. Kosta (1976). Trace element concentrations in higher fungi. Sci. Tot. Environ. 6: 65–78.

    Article  Google Scholar 

  • Campbell, J. A., J. C. Laul, K. K. Nielson and R. D. Smith (1978). Separation and chemical characterization of finely-sized fly-ash particles. Anal. Chem. 50: 1032–40.

    Article  Google Scholar 

  • Campbell, L. G. and H. N. Lafever (1976). Correlation of field and nutrient culture techniques of screening wheat for aluminium tolerance. In: Plant Adaptation to Mineral Stress in Problem Soils (M.J. Wright (ed.)), Cornell University Agricultural Experimental Station, Ithaca, pp. 277–86.

    Google Scholar 

  • Cannon, H. L. (1957). Description of indicator plants and methods of botanical prospecting for uranium deposits on the Colorado Plateau. Geol. Surv. Bull. 1030-M: 399–516.

    Google Scholar 

  • Cannon, H. L. (1960a). The development of botanical methods of prospecting for uranium on the Colorado Plateau. Bull. U.S. Geol. Surv. 1085-A: 50.

    Google Scholar 

  • Cannon, H. L. (1960b). Botanical prospecting for ore deposits. Science. 132: 591–8.

    Article  Google Scholar 

  • Cannon, H. L. (1963). The biogeochemistry of vanadium. Soil Sci. 96: 196–204.

    Article  Google Scholar 

  • Cannon, H. L. (1964). Geochemistry of rocks and related soils and vegetation in the Yellow Cat area, Grand County, Utah. U.S. Geol. Surv. Bull. 1176: 1–127.

    Google Scholar 

  • Cannon, H. L. (1971). The use of plant indicators in ground water surveys, geologic mapping and mineral prospecting. Taxon. 20: 227–56.

    Article  Google Scholar 

  • Cary, E. E., W. H. Allaway and O. E. Olson (1977a). Control of chromium concentrations in food plants. I. Absorption and translocation of chromium by plants. J. Agric. Fd. Chem. 25: 300–4.

    Article  Google Scholar 

  • Cary, E. E., W. H. Allaway and O. E. Olson (1977b). Control of chromium concentrations in food plants. II. Chemistry of chromium in soils and its availability to plants. J. Agric. Fd. Chem. 25: 305–9.

    Article  Google Scholar 

  • Cavender, W. S. (1964). Arsenic in geochemical exploration. A.I.M.E. Preprint. 64-2-73: 16–20.

    Google Scholar 

  • Chaney, R. L. and P. M. Giordano (1977). Microelements as related to plant deficiencies and toxicities. In: Soils for Management of Organic Wastes and Waste Waters (L. F. Elliot and F. J. Stevenson (eds)), Soil Science Society of America, Madison, pp. 235–79.

    Google Scholar 

  • Charley, R. C. and A. T. Bull. (1979). Bioaccumulation of silver by a multispecies community of bacteria. Arch. Microbiol. 123: 239–44.

    Article  Google Scholar 

  • Chaudhry, F. M, A. Wallace and R. T. Mueller (1977). Barium toxicity in plants. Commun. Soil Sci. Pl. Anal. 8: 795–7.

    Article  Google Scholar 

  • Chen, N. S. C., A. Tsai and I. A. Dyer (1973). Effect of chelating agents on chromium absorption in rats. J. Nutr. 103: 1182–6.

    Google Scholar 

  • Chenery, E. M. (1946). Are hydrangea flowers unique? Nature (Lond.) 158: 240–1.

    Article  Google Scholar 

  • Clarkson, D. T. and J. Sanderson (1969). The uptake of a polyvalent cation and its distribution in the root apices of Allium cepa: Tracer and autoradiographic studies. Planta (Berl.) 89: 136–54.

    Article  Google Scholar 

  • Cohen, B. B. (1940). Some effects of stannous sulphate and stannic chloride on several herbaceous plants. Plant Physiol. 15: 755–60.

    Article  Google Scholar 

  • Coles, D. G., R. C. Ragaini, J. M. Ondov, G. L. Fisher, D. Silberman and B. A. Prentice (1979). Chemical studies of stack fly ash from a coal-fired power plant. Environ. Sci. Technol. 13: 455–9.

    Article  Google Scholar 

  • Collier, G. F. and D. J. Greenwood (1977a). Potential phytotoxic components of pulverized fuel ash. J. Sci. Fd. Agric. 28: 137–44.

    Article  Google Scholar 

  • Collier, G. F. and D. J. Greenwood (1977b). The influence of solution concentration of aluminium, arsenic, boron and copper on root growth in relation to the phytotoxicity of pulverized fuel ash. J. Sci. Fd. Agric. 28: 145–51.

    Article  Google Scholar 

  • Connor, J. J. and H. T. Shacklette (1975). Background geochemistry of some rocks, soils, plants and vegetables in the conterminous United States. U.S. Geol. Surv. Prof. Paper 574-F.

    Google Scholar 

  • Cooper, C. F. and W. C. Jolly (1970). Ecological effects of silver iodide and other weather modification agents: A Review. Water Resour. Res. 6: 88–98.

    Article  Google Scholar 

  • Davidson, R. L., D. F. S. Natusch, C. A. Evans and P. Williams (1976). Surface predominance of trace elements in airborne particles. Science. 191: 852–4.

    Article  Google Scholar 

  • Davies, M., J. B. Lloyd and F. Beck (1971). The effect of trypan blue suramin and anrothiomalate on the breakdown of 125I-labelled albumin within rat liver lyosomes. Biochem. J. 121: 21–6.

    Google Scholar 

  • Day, F. H. (1963). The Chemical Elements in Nature, 1st edn., Harrap, London, 368 pp.

    Google Scholar 

  • De Haan, I. S. (1978). Yield and mineral composition of grass grown on soils treated with sewage sludge. Seventh General Meeting European Grasslands Federation, Gent, pp. 9.31-9.40.

    Google Scholar 

  • De Kate, Y. G. (1967). Tungsten occurrences in India and their genesis. Econ. Geol. 62:556–61.

    Article  Google Scholar 

  • Desbaumes, P. and D. Ramaciotti (1968). Étude chimique de l’action sur la vegetation d’un effluent gazeux industriel contenant du chrome hexavalent. Pollut. Atmos. 10: 224–6.

    Google Scholar 

  • Devine, T. E. (1976). Aluminium and manganese toxicities in legumes. In: Plant Adaptation to Mineral Stress in Problem Soils (M. J. Wright (ed.)), Cornell University Agricultural Experimental Station, Ithaca, pp. 65–72.

    Google Scholar 

  • Dowdy, R. H. and W. E. Larson (1975). Metal uptake by barley seedlings grown on soils amended with sewage sludge. J. Environ. Qual. 4: 229–33.

    Article  Google Scholar 

  • Dudal, R. (1976). Inventory of the major soils of the world with special reference to mineral stress hazards. In: Plant Adaptation to Mineral Stress in Problem Soils (M.J. Wright (ed.)), Cornell University Agricultural Experimental Station, Ithaca, pp. 3–14.

    Google Scholar 

  • Duvigneaud, P. (1959a). Plantes—cobaltophytes—dans le Haut-Katanga. Bull. Soc. Roy. Bot. Belg. 91: 111–34.

    Google Scholar 

  • Duvigneaud, P. (1959b). I. Crotalaria et sols metallifs dans le Haut-Katanga. Bull. Soc. Roy. Bot. Belg. 91: 135–76.

    Google Scholar 

  • Evans, W. H., F. J. Jackson and D. Dellar (1979). Evaluation of a method for determination of total antimony, arsenic and tin in foodstuffs using measurement by atomic-absorption spectrophotometry with atomization in a silica tube using the hydride generation technique. Analyst. 104: 16–34.

    Article  Google Scholar 

  • Feldman, I., J. Jones and R. Cross (1967). Chelation of uranyl ions by adenine nucleotides. J. Am. Chem. Soc. 89: 49–55.

    Article  Google Scholar 

  • Fleming, G. A. and W. E. Murphy (1968). The uptake of some major and trace elements by grasses as affected by season and stage of maturity. J. Brit. Grass. Soc. 23: 174–85.

    Article  Google Scholar 

  • Foy, D. (1976). General principles involved in screening plants for aluminium and manganese tolerance. In: Plant Adaptation to Mineral Stress in Problem Soils (M.J. Wright (ed.)), Cornell University Agricultural Experimental Station, Ithaca, pp. 255–68.

    Google Scholar 

  • Foy, C. D. and J. C. Brown (1964). Toxic factors in acid soils. II. Differential aluminium tolerance of plant species. Soil Sci. Soc. Amer. Proc. 28: 27–32.

    Article  Google Scholar 

  • Foy, C. D., E. R. Burns, J. C. Brown and A. L. Fleming (1965). Differential aluminium tolerance of two wheat varieties associated with plant-induced pH changes around their roots. Soil Sci. Soc. Amer. Proc. 29: 64–7.

    Article  Google Scholar 

  • Foy, C. D., A. L. Fleming, G. R. Burns and W. H. Armiger (1967). Characterisation of differential aluminium tolerance among varieties of wheat and barley. Soil Sci. Soc. Amer. Proc. 31: 513–21.

    Article  Google Scholar 

  • Freise, F. W. (1931). The transportation of gold by organic underground solutions, Econ. Geol. 26: 421–31.

    Article  Google Scholar 

  • Fries, L. (1962). Vitamin B12 in Pisum sativum (L.). Physiol. Plant. 15: 566–71.

    Article  Google Scholar 

  • Fujimoto, G. and G. D. Sherman (1950). Cobalt content of typical soils and plants of the Hawaiian Islands. Agron. J. 42: 577–81.

    Article  Google Scholar 

  • Furr, A. K., W. C. Kelly, C. A. Bache, W. H. Gutenmann and D. J. Lisk (1976a). Multielement uptake by vegetables and millet grown in pots on fly ash amended soil. J. Agric. Fd. Chem. 24: 835–8.

    Article  Google Scholar 

  • Furr, A. K., A. W. Lawrence, S. S. C. Tong, M. C. Grandolfo, R. A. Hofstader, C.A. Bache, W.H. Gutenmann and D.J. Lisk (1976b). Multielement and chlorinated hydrocarbon analysis of municipal sewage sludges of American Cities. Environ. Sci. Techmol. 10: 683–7.

    Article  Google Scholar 

  • Furr, A. K., G. S. Stoewsand, C. A. Bache, W. A. Gutenmann and D. J. Lisk (1975). Multielement residues in tissues of guinea pigs fed sweet clover grown on fly ash. Archiv. Environ. Health. 30: 244–8.

    Google Scholar 

  • Ganther, H. E. (1974). Biochemistry of selenium. In: Selenium (R. A. Zingaro and W.C. Cooper (eds)), 1st edn., Van Nostrand Reinhold Co., New York, 546–614.

    Google Scholar 

  • Gemmell, R. P. (1972). Use of waste materials for revegetation of chromate smelter waste. Nature (Lond.), 240: 569–70.

    Article  Google Scholar 

  • Gille, G. L. and E. R. Graham (1971). Isotopically exchangeable cobalt: The effect of soil pH and ionic saturation on the soil. Soil Sci. Soc. Amer. Proc. 35: 414–16.

    Article  Google Scholar 

  • Girling, C. A. (1978). Gold in plants. Ph.D. Thesis, University of London.

    Google Scholar 

  • Girling, C. A., P. J. Peterson and M. J. Minski (1978). Gold and arsenic concentrations in plants as an indication of gold mineralization. Sci. Total Environ. 10: 79–86.

    Article  Google Scholar 

  • Girling, C. A., P. J. Peterson and H. V. Warren (1979). Plants as indicators of gold mineralization at Watson Bar, British Columbia, Canada. Econ. Geol. 74: 902–12.

    Article  Google Scholar 

  • Goldschmidt, V. M. (1937). The principles and distribution of chemical elements in minerals and rocks. Chem. Soc. (Lond.) J. 655-93.

    Google Scholar 

  • Goldschmidt, V. M. (1958). Geochemistry, 1st edn., Clarendon Press, Oxford, 730 pp.

    Google Scholar 

  • Golikova, O. P. (1963). The uranium content of some cultivated plants. Fiziolbiokhim osnovi Pidvischchennya Produktivn Rosl. 255-7.

    Google Scholar 

  • Gough, L. P., H. T. Shacklette and A. A. Case (1979). Element concentrations toxic to plants, animals and man. U.S. Geol. Survey Bull. 1466: 80.

    Google Scholar 

  • Hackett, C. (1962). Stimulative effects of aluminium on plant growth. Nature (Lond.) 195: 471–2.

    Article  Google Scholar 

  • Hackett, C. (1965). Ecological aspects of the nutrition of Deschampsia flexuosa(L.) Trin. II. The effects of Al, Ca, Fe, K, Mn, N, P and pH on the growth of seedlings and established plants. J. Ecol. 53: 315–33.

    Article  Google Scholar 

  • Hallbauer, D. K. (1975). The plant origin of the Witwatersrand ‘carbon’. Min. Sci. Eng. 7: 111–31.

    Google Scholar 

  • Hamner, C. L. (1942). Effects of platinum chloride on bean and tomato. Bot. Gaz. 104: 161–6.

    Article  Google Scholar 

  • Hampel, C. A. (1968). The Encyclopaedia of the Chemical Elements, 1st edn., Van Nostrand Reinhold, New York, 857 pp.

    Google Scholar 

  • Handreck, K. A. and D. S. Riceman (1969). Cobalt distribution in several pasture species grown in culture solution. Austr. J. agric. Res. 20: 213–26.

    Article  Google Scholar 

  • Hanna, W. J. and C. L. Grant (1962). Spectrochemical analysis of the foliage of certain trees and ornamentals for 23 elements. Bull. Torrey Bot. Club. 89: 293–302.

    Article  Google Scholar 

  • Heimer, Y. M., J. L. Wray and P. Filner (1969). The effect of tungstate on nitrate assimilation in higher plant tissues. Plant. Physiol. 44: 1197–9.

    Article  Google Scholar 

  • Hewitt, E. J. (1948). Relation of manganese and some other metals to the iron status of plants. Nature (Lond.) 161: 489–90.

    Article  Google Scholar 

  • Hewitt, E. J. (1953). Metal interrelationships on plant nutrition: I. Effects of some metal toxicities on sugar beet, tomato, oat, potato and narrowstem kale grown in sand culture. J. exp. Bot., 4: 59–64.

    Article  Google Scholar 

  • Hewitt, E. J. and T. A. Smith (1975). Plant Mineral Nutrition, 1st edn., English Universities Press, London, 298 pp.

    Google Scholar 

  • Higgins, E. S., D. A. Richert and W. W. Westerfeld (1956). Tungstate antagonism of molybdate in Aspergillus niger. Proc. Soc. expt. Biol. Med. 92: 509–11.

    Google Scholar 

  • Hill, A. C., S. J. Toth and F. E. Bear (1953). Cobalt status of New Jersey soils and forage plants, and factors affecting the cobalt content of plants. Soil Sci. 76: 273–84.

    Article  Google Scholar 

  • Holliday, R., W. N. Townsend and D. R. Hodgson (1956). Plant growth on ‘fly-ash’ Nature (Lond.) 176: 983–4.

    Article  Google Scholar 

  • Holm-Hansen, O., G. C. Gerloff and F. Skoog (1954). Cobalt as an essential element for blue-green algae. Physiol. Plant. 7: 665–75.

    Article  Google Scholar 

  • Horn, E. E., J. C. Ward, J. C. Munch and F. E. Garlough (1936). The effect of thallium on plant growth. U.S. Dep. Agric. Circ. 409: 1–8.

    Google Scholar 

  • Horovitz, C. T. and O. Petrescu (1964). The roles of beryllium and of magnesium in plant metabolism. Trans. 8th Interna. Cong. Soil Sci. 4: 1205–213.

    Google Scholar 

  • Horovitz, C. T., H. H. Schock and L. A. Horovitz-Kisimova (1974). The content of scandium, thorium, silver and other trace elements in different plant species. Plant Soil. 40: 397–403.

    Article  Google Scholar 

  • Hosking, K. F. G. (1974). The Search for Tin Deposits. International Tin Council, London, 55 pp.

    Google Scholar 

  • Howe, H. E. and A. A. Smith, Jr (1950). Properties and uses of thallium. J. Electrochem. Soc. 97: 167C–70C.

    Article  Google Scholar 

  • Huey, C. W., F. E. Brinckman, W. P. Iverson and S. O. Grim (1975). Bacterial volatilization of cadmium. In: Intern. Conf. Heavy Metals in the Environment (T. C. Hutchinson (ed.)), University of Toronto, Toronto, Abstract C, pp. 214–16.

    Google Scholar 

  • Huffman, E. W. D. and W. H. Allaway (1973a). Chromium in plants: Distribution in tissues, organelles and extracts, and availability of bean leaf chromium to animals. J. Agric. Chem. 21: 982–6.

    Article  Google Scholar 

  • Huffman, E. W. D. and W. H. Allaway (1973b). Growth of plants in solution culture containing low levels of chromium. Plant. Physiol. 52: 72–5.

    Article  Google Scholar 

  • Humphreys, F. and R. Truman (1964). Aluminium and the phosphorus requirements of Pinus radiata. Plant. Soil. 20: 131–4.

    Article  Google Scholar 

  • Hunter, J. G. and O. Vergnano (1952). Nickel toxicity in plants. Ann. Appl. Biol. 39: 279–84.

    Google Scholar 

  • Hutchinson, G. E. (1943). The biogeochemistry of aluminium and of certain related elements. Quart. Rev. Biol. 18: 128–53.

    Article  Google Scholar 

  • Hutchinson, G. E. (1945). Aluminium in soils, plants and animals. Soil Sci. 60: 29–40.

    Article  Google Scholar 

  • Jandl, J. M. and R. L. Simmons (1957). The agglutination and sensitization of red cells by metallic cations: Interactions between multivalent metals and the red cell membrane. Br. J. Haematol. 3: 19–22.

    Article  Google Scholar 

  • Jensen, H. L. and D. Spencer (1946–47). The influence of molybdenum and vanadium on nitrogen fixation by Clostridium butyricum and related organisms. Proc. Linn. Soc. N.S.W. 72: 73–86.

    Google Scholar 

  • Johnson, R. E. and W. A. Jackson (1964). Calcium uptake and transport by wheat seedlings as affected by aluminium. Soil Sci. Soe. Amer. Proc. 28: 381–6.

    Article  Google Scholar 

  • Jones, L. H. (1961). Aluminium uptake and toxicity in plants. Plant Soil. 13: 297–310.

    Article  Google Scholar 

  • Jones, R. S. (1970). Gold content of water, plants and animals. Circ. U.S. Geol. Surv. 625: 1–13.

    Google Scholar 

  • Keeler, R. F. and J. E. Varner (1957). Tungstate as an antagonist of molybdate in Azotobacter vinelandii. Arch. Biochem. Biophys. 70: 585–80.

    Article  Google Scholar 

  • Kerridge, P. C. and W. E. Kronstad (1968). Evidence of genetic resistance to aluminium toxicity in wheat (Triticum aesiivum Vill. Host.) Agron. J. 60: 710–11.

    Article  Google Scholar 

  • Khotomov, Sh., E. M. Lobanov and A. A. Kist (1966). The problem of plants within ore fields. (In Russian.) Akademy Nauk Tadzhik, SSR Doklady. 9: 27–30.

    Google Scholar 

  • King, H. (1977). An appraisal of the toxicity hazard to plants, animals and man from natural and man-made element concentrations of environmental concern. U.S. Geol. Surv. Colorado, Bull. 1466: 80.

    Google Scholar 

  • Klein, D. H. and P. Russel (1973). Heavy metals: Fallout around a power plant. Environ. Sci. Technol. 7: 357–8.

    Article  Google Scholar 

  • Korubushkina, E. D., A. S. Chernyak and G. G. Mineev(1974). Dissolution of gold by microorganisms and their metabolites. Mikrobiologiya. 43: 49–54.

    Google Scholar 

  • Kothny, E. L. (1969). Trace determination of mercury, thallium, and gold with crystal violet. Analyst. 94: 198–203.

    Article  Google Scholar 

  • Kovalevskii, A. L. (1966). Biogeochemistry of tungsten in plants. Geokhimiya. 6: 737–44.

    Google Scholar 

  • Kovalevskii, A. L. (1979). Biogeochemical Exploration for Mineral Deposits, Translation Edn., Amerind Publ. Co. Ltd, New Delhi, 136 pp.

    Google Scholar 

  • Kubota, J. (1964). Cobalt content of New England soils in relation to cobalt levels in forages for ruminant animals. Soil Sci. Soc. Amer. Proc. 28: 246–51.

    Article  Google Scholar 

  • Kubota, J. (1965). Distribution of total and extractable forms of cobalt in morphologically different soils of eastern United States. Soil Sci. 99: 166–74.

    Article  Google Scholar 

  • Kubota, J. and W. H. Allaway (1972). Geographic distribution of trace element problems. In: Micronutrients in Agriculture (J. J. Mortvedt, P. M. Giordano and W. L. Lindsay (eds)), Soil Sci. Soc. Amer. Inc., New York, pp. 525–54.

    Google Scholar 

  • Kubota, J. and V. A. Lazar (1958). Cobalt status of soils of the south eastern United States. II. Ground water podsols and six geographically associated soil groups. Soil Sci. 86: 262–8.

    Article  Google Scholar 

  • Kubota, J., V. A. Lazar and K. C. Beeson (1960). The study of cobalt status of soils in Arkansas and Louisiana, using the black gum as the indicator plant. Soil Sci. Soc. Amer. Proc. 24: 527–8.

    Article  Google Scholar 

  • Kubota, J., E. R. Lemon and W. H. Allaway (1963). The influence of soil moisture upon the uptake of molybdenum, copper and cobalt by alsike clover. Soil Sci. Soc. Amer. Proc. 27: 679–83.

    Article  Google Scholar 

  • Lahouti, M. and P. J. Peterson (1979). Chromium accumulation and distribution in crop plants. J. Sci. Fd. Agric. 30: 136–42.

    Article  Google Scholar 

  • Laist, J. W. (1954). Copper, silver and gold. In: Comprehensive Inorganic Chemistry, 1st Edn. (M. C. Sneed, J. L. Maynard and R. C. Brasted (eds)), Van Nostrand, London, 248 pp.

    Google Scholar 

  • Lambert, T. L. and C. Blincoe (1971). High concentration of cobalt in wheat grasses. J. Sci. Fd. Agric. 22: 8–9.

    Article  Google Scholar 

  • Latteur, J. P. (1962). Cobalt deficiency in the natural environment. In: Cobalt Deficiencies and Sub-deficiencies in Ruminants, Centre d’Information du Co., Brussels, pp. 26–32.

    Google Scholar 

  • Laycock, D. H. (1954). The mineral constituents of some Nyasaland tea leaves and tea soils. J. Sci. Fd. Agric. 5: 266–9.

    Article  Google Scholar 

  • Lazar, V. A. and K. C. Beeson (1956). Mineral nutrients in native vegetation on Atlantic coastal plain soil types. J. Agric. Fd. Chem. 4: 439–44.

    Article  Google Scholar 

  • Levander, O. A. and L. C. Argrett (1969). Effects of arsenic, mercury, thallium and lead on selenium metabolism in rats. Toxicol. Appl. Pharmacol. 14: 308–14.

    Article  Google Scholar 

  • Lim, M. Y. (1979). Trace elements from coal combustion atmospheric emissions. Report No. ICTIS/TROS, Intern. Energy Agency, Coal Research, London.

    Google Scholar 

  • Lindsay, W. L. (ed.) (1979). Silver, Chapter 18 in: Chemical Equilibria in Soils, Wiley Interscience, New York, pp. 300–14.

    Google Scholar 

  • Loneragan, J. F. (1975). The availability and absorption of trace elements in soilplant systems and their relation to movement and concentration of trace elements in plants. In: Trace Elements in Soil-Plant-Animal Systems (D. J. D. Nicholas and A.R. Egan (eds)), New York, Academic Press, pp. 109–34.

    Google Scholar 

  • Lounamaa, J. (1956). Trace elements in plants growing wild on different rocks in Finland. Ann. Bot. Soc. Zool. Bot. Fenn. Vanamo. 29: 1–195.

    Google Scholar 

  • Lungwitz, E. E. (1900). The lixivation of gold deposits by vegetation and its geological significance. Mining J. Lond. 24th March: 318-19.

    Google Scholar 

  • Lyon, G. L., R. R. Brooks, P. J. Peterson and G. W. Butler (1968). Trace elements in a New Zealand serpentine flora. Plant Soil. 29: 225–40.

    Article  Google Scholar 

  • Lyon, G. L., R. R. Brooks, P. J. Peterson and G. W. Butler (1970). Some trace elements in plants from serpentine soils. N.Z. J. Sci. 13: 133–9.

    Google Scholar 

  • Lyon, G. L., P. J. Peterson and R. R. Brooks (1969a). Chromium-51 distribution in tissues and extracts of Leptosp. ermum scoparium. Planta (Berl.) 88: 282–7.

    Article  Google Scholar 

  • Lyon, G. L., P. J. Peterson and R. R. Brooks (1969b). Chromium-51 transport in the xylem sap of Leptospermum scoparium (Manuka). N.Z. J. Sci. 12: 541–5.

    Google Scholar 

  • Lyon, G. L., P. J. Peterson, R. R. Brooks and G. W. Butler (1971). Calcium, magnesium and trace elements in a New Zealand serpentine flora. J. Ecol. 59: 421–9.

    Article  Google Scholar 

  • McCaughey, W. J. (1909). The solvent effect of ferrie and cupric salt solutions upon gold. J. Gold Chem. Soc. 31: 1261–70.

    Article  Google Scholar 

  • McKenzie, R. M. (1975). The mineralogy and chemistry of soil cobalt. In: Trace Elements in Soil-Plant-Animal Systems (D. J. D. Nicholas and A. R. Egan (eds)), Academic Press, New York, pp. 83–94.

    Google Scholar 

  • McLean, E. D. (1970). Chemistry of soil aluminium. Common. Soil Sci. Pl. Anal. 7: 619–36.

    Article  Google Scholar 

  • Malyuga, D. P. (1964). Biogeochemical Methods of Prospecting. Consultants Bureau Enterprises, New York, 214 pp.

    Google Scholar 

  • Manskaya, S. M. and T. V. Drozdova (1959). The importance of natural organic compounds in the concentration and migration of minerals. Primen Mikroelem sel Khoz Medits Baku, 115-18.

    Google Scholar 

  • Maslova, M. N., Yu. V. Natochin and I. A. Skul’skii (1971). Inhibition of active sodium transport and activation of Na + K+ATPase by TI+ in frog skin. Biokhimiya. 36: 867–9.

    Google Scholar 

  • Mason, B. (1966). Principles of Geochemistry, 3rd Edn., John Wiley and Sons, New York, 346 pp.

    Google Scholar 

  • Meekes, M. J., R. R. Landolt, W. V. Kessler and G. S. Born (1971). Effect of vanadium on metabolism of glucose in the rat. J. Pharmacol. Sci. 60: 482–3.

    Article  Google Scholar 

  • Mertz, W. (1969). Chromium occurrence and function in biological systems. Physiol. Rev. 49: 163–239.

    Google Scholar 

  • Mertz, W. and E. E. Roginski (1971). Chromium metabolism. The glucose tolerance factor. In: Newer Trace Elements in Nutrition (W. Mertz and W. E. Cornatzer (eds)), Marcel Dekker Inc., New York, pp. 123–53.

    Google Scholar 

  • Mertz, W. and K. Schwarz (1959). Relation of glucose tolerance factor to impaired glucose tolerance in rats on stock diets. Amer. J. Physiol. 196: 614–18.

    Google Scholar 

  • Mewissen, D. J., J. Damblon and Z. M. Bacq (1959). Comparative sensitivity to radiation of seeds from a wild plant grown on uraniferous and non-uraniferous soils. Nature. 183: 1449.

    Article  Google Scholar 

  • Millman, A. P. (1957). Biogeochemical investigations in areas of copper-tin mineralization in S.W. England. Geochim. Cosmochim. Acta. 12: 85–93.

    Article  Google Scholar 

  • Minski, M. J., C. A. Girling and P. J. Peterson (1977). Determination of gold and arsenic in plant material by neutron activation analysis. Radiochem. Radioanal. Lett. 30: 179–86.

    Google Scholar 

  • Mitchell, R. L. (1945). Cobalt and nickel in soils and plants. Soil Sci. 60: 63–70.

    Article  Google Scholar 

  • Mitchell, R. L., J. W. S. Reith and I. M. Johnston (1957). Trace element uptake in relation to soil content. J. Sci. Fd. Agric. 8: 51–9.

    Google Scholar 

  • Moore, D. P., W. E. Kronstad and R. J. Metzger (1976). Screening wheat for aluminium tolerance. In: Plant Adaptation to Mineral Stress in Problem Soils (M. J. Wright (ed.)), Cornell University Agricultural Experimental Station, Ithaca, pp. 287–95.

    Google Scholar 

  • Moore, T. R. and R. C. Zimmerman (1977). Establishment of vegetation on serpentine asbestos mine wastes, South Eastern Quebec, Canada. J. appl. Ecol. 14: 589–99.

    Article  Google Scholar 

  • Myttenaere, C. and J. M. Mousny (1974). The distribution of chromium-51 in lowland rice in relation to the chemical form and to the amount of stable chromium in the nutrient solution. Plant Soil. 41: 65–72.

    Article  Google Scholar 

  • Nicholas, D. J. D. (1975). The functions of trace elements in plants. In: Trace Elements in Soil-Plant-Animal Systems (D.J.D. Nicholas and A.R. Egan (eds)), Academic Press, New York, pp. 181–98.

    Google Scholar 

  • Nielsen, L. W. and L. M. Massey (1940). Silver as a fungicide. In: Silver in Industry (L. Addicts (ed.)), Reinhold, London, 597 pp.

    Google Scholar 

  • Nikonova, N. N. (1967). Izv. Sib. Otd. Akad. Nauk. SSSR. Ser. Biol. Med. Nauk. 3: 25–9.

    Google Scholar 

  • Norrish, K. (1975). The geochemistry and mineralogy of trace elements. In: Trace Elements in Soil-Plant-Animal Systems (D.J.D. Nicholas and A.R. Egan (eds)), Academic Press, New York, pp. 55–82.

    Google Scholar 

  • Ogryzlo, S. P. (1935). Hydrothermal experiments with gold. Econ. Geol. 30: 400–24.

    Article  Google Scholar 

  • Pallas, J. E., Jr and J. B. Jones, Jr (1978). Platinum uptake by horticultural crops. Plant Soil. 50: 207–12.

    Article  Google Scholar 

  • Peterson, P. J. (1971). Unusual accumulations of elements by plants and animals. Sci. Prog. (Oxf.) 59: 505–26.

    Google Scholar 

  • Peterson, P. J., M. A. S. Burton, M. Gregson, S. Nye and E. K. Porter (1976). Tin in plants and surface waters in Malaysian ecosystems. Trace Subst. Environ. Hlth. 10: 123–32.

    Google Scholar 

  • Peterson, P. J., M. A. S. Burton, M. Gregson, S. Nye and E.K. Porter (1979a). Accumulation of tin by mangrove species in West Malaysia. Sci. Tot. Environ. 11: 213–21.

    Article  Google Scholar 

  • Peterson, P. J., C. A. Girling, D. W. Klumpp and M. J. Minski (1979b). An appraisal of neutron activation analysis and other analytical techniques for the determination of arsenic, selenium and tin in environmental samples. In: Nuclear Activation Techniques in the Life Sciences 1978, International Atomic Energy Agency, Vienna, pp. 103–14.

    Google Scholar 

  • Phung, H. T., L. J. Lund, A. C. Page and G. R. Bradford (1979). Trace elements in fly ash and their release in water and treated soils. J. Environ. Qual. 8: 171–5.

    Article  Google Scholar 

  • Pratt, P. F. (1966). Chromium. In: Diagnostic Criteria for Plants and Soils (H. D. Chapman (ed.)), University of California, Division of Agricultural Science, Riverside, pp. 136–41.

    Google Scholar 

  • Prince, A. L. (1957a). Influence of soil types on the mineral composition of corn tissues as determined spectrographically. Soil Sci. 83: 399–405.

    Article  Google Scholar 

  • Prince, A. L. (1957b). Trace element delivering capacity of ten New Jersey soil types, as measured by spectrographic analyses of soils and mature corn leaves. Soil Sci. 84: 413–18.

    Article  Google Scholar 

  • Proctor, J. and S. R. J. Woodell (1975). The ecology of serpentine soils. Adv. Ecol. Res. 9: 255–366.

    Article  Google Scholar 

  • Raikov, L., M. Yanachkova and M. Iotov (1966). Uranium and radium uptake by some crops from soil contaminated with these elements. Pochvozn. Agrokhim. 1: 155–62.

    Google Scholar 

  • Ramage, H. (1930). Mushrooms—Mineral content. Nature. 126: 279.

    Article  Google Scholar 

  • Rana, S. K. and G. J. Ouellette (1968). Correlation between plant uptake and different methods of extraction of soil cobalt. J. Ind. Soc. Soil Sci. 16: 89–91.

    Google Scholar 

  • Razin, L. V. and I. S. Rozhkov (1963). Gold geochemistry in the crust of weathering and the biosphere of a permafrost province in the Aldan Shield. (In Russian.) Trudy Yakutsk Fil Akademy Nauk, SSR Service Geology. 16: 5–22.

    Google Scholar 

  • Rees, W. J. and G. H. Sidrak (1956). Plant nutrition on fly ash. Plant Soil. 8:141–8.

    Article  Google Scholar 

  • Rees, W. J. and G. H. Sidrak (1961). Inter-element relationship of aluminium and manganese toxicities towards plants. Plant Soil. 14: 101–17.

    Article  Google Scholar 

  • Regan, T. M. and M. M. Peters (1970). Heavy metals in digesters. Failure and cure. J. Water Pollut. Control Fed. 42: 1832–9.

    Google Scholar 

  • Reid, D. A. (1970). Genetic control of reaction to aluminium in winter barley. In: Barley Genetics (R.A. Nilan (ed.)), Washington State University Press, Pullman, pp. 109–13.

    Google Scholar 

  • Reid, D. A. (1976). Aluminium and manganese toxicities in the cereal grains. In: Plant Adaptation to Mineral Stress in Problem Soils (M.J. Wright (ed.)), Cornell University Agricultural Experimental Station, Ithaca, pp. 55–64.

    Google Scholar 

  • Reisenauer, H. M. (1960). Cobalt in nitrogen fixation by a legume. Nature (Lond.) 186: 375–6.

    Article  Google Scholar 

  • Renan, M. J., B. D. Drennan, R. J. Keddy and J. P. F. Sellschop (1979). Oesophageal cancer in the Transkei: Determination of trace-element concentrations in selected plant material by instrumental neutron activation analysis. In: Nuclear Activation Techniques in the Life Sciences, 1978, International Atomic Energy Agency, Vienna, pp. 479–95.

    Google Scholar 

  • Rhue, R. D. and C.O. Grogan (1976). Screening corn for aluminium tolerance. In: Plant Adaptation to Mineral Stress in Problem Soils. (M. J. Wright (ed.)), Cornell University Agricultural Experimental Station, Ithaca, pp. 297–310.

    Google Scholar 

  • Richards, O. W. (1932). The stimulation of yeast growth by thallium, a ‘Bois’ impurity of asparagine. J. Biol. Chem. 96: 405–18.

    Google Scholar 

  • Ridley, W. P., L. J. Dizikes and J. M. Wood (1977). Biomethylation of toxic elements in the environment. Science. 197: 329–32.

    Article  Google Scholar 

  • Romney, E. M. and J. D. Childress (1965). Effects of beryllium in plants and soil. Soil Sci. 100: 210–17.

    Article  Google Scholar 

  • Rudolph, W. W. and J. R. Moore (1972). A new and strange prospecting guide. Alaska Constr. Oil. 13: 40–2.

    Google Scholar 

  • Ruhland, W. (ed.) (1958). Mineral Nutrition of Plants, 4, 1st edn., Springer-Verlag, Berlin, 1210 pp.

    Google Scholar 

  • Ruhling, A. (1970). Heavy metals within the region of Vargo-Trollhattan. Institute of Ecology Botany Report 14, Lund University, Sweden.

    Google Scholar 

  • Sahay, M. N. and A. Sankaram (1968). Effect of trace elements and growth promoting substances on Anabaena circinalis Rabh. Indian J. Microbiol. 8: 47–8.

    Google Scholar 

  • Sampson, M., D. Clarkson and D. D. Davies (1965). DNA synthesis in aluminium treated roots of barley. Science. 148: 1476–7.

    Article  Google Scholar 

  • Sarosiek, J. and B. Klys (1962). Badania nad zawartoscie cyny w roslinach i glebie Sudetów. Acta. Soc. Bot. Polon. 31: 737–52.

    Google Scholar 

  • Schiller, P., G. B. Cook, A. Kitzinger-Skalova and E. Wolfl (1973). The determination of trace (parts per 109) amounts of gold in plants by nondestructive activation analysis. Analyst. 97: 601–4.

    Article  Google Scholar 

  • Schroeder, H. A. (1971). Metals in the air. Environment. 13: 18–31.

    Article  Google Scholar 

  • Schroeder, H. A. (1973). Recondite toxicity of trace elements. 3. In: Essays in Toxicology 4 (W. J. Hayes, Jr (ed.)), Academic Press, London, 107–99.

    Google Scholar 

  • Schroeder, H. A., J. J. Balassa and I. H. Tipton (1962). Abnormal trace metals in man — Chromium. J. Chron. Dis. 15: 941–64.

    Article  Google Scholar 

  • Schroeder, H. A., J. J. Balassa and I. H. Tipton (1963). Abnormal trace elements in man — Vanadium. J. Chron. Dis. 16: 1047–71.

    Article  Google Scholar 

  • Schroeder, H. A., J. J. Balassa and I. H. Tipton (1964). Abnormal trace metals in man — Tin. J. Chron. Dis. 17: 483–502.

    Article  Google Scholar 

  • Schwarz, K. (1972). Elements newly identified as essential for animals. In: Nuclear Activation Techniques in the Life Sciences, International Atomic Energy Agency, Vienna, pp. 3–21.

    Google Scholar 

  • Schwarz, K., D. B. Milne and E. Vinyard (1970). Growth effects of tin compounds in rats maintained in a trace-element-controlled environment. Biochem. Biophys. Res. Commun. 40: 22–9.

    Article  Google Scholar 

  • Seaber, W. M. (1933). Barium as a normal constituent of Brazil nuts. Analyst. 58: 575–80.

    Article  Google Scholar 

  • Shacklette, H. T. (1962). Field observations of variations in Vaccinium uliginosum L. Can. Field Nat. 76: 162–7.

    Google Scholar 

  • Shacklette, H. T. (1964). Flower variation of Epilobium angustifolium L. growing over uranium deposits. Can. Field Nat. 78: 32–42.

    Google Scholar 

  • Shacklette, H. T. (1980). Elements in fruits and vegetables from areas of commercial production in the conterminous United States. U.S. Geol. Surv., Prof. Paper 1178.

    Google Scholar 

  • Shacklette, H. T. and J. J. Connor (1973). Airborne chemical elements in Spanish moss. U.S. Geol. Surv., Prof. Paper 574-E.

    Google Scholar 

  • Shacklette, H. T., J. C. Hamilton, J. G. Boern Gen and J.M. Bowles (1971). Elemental composition of surficial materials in the conterminous United States. U.S. Geol. Surv., Prof. Paper 574-D.

    Google Scholar 

  • Shacklette, H. T., H. W. Lakin, A. E. Hubert and G. C. Curtin (1970). Absorption of gold by plants. Circ. U.S. Geol. Surv., 1314-B, pp. 1-23.

    Google Scholar 

  • Shaw, D. M. (1952). The geochemistry of thallium. Geochim. Cosmochim. Acta. 2: 118–54.

    Article  Google Scholar 

  • Sheppard, J. C. and W. H. Funk (1975). Trees as environmental sensors monitoring long-term heavy metal contamination of Spokane River, Idaho. Environ. Sci. Technol. 9: 638–42.

    Article  Google Scholar 

  • Shewry, P. R. and P. J. Peterson (1974). The uptake and transport of chromium by barley seedlings (Hordeum vulgäre L.). J. exp. Bot. 25: 785–97.

    Article  Google Scholar 

  • Shewry, P. R. and P. J. Peterson (1976). Distribution of chromium and nickel in plants and soil from serpentine and other sites. J. Ecol. 64: 195–212.

    Article  Google Scholar 

  • Shewry, P. R., H. W. Woolhouse and K. Thompson (1979). Relationships of vegetation to copper and cobalt in the copper clearings of Haut Shaba, Zaire. Bot. J. Linn. Soc. 79: 1–35.

    Article  Google Scholar 

  • Simkins, K. L. and J. M. Pensack (1970). Effect of gold thioglucose on survival, food consumption and body weight of broilers. Poultry Science. 49: 1241–345.

    Article  Google Scholar 

  • Singer, T. P., J. A. Meyer, B. Gasdova and E. S. Guzman-Barron (1947). The reversible inhibition of enzymes by uranium. National Nuclear Energy Service, Division IV, pp. 208-245.

    Google Scholar 

  • Singh, B. and D. J. Wort (1970). Effect of vanadium on sugar beets. Sugar J. 19–24th May.

    Google Scholar 

  • Sivasubramaniam, S. and O. Talibudeen (1971). Effect of aluminium on growth of tea (Camellia sinensis) and its uptake of potassium and phosphorus. J. Sci. Fd. Agric. 22: 325–9.

    Article  Google Scholar 

  • Skeffington, R. A., P. R. Shewry and P. J. Peterson (1976). Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta (Berl.) 132:209-14.

    Google Scholar 

  • Smith, I. C. and B. L. Carson (1977a). Trace Metals in the Environment — 1. Thallium, 1st edn., Ann Arbor Science Publishers, Michigan, 394 pp.

    Google Scholar 

  • Smith, I. C. and B. L. Carson (1977b). Trace Metals in the Environment — 2. Silver, 1st edn., Ann Arbor Science Publishers, Michigan, 469 pp.

    Google Scholar 

  • Smith, P. and L. Smith (1975). Organotin compounds and applications. Chem. Brit. 11: 208–12.

    Google Scholar 

  • Smith, W. H. (1973). Metal contamination of urban woody plants. Environ. Sci. Technol. 7: 631–6.

    Article  Google Scholar 

  • Snodgrass, P. J., B. L. Vallee and F. L. Hoch (1960). Effects of silver and mercurials on yeast alcohol dehydrogenase. J. Biol. Chem. 235: 504–8.

    Google Scholar 

  • Soane, B. D. and D. H. Saunder (1959). Nickel and chromium toxicity of serpentine soils in Southern Rhodesia. Soil Sci. 88: 322–30.

    Article  Google Scholar 

  • Stuve, J. and P. Calle (1969). Role of mitochondria in the handling of gold by the kidney. J. Cell Biol. 44: 667–76.

    Article  Google Scholar 

  • Swaine, D. J. (1955). The trace-element content of soils. Commonwealth Bur. Soil Sci., Tech. Comm. No. 48, HMSO, London.

    Google Scholar 

  • Swaine, D. J. (1975). Trace elements in coal. In: Recent Contributions to Geochemistry and Analytical Chemistry (A. F. Tugarinov (ed.)), Keter Publishing House, Jerusalem, pp. 535–50.

    Google Scholar 

  • Swaine, D. J. (1977). Trace elements in coal. Proceedings of the 11th Annual Conference on Trace Substances in Environmental Health, University of Missouri, 7–9 June, pp. 107-16.

    Google Scholar 

  • Swaine, D. J. (1979). Trace elements in Australian bituminous coals and fly-ashes. Combustion of Pulverised Coal — ‘The Effect of Mineral Matter’ Conference. University of Newcastle, pp. W3-14-W3-18.

    Google Scholar 

  • Szalay, A. (1964). Cation exchange properties of humic acids and their importance in the geochemical enrichment of UO2+ 2) and other cations. Geochim. Cosmochim. Acta. 28: 1605–14.

    Article  Google Scholar 

  • Szalay, A. and M. Szilágyi (1967). The association of vanadium with humic acids. Geochim. Cosmochim. Acta. 31: 1–6.

    Article  Google Scholar 

  • Szekely, A. (1960). Determination of traces of uranium in soils by a sensitized (UO2)2[Fe(CN)6] reaction. Agrokem Talagtan. 9: 381–90.

    Google Scholar 

  • Tandon, S. P. and M. M. Mishra (1968). Effect of some rare elements on nitrification by nitrate forming bacteria in talc medium. Agrochimica. 12: 365–8.

    Google Scholar 

  • Tepper, L. B. (1972). Beryllium. CRC Crit. Rev. Toxicol. 1: 235–60.

    Article  Google Scholar 

  • Thornton, I. and J. S. Webb (1980). Geochemistry and health in the United Kingdom. In: Environmental Geochemistry and Health (S. H. U. Bowie and J. S. Webb (eds)), The Royal Society, London, pp. 151–68.

    Google Scholar 

  • Tiffin, L. O. (1967). Translation of manganese, iron, cobalt and zinc in tomato. Plant Physiol. 42: 1427–32.

    Article  Google Scholar 

  • Tiffin, L. O. (1977). The form and distribution of metals in plants: An overview. In: Biological Implications of Metals in the Environment (H. Drucker and R. E. Wilding (eds)). Technical Information Centre, Energy Research and Development Administration, Springfield, pp. 315–34.

    Google Scholar 

  • Tikhonova, Z. I. and V. A. Zore (1968). Spectroscopic determination of manganese, copper, aluminium, lead and tin in certain vegetables and berries. Gig. Sanit. 33: 62–4.

    Google Scholar 

  • Toepfer, E. W., W. Mertz, E. E. Roginski and M. M. Polansky (1973). Chromium in foods in relation to biological activity. J. Agric. Ed. Chem. 21: 69–73.

    Article  Google Scholar 

  • Tooms, J. S. and J. R. Jay (1964). The role of the biochemical cycle in the development of copper/cobalt anomalies in the freely drained soils of the Northern Rhodesian copperbelt. Econ. Geol. 59: 826–34.

    Article  Google Scholar 

  • Townsend, W. N. and E. W. F. Gillham (1975). Pulverized fuel ash as a medium for plant growth. In: The Ecology of Resource Degradation and Renewal (M. J. Chadwick and G. T. Goodman (eds)), Blackwell Scientific, Oxford, pp. 287–304.

    Google Scholar 

  • Townshend, A. and A. Vaughan (1970). Applications of enzyme catalysed reactions in trace analysis — VI. Determination of mercury and silver by their inhibition of yeast alcohol dehydrogenase. Talanta. 17: 294–304.

    Google Scholar 

  • Tso, T. C., T. P. Sorokin and M. E. Engelhaupt (1973). Effects of some rare elements on nicotine content of the tobacco plant. Plant Physiol. 51: 805–6.

    Article  Google Scholar 

  • Turner, M. A. and R. H. Rust (1971). Effects of chromium on growth and mineral nutrition of soybeans. Soil Sci. Soc. Amer. Proc. 35: 755–8.

    Article  Google Scholar 

  • Tyler, G. (1976). Influence of vanadium on soil phosphatase activity. J. Environ. Qual. 5: 216–17.

    Article  Google Scholar 

  • Vanselow, A. P. (1966). Cobalt. In: Diagnostic Criteria for Plants and Soil (H. D. Chapman (ed.)), University of California Division of Agricultural Science, Riverside, pp. 142–56.

    Google Scholar 

  • Velikii, A. S., V. Y. Volgin and V. V. Ivanov (1966). Geokhim. mineral genet. tipy mestorozhd. redk. elem. akad. Nauk SSSR, Gos. Geol. Kom. SSSR Inst. Mineral Geokhim. Kistrallokhim Redk. Elem. 3: 576–86, 834-5.

    Google Scholar 

  • Venugopal, B. and T. P. Luckey (1975). Toxicology of non-radioactive heavy metals and their salts. In: Heavy Metal Toxicity, Safety and Hormology (T. D. Luckey, B. Venugopal and D. Hutcheson (eds)), Georg Thierne Publ., Stuttgart, pp. 4–73.

    Google Scholar 

  • Vergnano, O. and J. G. Hunter (1952). Nickel and cobalt toxicities in oat plants. Ann. Bot. 17: 317–28.

    Google Scholar 

  • Vinogradov, A. P. (1959). The Geochemistry of Rare and Dispersed Chemical Elements in Soils, 1st edn. Consultants Bureau, New York, 209 pp.

    Google Scholar 

  • Von Rosen, G. (1954). Breaking of chromosomes by the action of elements of the periodical system and by some other principles. Hereditas. 40: 258–63.

    Google Scholar 

  • Von Rosen, G. (1957). Mutations induced by the action of metal ions in Pisum. Hereditas. 43: 644–64.

    Article  Google Scholar 

  • Voskresenskaya, N. T. (1968). Thallium in coal. Geochemistry. 2: 158–67.

    Google Scholar 

  • Voskresenskaya, N. T. (1968). Thallium in coal. Geokhimiya. 2: 207–16.

    Google Scholar 

  • Waggaman, W. H., G. G. Heffner and E. A. Gee (1950). Thallium, properties, sources, recovery and uses of the element and its compounds. Bureau of Mines Information Circular 7553, US Department of the Interior, Washington D.C.

    Google Scholar 

  • Wallace, A. and E. M. Romney (1966). Effect of beryllium on in vitro carboxylation reactions. Current Topics Plant Nutr. 185-8.

    Google Scholar 

  • Wallace, A. and E. M. Romney (1977). Aluminium toxicity in plants grown in solution culture. Commun. Soil. Sci. Pl. Anal. 8: 791–4.

    Article  Google Scholar 

  • Wallihan, E. F. (1966). Tin. In: Diagnostic Criteria for Plants and Soils (H.D. Chapman (ed.)), University of California, Division of Agricultural Science, Riverside, pp. 476–7.

    Google Scholar 

  • Walsh, T., A. Fleming, T. J. Kavanagh and P. Ryan (1956). Cobalt status of Irish soils and pastures in relation to pining in sheep and cattle. Ir. Agron. J. 52: 56–116.

    Google Scholar 

  • Ward, N. I., R. R. Brooks and E. Roberts (1977). Silver in soils, stream sediments, waters and vegetation near a silver mine and treatment plant at Maratoto, New Zealand. Environ. Pollut. 13: 269–80.

    Article  Google Scholar 

  • Ward, N. I., E. Roberts and R. R. Brooks (1979). Silver uptake by seedlings of Lolium perenne L. and Trifolium repens L. N. Z. J. Sci. 22: 129–32.

    Google Scholar 

  • Warington, K. (1956). Interaction between iron and molybdenum or vanadium in nutrient solutions with or without a growing plant. Ann. Appl. Biol. 44: 535–46.

    Article  Google Scholar 

  • Warren, H. V. (1972). Biogeochemistry in Canada. Endeavour. 31: 46–9.

    Article  Google Scholar 

  • Warren, H. V. and R. E. Delavault (1950). Gold and silver content of some trees and horsetails in British Columbia. Bull. Geol. Soe. Am. 61: 123–8.

    Article  Google Scholar 

  • Warren, H. V. and R. E. Delavault (1957). Biogeochemical prospecting for cobalt. Trans. R. Soe. Can. 51: 33–7.

    Google Scholar 

  • Warren, H. V. and R. E. Delavault (1960). Observations on the biogeochemistry of lead. Trans. R. Soe. Can. 54: 11–20.

    Google Scholar 

  • Warren, H. V. and R. E. Delavault (1965). Further studies on the biogeochemistry of molybdenum. Western Miner. 38: 64–8.

    Google Scholar 

  • Watkinson, J. H. (1964). A selenium-accumulating plant of the humid regions: Amaniia muscaria. Nature (Lond.). 202: 1239–40.

    Article  Google Scholar 

  • Wedepohl, K. H. (1972). Handbook of Geochemistry, Element 81, Volume 2, Springer-Verlag, Berlin, pp. 81–B–1 81–0–1.

    Google Scholar 

  • Weeks, M. E. and H. M. Leicester (1968). Discovery of the Elements, Chemical Education Publ., London, 896 pp.

    Google Scholar 

  • Whitehead, D. C. and E. C. Jones (1969). Nutrient elements in the herbage of white clover, red clover, lucerne and sainfoin. J. Sci. Ed. Agric. 20: 584–91.

    Article  Google Scholar 

  • Whitehead, N. E. and R. R. Brooks (1969). Aquatic bryophytes as indicators of uranium mineralization. Brvologist. 72: 501–7.

    Google Scholar 

  • Whitehead, N. E., R. R. Brooks and P. J. Peterson (1971). The nature of uranium occurrence in the leaves of Coprosma australis (A. Rich) Robinson. Aust. J. Biol. Sci. 24: 67–73.

    Google Scholar 

  • Wild, H. (1974). Indigenous plants and chromium in Rhodesia. Kirkia. 9: 233–41.

    Google Scholar 

  • Wild, H. (1978). The vegetation of heavy metal and other toxic soils. In: Biogeographv and Ecology of Southern Africa (M. J. A. Weger (ed.)), Dr W. Junk Publ., The Hague, pp. 1301–32.

    Chapter  Google Scholar 

  • Williams, R. J. B. (1965). Effect of beryllium on kale. Reprint from Rothamsted Experimental Station, 1964, pp. 66-7.

    Google Scholar 

  • Williams, R. J. B. and H. H. Riche (1968). The effect of traces of beryllium on the growth of kale, grass and mustard. Plant Soil. 29: 317–26.

    Article  Google Scholar 

  • Wilson, S. B. and E. G. Hallsworth (1965). Studies on the nutrition of forage legumes. IV. The effect of cobalt on the growth of nodulated and nonnodulated Trifolium subterraneum. Plant Soil. 22: 260–79.

    Article  Google Scholar 

  • Wilson, S. B. and D. J. D. Nicholas (1967). A cobalt requirement for non-nodulated legumes and for wheat. Phytochem. 6: 1057–66.

    Article  Google Scholar 

  • Wilson, S. B. and H. M. Reisenauer (1963). Cobalt requirements of symbiotically grown alfalfa. Plant Soil. 19: 364–73.

    Article  Google Scholar 

  • Witschi, H. P. and W. N. Aldridge (1968). Uptake, distribution and binding of beryllium to organelles of the rat liver. Biochem. J. 106: 811–17.

    Google Scholar 

  • Wood, J. M. (1974). Biological cycles for elements in the environment, and the neurotoxicity of metal alkyls. Trace Metals in Water Supplies: Occurrence, Significance and Control. Proceedings of the Sixteenth Water Quality Conference, Champaign, Illinois, pp. 27-38.

    Google Scholar 

  • Young, R. A. (1948). Some factors affecting the solubility of cobalt. Soil Sci. Soc. Amer. Proc. 13: 122–6.

    Article  Google Scholar 

  • Yushko-Zakharova, O. Ye., V. V. Ivanov, I. S. Razina and L.A. Chernyayev (1967). Geochemistry of platinum metals. Geokhimiya. 11: 1381–94.

    Google Scholar 

  • Zitko, V. (1975). Chemistry, applications, toxicity and pollution potential of thallium. Technical Report of the Fisheries Marine Service (Canada), 518, pp. 1-41.

    Google Scholar 

  • Zubovic, P. (1966). Physicochemical properties of certain minor elements as controlling factors in their distribution in coal. Adv. Chem. Serv. 55: 221–30.

    Article  Google Scholar 

  • Zyka, V. (1970). Thallium in plants from Alsar. Sb. Geol. Ved. Techol. Geochem. 10: 91–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Peterson, P.J., Girling, C.A. (1981). Other Trace Metals. In: Lepp, N.W. (eds) Effect of Heavy Metal Pollution on Plants. Pollution Monitoring Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7339-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7339-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7341-4

  • Online ISBN: 978-94-011-7339-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics