Skip to main content

A Re-Investigation of the Geometry Factors for Fission-Track Dating of Apatite, Sphene and Zircon

  • Chapter
Advances in Fission-Track Geochronology

Part of the book series: Solid Earth Sciences Library ((SESL,volume 10))

Abstract

The geometry factors that apply to fission-track dating of zircon, sphene, apatite using mica external detectors were re-investigated. The ideal geometry factor (2π/4π) is described by (R+d)/2R, where R is the etchable range of a fission fragment in the mineral and d is an unetchable range related to differences in the registration threshold between the sample and the detector. The geometry factors for zircon, sphene, and apatite, were experimentally determined to amount to 0.68, 0.60, and 0.55 respectively and are consistent with the ideal values for each mineral. Zeta age-calibration factors have been determined for the external detector method using zircon, sphene and apatite age standards and for the population method using apatite age standards. The directly obtained zeta values are quite variable but the geometric corrections yield an identical zeta baseline for the two methods and for the three minerals. Shortening of spontaneous tracks in the apatite standards was also corrected for. These results suggest that fission-track age determinations using the absolute approach may be within reach for both the population method and the external detector method provided that the right correction for the geometry factor is made. It finally follows that the different values that have been found for the decay constant of spontaneous fission of 238U may be related to technical differences between the conventional external detector and population methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bigazzi, G. (1981) The problem of the decay constant X, of mU, Nucl. Tracks 5, 35–44.

    Article  Google Scholar 

  • Dakowski, M. (1978) Length distributions of fission tracks in thick crystals, Nucl. Track Detection 2, 181189.

    Google Scholar 

  • Danhara, T., Iwano, H., Kasuya, M. and Yamashita, T. (1993) The PFA sheet: An improved mounting material for fission track analysis of zircon, Nucl. Tracks Radiat. Meas. 21, 283–285.

    Article  Google Scholar 

  • Danhara, T., Kasuya, M., Iwano, H. and Yamashita, T. (1991) Fission-track age calibration using internal and external surfaces of zircon, Jour. Geol. Soc. Japan 97, 977–985.

    Article  Google Scholar 

  • Fleischer, R. L. and Price, P. B. (1964) Decay constant for spontaneous fission of Um, Phys. Rev. 133, B63 - B64.

    Article  Google Scholar 

  • Fleischer, R. L., Price, P. B. and Walker, R. M. (1975) Nuclear Tracks in Solids: Principles and ApplicationsUniversity of California Press, Berkeley.

    Google Scholar 

  • Galbraith, R. F. (1981) On statistical models for fission track counts, Math. Geol. 13, 471–478.

    Article  Google Scholar 

  • Galbraith, R. F. (1984) On statistical estimation in fission track dating, Math. Geol. 16, 653–669.

    Article  Google Scholar 

  • Galbraith, R. F. and Laslett, G. M. (1985) Some remarks on statistical estimation in fission-track dating Nucl. Tracks 10 361–363.

    Google Scholar 

  • Galliker, D., Hugentobler, E. and Hahn, B. (1970) Spontane Kernspaltung von mU and z“Am, Heiv. Phys. Acta 43, 593–606.

    Google Scholar 

  • Gentner, W., Storzer, D., Gijbels, R. and Van der Linden, R. (1972) Calibration of the decay constant of 23’U spontaneous fission, Trans. Amer. Nucl. Soc. ANS 15, 125–126.

    Google Scholar 

  • Gleadow, A. J. W. (1981) Fission-track dating methods: what are the real alternatives? Nucl. Tracks. 5, 3–14.

    Article  Google Scholar 

  • Gleadow, A. J. W., Duddy, I. R., Green, P. F. and Lovering J. F. (1986) Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis, Contrib. Mineral. Petrol. 94, 405–415.

    Article  Google Scholar 

  • Gleadow, A. J. W. and Lovering, J. F. (1977) Geometry factor for external detectors in fission track dating Nucl. Track Detection 1, 99–106.

    Google Scholar 

  • Green, P. F. (1980) On the cause of the shortening of spontaneous fission tracks in certain minerals Nucl. Tracks. 4,91–100.

    Google Scholar 

  • Green, P. F. (1985) Comparison of zeta calibration baselines for fission-track dating of apatite, zircon and sphene, Chem. Geol. (Isot. Geosci. Sect.) 58, 1–22.

    Article  Google Scholar 

  • Green, P. F. (1988) The relationship between track shortening and fission track age reduction in apatite: combined influences of inherent instability, annealing anisotropy, length bias and system calibration, Earth Planet. Sci. Lett. 89, 335–352.

    Article  Google Scholar 

  • Green, P. F., Duddy, I. R., Gleadow, A. J. W., Tingate, P. R. and Laslett, G. M. (1986) Thermal annealing of fission tracks in apatite, 1. A qualitative description, Chem. Geol. (Isot. Geosci. Sect.) 59, 237–253.

    Google Scholar 

  • Green, P. F. and Durrani, S. A. (1978) A quantitative assessment of geometry factors for use in fission track studies, Nucl. Track Detection 2, 207–213.

    Article  Google Scholar 

  • Hurford, A. J. (1990) Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission on Geochronology, Chem. Geol.(Isot. Geosci. Sect.) 80, 171–178.

    Article  Google Scholar 

  • Hurford, A. J. and Gleadow, A. J. W. (1977) Calibration of fission track dating parameters, Nucl. Track Detection 1, 41–48.

    Article  Google Scholar 

  • Hurford, A. J. and Green, P. F. (1981) A reappraisal of neutron dosimetry and uranium-238 ?, values in fission-track dating, Nucl. Tracks 5, 53–61.

    Article  Google Scholar 

  • Hurford, A. J. and Green, P. F. (1982) A users’ guide to fission track dating calibration, Earth Planet. Sci. Lett. 59, 343–354.

    Article  Google Scholar 

  • Hurford, A. J. and Green, P. F. (1983) The zeta age calibration of fission-track dating, Isot. Geosci. 1, 285317.

    Google Scholar 

  • Hurford, A. J. and Hammerschmidt, K. (1985) a0Ar/“Ar and K/Ar dating of the Bishop and Fish Canyon Tuffs: Calibration ages for fission-track dating standards, Chem. Geol. (Isot. Geosci. Sect.) 58, 23–32.

    Google Scholar 

  • Hurford, A. J. and Watkins, R. T. (1987) Fission-track age of the tuffs of the Buluk Member, Bakate Formation, northern Kenya: A suitable fission-track age standard, Chem. Geol. (Isot. Geosci. Sect.) 66, 209–216.

    Article  Google Scholar 

  • Iwano, H. and Danhara, T. (1994) One-to-one correlation of fission tracks between sphene and mica detectors, Abstracts of the Eighth International Conference on Geochronology, Cosmochronology and Isotope Geology. P. 154

    Google Scholar 

  • Iwano, H. and Danhara, T. (1997) Zeta calibration of fission-track dating system using high-resolution monitor and comparison of reported zeta values, Fission Track News Letter no.10, in press.(in Japanese with English abstract).

    Google Scholar 

  • Iwano, H., Kasuya, M., Danhara, T., Yamashita, T. and Tagami, T. (1993) Track counting efficiency and unetchable track range in apatite, Nucl. Tracks Radiat. Meas. 21, 513–517.

    Article  Google Scholar 

  • Iwano, H., Kasuya, M., Yamashita, T. and Danhara, T. (1992) One-to-one correlation of fission tracks between zircon and mica detectors, Nucl. Tracks Radiat. Meas. 20, 341–347.

    Article  Google Scholar 

  • Iwano, H., Yamashita, T. and Danhara, T. (1996) Three-dimensional analysis of fission track length in minerals -a measuring system and its application-, Fission Track News Letter no. 9, 13–22.

    Google Scholar 

  • Lakatos, S. and Miller, D. S. (1972) Problems of dating mica by the fission-track method, Can. J. Earth Sci. 10, 403–407.

    Article  Google Scholar 

  • Laslett, G. M., Green, P. F., Duddy, I. R. and Gleadow, A. J. W. (1987) Thermal annealing of fission tracks in apatite, 2. A quantitative analysis, Chem. Geol. (Isot. Geosci. Sect.) 65, 1–13.

    Article  Google Scholar 

  • Miller, D. S., Crowley, K. D., Dokka, R. K., Galbraith, R. F., Kowallis, B. J. and Naeser, C. W. (1993) Results of interlaboratory comparison of fission track ages for 1992 fission track workshop, Nucl. Tracks Radiat. Meas. 21, 565–573

    Article  Google Scholar 

  • Miller, D. S., Eby, N., McCorkell, R., Rosenberg, P. E. and Suzuki, M. (1990) Results of interlaboratory comparison of fission track ages for the 1988 fission track workshop, Nucl. Tracks Radiat. Meas. 17, 237–245.

    Article  Google Scholar 

  • Naeser, C. W. (1967) The use of apatite and sphene for fission track age determinations, Geol. Soc. Am. Bull. 78, 1523–1526.

    Article  Google Scholar 

  • Naeser, C. W., Gleadow, A. J. W. and Wagner, G. A. (1979) Standardization of fission-track data reports, Nucl. Tracks. 3, 133–136.

    Article  Google Scholar 

  • Naeser, C. W., Hurford, A. J. and Gleadow, A. J. W. (1977) Fission-track dating of pumice from the KBS Tuff, East Rudolf, Kenya, Nature 267, 649.

    Article  Google Scholar 

  • Naeser, C. W., Izett, G. A. and Obradovich, J. D. (1980) Fission-track and K-Ar ages of natural glasses, U. S. Geol. Surv. Bull. No. 1489, pp. 1–31.

    Google Scholar 

  • Naeser, C. W., Zimmermann, R. A. and Cebula, G. T. (1981) Fission-track dating of apatite and zircon: an interlaboratory comparison, Nucl. Tracks. 5, 65–72.

    Article  Google Scholar 

  • Odin, G. S., Takahashi, M. and Cosca, M. (1995) ‘0Arl39Ar geochronology of biostratigraphically controlled Miocene tuffs from central Japan: Comparison with Italy and age of the Serravallian-Tortonian boundary, Chem. Geol.(Isot. Geosci. Sect.) 125, 105–121.

    Google Scholar 

  • Reimer, G. M., Storzer, D. and Wagner, G. A. (1970) Geometry factor in fission track counting, Earth Planet. Sci. Lett. 9, 401–404.

    Article  Google Scholar 

  • Roberts, J. H., Gold, R. and Armani, R. J. (1968) Spontaneous-fission decay constant of 238U, Phys. Rev. 174, 1482–1484.

    Article  Google Scholar 

  • Roberts, J. H., Ruddy, F. H. and Gold, R. (1984) Optical efficiency for fission fragment track counting in muscovite solid state track recorders, Nucl. Tracks Radiat. Meas. 8, 365–369.

    Article  Google Scholar 

  • Steiger, R. H. and Jäger, E. (1977) Subcommission on Geochronology: Convention on the use of decay constants in geo-and cosmochronology, Earth Planet. Sci. Lett. 36, 359–362.

    Article  Google Scholar 

  • Storzer, D. (1970) Spaltspuren des 238-Urans und ihre Bedeutung für die geologische Geschichte natürlicher Glaser, PhD Thesis, Universität Heidelberg.

    Google Scholar 

  • Storzer, D. and Wagner, G. A. (1985) Bias in the application of the external detector technique, Geol. Mag. 122, 195–196

    Article  Google Scholar 

  • Tagami, T. (1987) Determination of zeta calibration constant for fission track dating, Nucl. Tracks Radiat. Meas. 13, 127–130.

    Article  Google Scholar 

  • Thiel, K. and Herr, W. (1976) The 238U spontaneous fission decay constant re-determined by fission tracks, Earth Planet. Sci. Lett. 30, 50–56.

    Article  Google Scholar 

  • Van den haute, P., Jonckheere, R. and De Corte, F. (1988) Thermal neutron fluence determination for fission-track dating with metal activation monitors: A re-investigation, Chem. Geol. (Isot. Geosci. Sect.) 73, 233–244.

    Article  Google Scholar 

  • Wagner, G. A., Reimer, G. M., Carpenter, B. S., Faul, H., Van der Linden, R. and Gijbels, R. (1975) The spontaneous fission rate of U-238 and fission track dating, Geochim. Cosmochim. Acta 39, 1279–1286.

    Article  Google Scholar 

  • Wagner, G. A and Van den haute, P. (1992) Fission-Track Dating, Enke, Stuttgart.

    Book  Google Scholar 

  • Wall, T. (1986) Use of an alternative neutron dosimetry standard for fission track dating, Nucl. Tracks 12, 887–890.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Iwano, H., Danhara, T. (1998). A Re-Investigation of the Geometry Factors for Fission-Track Dating of Apatite, Sphene and Zircon. In: van den Haute, P., de Corte, F. (eds) Advances in Fission-Track Geochronology. Solid Earth Sciences Library, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9133-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9133-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4977-3

  • Online ISBN: 978-94-015-9133-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics