Skip to main content

A Historical Review of the Evolution of the Theory on Balancing of Mechanisms

  • Conference paper

Abstract

This work deals with the historical aspects of the origins and the evolution of the balancing theory of mechanisms, the researchers and the countries where work has been conducted on this problem, the fundamental results obtained in the course of this century and the aspects in this evolution that are considered to be the most significant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arakelian V.H. Equilibrage dynamique complet des mécanismes, Mech. and Mach. Theory, 33 (4), 425436 (1998).

    Google Scholar 

  2. Arakelian V.H., Smith M.R. Complete shaking force and shaking moment balancing of linkages, Mech. and Mach. Theory, 34 (8), 1141–1153 (1999).

    Google Scholar 

  3. Arakelian V.H. Synthèse dynamique des mécanismes basée sur les methodes d’approximation de la géométrie cinématique. Proc. of the Ninth World Congress on the Theory of Machines and Mechanisms, Italy, 1, 205–209 (1995).

    Google Scholar 

  4. Artobolevskii I.I., Edelshtein B.V. Methods of inertia calculation for mechanisms of agricultural machines (Russian), Moscow, Ed. Selkhozizdate (1935).

    Google Scholar 

  5. Artobolevskii I.I. Methods of balancing of inertia forces in working machines with complex kinematic schemes (Russian), Moscow, Ed. Acad. Naouk SSSR (1938).

    Google Scholar 

  6. Artobolevckii I.I. Mechanism and machine theory, Ed. Naouka, Moscow, 644p. (1988).

    Google Scholar 

  7. Bagci C. Complete shaking force and shaking moment balancing of link mechanisms using balancing idler loops, TransASME, 104, April, 482–493 (1982).

    Google Scholar 

  8. Belonovskaya I.D., Dimentberg F.M., Maysuk L.B. Construction of the self-balanced spatial mechanisms, Machinovedenie, Moscow, n° 1, 3–9 (1987).

    Google Scholar 

  9. Berestov L.V. Full dynamic balancing of pinned four-bar linkage (Russian), Izv. Vyssh. Uchebn. Zaved. Series: Machinostroenie, 11, 62–65 (1975).

    Google Scholar 

  10. Berestov L.V. Comparative analysis of the reactions in the kinematic pairs of the four-bar linkages for the different methods of balancing, Mechanics of machines, Moscow, Ed. Nauka, 61–70 (1977).

    Google Scholar 

  11. Berkof R.S., Lowen G.G. A new method for completely force balancing simple linkages, TransASME, Eng. Ind., 91 B (1), 21–26 (1969).

    Google Scholar 

  12. Berkof R.S., Lowen G.G. Theory of shaking moment optimization of force-balanced four-bar linkages, TransASME, 93B (1), 53–60 (1971).

    Google Scholar 

  13. Berkof R.S. Complete force and moment balancing inline four-bar linkages, Mech. and Mach. Theory, 8, 397–410 (1973).

    Google Scholar 

  14. Berkof R.S., Lowen G.G., Tepper F.R. Balancing of linkages, Shock and Vibration Digest 9 (6), 3–10 (1977).

    Google Scholar 

  15. Bessonov A.P. Dynamics of the mechanisms with variable mass links, Moscow, Ed. Nauka, 2’78p. (1967).

    Google Scholar 

  16. Bessonov A.P. Balancing a planar mechanism with variable mass links, Mechanisms Conference of ASME, Paper n° 68-Mech-67, Atlanta, Georgia, (1968).

    Google Scholar 

  17. Carson W.L., Stephens J.M. Feasible parameter design spaces for force and root-mean-square moment balancing on in-line 4R 4-bar linkage synthesized for kinematic criteria, Mech. and Mach. Theory, 13 (6), 649–658 (1978).

    Google Scholar 

  18. Chen N., Zhang Q. A method for full shaking force balancing of spatial linkages and the relevant force balancing theory, Proc. of the Sixth World Congress on the Theory of Machines and Mechanisms, New Delhi, 1, 329–332 (1983).

    Google Scholar 

  19. Chen N. Complete shaking force balancing of spatial linkages, Mech. and Mach. Theory, 19 (2), (1984).

    Google Scholar 

  20. Chen N. Partial balancing of spatial force of a spatial four-bar RCCC linkage by the optimization method, Mech. and Mach. Theory, 19 (2) 257–265, (1984).

    Google Scholar 

  21. Chiou S.T., Tsai R.J. The ideal shaft locations of three-rotating-mass balancers for spatial mechanisms, Mech. and Mach. Theory, 30 (3), 405–416 (1995).

    Google Scholar 

  22. Conte F.L., George G.R., Mayne R.W., Sadler J.P. Optimum mechanisms design combining kinematic and dynamic-force consideration, Engineering for Industry, May, 662–668 (1975).

    Google Scholar 

  23. Cormac P. A treatise on engine balance using exponentials. E.P. Dutton, New York (1923).

    Google Scholar 

  24. Dalby W.E. The balancing of engines, Ed Arnnold, London (1923).

    Google Scholar 

  25. Davies T.H. The kinematics and design of linkages, balancing mechanisms and machines, Machine Design Eng., 40 (March), 40–51 (1968).

    Google Scholar 

  26. Delagne G. Certaines propriétés générales d’équilibrage des machines à piston d’après la méthode des vecteurs tournants symétriques. C.R. Acad. Sci. 206 (22), 1617–1618 (1938).

    Google Scholar 

  27. Doucet E. Equilibrage dynamique des moteurs en ligne. Tech. Automobile et Arienne, v.37, pp. 30–31, 35–37, 55–56, 230–232 (1946).

    Google Scholar 

  28. Dresig H., Naake S., Rockausen L. Vollständiger und harmonischer Ausgleich ebener Mechanismen,VDI Verlag, Düsseldorf, 73p. (1994).

    Google Scholar 

  29. Dresig H., Schönfeld S. Trägheitskraftausgleich für ebene Koppelgetriebe, Wiss. Techn. Univ. Dresden, 20 (5), 1341–1349 (1971).

    Google Scholar 

  30. Dresig H., Jacobi P. Vollständiger Trägheitskraftausgleich von ebenen Koppelgetrieben durch Anbringen eines Zweischlages, Maschinenbautechnik, 23 (1), 5–8 (1974).

    Google Scholar 

  31. Dresig H., Schönfeld S. Rechnergestützte Optimierung der Antribs-und Gestellkraftgrössen ebene. Koppelgetriebe-Teil 1, Mech. and Mach. Theory, 11, 363–370 (1976).

    Google Scholar 

  32. Dresig H., Schönfeld S. Rechnergestützte Optimierung der Antribs-und Gestellkraftgrössen ebene. Koppelgetriebe-Teil 2, Mech. and Mach. Theory, 11, 371–379 (1976).

    Google Scholar 

  33. Elliot J.L., Tesar D. The theory of torque, shaking force and shaking moment balancing of four link mechanisms, TransASME, 99B (3), 715–722 (1977).

    Google Scholar 

  34. Elliot J.L., Tesar D. A general mass balancing method for complex planar mechanisms, Mech. and Mach. Theory, 17 (2), 153–172 (1982).

    Google Scholar 

  35. Emöd I. Massenausgleich am Kurbelgertiebe von Sechszylinder-viertakt-V-motoren mit 6 Kurbeln und 60° Zylinderwinkeln, Period. Polytechn. Engng. 11 (3–4), 205–221 (1967).

    Google Scholar 

  36. Esat I., Bahai H. A theory of complete force and moment balancing of planar linkage mechanisms, Mech. and Mach. Theory, 34, 903–922 (1999).

    Google Scholar 

  37. Feng G. Complete shaking force and shaking moment balancing of four types of six-bar linkages, Mech. and Mach. Theory, 24 (4), 275–287 (1989).

    Google Scholar 

  38. Feng G. Complete shaking force and shaking moment balancing of 17 types of eight-bar linkages only with revolute pairs, Mech. and Mach. Theory, 26 (2), 197–206 (1991).

    Google Scholar 

  39. Feng G.. Complete shaking force and shaking moment balancing of 26 types of four-, five-and six-bar linkages with prismatic pairs, Mech. and Mach. Theory, 23 (2), 183–192 (1990).

    Google Scholar 

  40. Fischer O. Über die reduzierten Systeme und die Hauptpunkte der Glieder eines Gelenkmechanismus, Zeif. für Math. and Phys., 47, 429–466 (1902).

    Google Scholar 

  41. Freudenstein F. Quasi lumped-parameter analysis of dynamical systems, Proc. 3rd Appl. Mech. Conf., Paper n°27, Oklahoma State University, (1973).

    Google Scholar 

  42. Freudenstein F., Macey J.P., Make E.R. Optimum balancing of combined pitching and yawing moments in high-speed machinery, TransASME, 103 (3), 571–577 (1981).

    Google Scholar 

  43. Gappoev T.T., Tabouev D.B. Peculiarities of the dynamic balancing of spatial four-bar mechanisms, Proc. of the V World Congress on TMM, Canada, 2, 1420–1423 (1979).

    Google Scholar 

  44. Gappoev T.T. Singularities of the balancing of the spatial mechanisms, Balancing of the machines and the apparatuses, Moscow, ed. Mechanical engineering, 243–251 (1979).

    Google Scholar 

  45. Gappoev T.T., Tabouev D.B. Balancing of spatial mechanisms, Dynamics of machines, Moscow, Ed. Nauka, 50–56, (1980).

    Google Scholar 

  46. Gappoev T.T., Salamonov M.S. Some problems of balancing of agricultural machines, Conference of the Soviet Union: Modern methods of balancing of the machines and the apparatuses, Moscow, 49–50 (1983).

    Google Scholar 

  47. Goryachkin V.P. The forces of inertia and their balancing (Russian). Collection of scientific works. Ed. “Kolos”, Moscow, 283–418 (1914).

    Google Scholar 

  48. Gheronimus Y.L. On the application of Chebychev’s methods to the problem of balancing mechanisms, Mechanisms, 3 (4), 235–281 (1968).

    Google Scholar 

  49. Gheronimus Y.L. An approximate method of calculating a counterweight for the balancing of vertical inertia forces, Mechanisms, 3 (4), 283–288 (1968).

    Google Scholar 

  50. Grossley F.R. Dynamics in machines, New York, Roland Press (1954).

    Google Scholar 

  51. Hilpert H. Weight balancing of precision mechanical instruments, Mechanisms, 3 (4), 289–302 (1968).

    Google Scholar 

  52. Ishida K., Matsuda T. Performance characteristics and working comfortableness of forest workers of a new non-vibration chain saw utilizing perfectly balanced rotation reciprocation device, Proc. 5th World Congress on Theory of Machines and Mechanisms, Montreal, Canada, 2, 951–954 (1979).

    Google Scholar 

  53. Ishida K., Matsuda T. Vibrations on vibrationless rotation-reciprocation internally geared device, and on vibrationless chain saw utilizing this device, Transaction of ASME, Paper 77-DET-157 (1977).

    Google Scholar 

  54. Jacobi P. Vollständiger Trägheitskraftausgleich bei mehrgliedrigen Koppelgetrieben, Maschinenbautechnik, 18 (11), 605–606 (1969).

    Google Scholar 

  55. Jacobi P. Bestimmung Optimaler Koppelgetriebe nach dem Hauptkriterium “Krefte and Moment am Gestell”, Wissenschatliche Zeitshrift der Technischen Hochscule, Karl-Marx-Stadt, 14 (1), 45–49 (1972).

    Google Scholar 

  56. Jacobi P, Rose W. Experimentelle Untersuchung Dynamisch Ausgelgïchener ebener Koppelgetriebe, Maschinenbautechnik, 21 (8), 354–358 (1972).

    Google Scholar 

  57. Kamenski V.A. On the question of the balancing of plane linkages, Mechanisms, 3 (4), 303–322 (1968).

    Google Scholar 

  58. Kamenski V.A. On the problem of the number of counterweights in the balancing of plane linkages, Mechanisms, 3 (4), 323–333 (1968).

    Google Scholar 

  59. Kaufman R.E., Sandor G.N. Complete force balancing of spatial linkages, TransASME, 93B (2), 620626 (1971).

    Google Scholar 

  60. Kobayashi A. Analytical study of crank effort in reciprocating engines, Ryojun College Eng–Memoirs IV (3), 127–183 (1931).

    Google Scholar 

  61. Kochev I.S. General method for full force balancing of spatial and planar linkages by internal mass redistribution, Mech. and Mach. Theory, 22 (4), 333–341 (1987).

    Google Scholar 

  62. Kochev I.S. A new general method for full force balancing of planar linkages, Mech. and Mach. Theory, 23 (6), 475–480 (1988).

    Google Scholar 

  63. Kochev I.S., Gurdev G. General criteria for optimum balancing of combined shaking force and shaking moment in planar linkages, Mech. and Mach. Theory, 23 (6), 481–489 (1988).

    Google Scholar 

  64. Kochev I.S., Gurdev G.H. Balancing of linkages under the combined action of inertia and external forces, Mech. and Mach. Theory, 24 (2), 93–98 (1989).

    Google Scholar 

  65. Kochev I.S. Full shaking moment balancing of planar linkages by a prescribed input speed fluctuation, Mech. and Mach. Theory, 25 (4), 459–466 (1990).

    Google Scholar 

  66. Kochev I.S. Theory of symmetrical mechanisms, Mech. and Mach. Theory, 25 (4), 467–478 (1990).

    Google Scholar 

  67. Kochev I.S. Contribution to the theory of torque, shaking force and shaking moment balancing of planar linkages, Mech. and Mach. Theory, 26 (3), 275–284 (1991).

    Google Scholar 

  68. Kochev I.S. Optimum balancing of a class of multiloop linkages by function cognate transformations, Mech. and Mach. theory, 26 (3), 285–297 (1991).

    Google Scholar 

  69. Kochev I.S. Root-mean-square shaking force along a given direction, Mech. and Mach. Theory, 27 (1), 37–43 (1992).

    Google Scholar 

  70. Kochev I.S. Active balancing of the frame shaking moment in high speed planar machines, Mech. and Macn. Theory, 27 (1), 53–58 (1992).

    Google Scholar 

  71. Kochev I.S. Balancing of planar linkages for prescribed principal axes and minor/major ratio of the r.m.s. shaking force, Mech. and Mach. Theory, 27 (1), 45–51 (1992).

    Google Scholar 

  72. Kochev I.S. Qualitative theory of the reactions and stresses in high speed planar linkages, Mech. and Mach. Theory, 27 (1), 59–68 (1992).

    Google Scholar 

  73. Kochev I.S. Planar assemblies of sub-linkages with optimal dynamic characteristics, Mech. and Mach. Theory, 27 (3), 275–282 (1992).

    Google Scholar 

  74. Kreutzinger R. Über die Bewegung des Schwerpunktes beim Kurbelgetriebe, Getriebetechnik, 10 (9), 397–398 (1942).

    Google Scholar 

  75. Lanchester F.M. Engine balancing. Horseless Age, 33 (12–16), Mar. 25, Apr. 1,8,15, 22, pp. 494–498, 536–538, 571–572, 608–610, 644–646 (1914).

    Google Scholar 

  76. Lowen G.G., Berkof R.S. Survey of Investigation into the Balancing of Linkages, Mech. and Mach. Theory, 3, 221–231 (1968).

    Google Scholar 

  77. Lowen G.G., Berkof R.S. Theory of Shaking Moment Optimization of Force-Balanced Four-Bar Linkages, TransASME, MECH-12 (1970).

    Google Scholar 

  78. Lowen G.G., Berkof R.S. Determination of Force-Balanced Four-Bar Linkages with Optimum Shaking Moment Characteristics, TransASME, MECH-8 (1970).

    Google Scholar 

  79. Lowen G.G., Tepper F.R., Berkof R.S. Balancing of Linkages–an Update, Mech. and Mach. Theory, 18 (3), 213–230 (1983).

    Google Scholar 

  80. Maxwell R.L. Kinematics and dynamics of machinery, Prentice-Hall, Englewood Cliffs, N.J. (1960).

    Google Scholar 

  81. Offt C. Experimentelle Untersuchungen an Koppelgetrieben mit Leistungausgleich, Mech. and Mach. Theory, 9, 239–246 (1974).

    Google Scholar 

  82. O’Leary J.M., Gatecliff G.W. Computer aided balance of single-cylinder slider-crank JC engines, SAE Techn. Pap. Ser., n° 891767, 128–141 (1989).

    Google Scholar 

  83. Porter B., Sandler D. Synthesis of dynamically optimal four-bar linkage, Mechanisms, 24–28 (1973).

    Google Scholar 

  84. Qi N.M., Pennestri E. Optimum balancing of four-bar linkages, Mech. and Mach. Theory, 26(3), 337348 (1991).

    Google Scholar 

  85. Rao A.C. Elastodynamic balancing of machines, Machine Design, n°6, 92–93 (1977).

    Google Scholar 

  86. Root R.E. Dynamics of engine and shaft. John Wiley, New York (1932).

    Google Scholar 

  87. Sadler J.P., Mayne R.W. Balancing of mechanisms by non-linear programming, 3rd App. Mech. Conf., Oklahoma State Univ., 29 (17), 1–29 (1973).

    Google Scholar 

  88. Sadler J.P. Balancing of six-bar linkages by non-linear programming, Mech. Eng., 1, 139–144 (1975).

    Google Scholar 

  89. Sconfeld S. Dynamische Synthese ebener Koppelgetriebe mide dun Programm–system KOGEOP, Maschinenbautechnik, 23 (3), 119–124 (1974).

    Google Scholar 

  90. Semenov M.V. The synthesis of balanced plane mechanisms, Mechanisms, 3 (4), 339–353 (1968).

    Google Scholar 

  91. Semenov M.V. Balancing of spatial mechanisms, Mechanisms, 3 (4), 355–365 (1968).

    Google Scholar 

  92. Schcepetilnikov V.A. The determination of the mass centers of mechanisms in connection with the problem of mechanism balancing, Mechanisms, 3 (4), 367–389 (1968).

    Google Scholar 

  93. Schcepetilnikov V.A. The balancing of mechanisms with unsymmetrical links, Mech. and Mach. Theory, 10 (6), 461–466 (1975).

    Google Scholar 

  94. Schcepetilnikov V.A. Balancing of mechanisms, Moscow, Ed. Mashinostroenie, 256p. (1982).

    Google Scholar 

  95. Smith M.R., Maunder L. Inertia forces in a four-bar linkage, Mechanical Engineering Science, 9 (3) 218225 (1967).

    Google Scholar 

  96. Smith M.R. Dynamic analysis and balancing of linkages with interactive computer graphics, Computer Aided Design, 7 (1), 15–19 (1975).

    Google Scholar 

  97. Smith M.R., Walker M.J. Planar linkages, Journal Eng. Mater. and Design, 20 (10), 27–29 (1976).

    Google Scholar 

  98. Smith M.R., Oldham K, Walker M.J. Linkage balancing, Eng. Materials and Design, 21 (1), 47–50 (1977).

    Google Scholar 

  99. Smith M.R., Oldham K., Walker M.J. Linkage design, Eng. Materials and Design, 21 (10), 29–31 (1977).

    Google Scholar 

  100. Talbourdet G.L., Shepler P.R. Mathematical solution of 4-bar linkages–IV. Balancing of linkages, Machine Design, n° 13, 73–77 (1941).

    Google Scholar 

  101. Tepper F.R., Lowen G.G. On the distribution of the RMS shaking moment of unbalanced planar mechanisms. Theory of isomomental ellipses, Transaction of ASME, 72-MECH-4 (1972).

    Google Scholar 

  102. Tepper F.R., Lowen G.G. General theorems concerning full force balancing of planar linkages by mass redistribution, TransASME, 94B (3), 789–796 (1972).

    Google Scholar 

  103. Tepper F.R., Lowen G.G. Shaking force optimization of four-bar linkage with adjustable constraints on ground bearing forces, TransASME, 97B (2), 643–651 (1975).

    Google Scholar 

  104. Tricamo S.J., Lowen G.G. A new concept for force balancing machines for planar linkages. Part 1: Theory, TransASME, 103 (3), 637–642 (1981).

    Google Scholar 

  105. Tricamo Si., Lowen G.G. A new concept for force balancing machines for planar linkages. Part 2: Application to four-bar linkage and experiment, TransASME, 103 (4), 784–792 (1981).

    Google Scholar 

  106. Tricamo S.J., Lowen G.G. A new method for prescribing the maximum shaking force of a four-bar linkage with flexibility in counterweight design, TransASME, 105 (3), 513–522 (1983).

    Google Scholar 

  107. Tricamo S.J., Lowen G.G. Simultaneous optimization of dynamic reactions of a four-bar linkage with prescribed maximum shaking force, TransASME, 105 (3), 522–528 (1983).

    Google Scholar 

  108. Urba A.L. Disposition of the correction mass for the best balancing of planar linkages, Collection: Balancing of machines and apparatuses, Moscow, Ed. Mechanical engineering, 226–230 (1978).

    Google Scholar 

  109. Urba A.L. Study of the elliptic harmonics and the possibility of their balancing by a counterweight, Collection of the scientific works of the Academy of agricultural science of Lithuania, 26 (3/28), 43–49 (1980).

    Google Scholar 

  110. Urba A.L. Geometric disposition of the points with r.m.s. value of shaking moment of spatial mechanisms, Collection of the scientific works of the Academy of agricultural science of Lithuania, 27 (3/89) 40–49 (1981).

    Google Scholar 

  111. Walker M.J., Haines R.S. A study of counterweight synthesis for a six-bar chain, Mech. and Mach. Theory, 17 (5), 327–334 (1982).

    Google Scholar 

  112. Walker M.J., Haines R.S. An experimental study of the effects of counterweights on a six-bar chain, Mech. and Mach. Theory, 17 (6), 355–360 (1982).

    Google Scholar 

  113. Wawrzecki J. A method of the balancing of spatial mechanisms, Mech. and Mach. Theory, 33 (8) 11951209 (1998).

    Google Scholar 

  114. Wawrzecki J.. The conditions of optimal balancing spatial mechanisms, Proceedings of the Tenth World Congress on Theory of Machines and Mechanisms, Oulu, Finland, 4, 1589–1594 (1999).

    Google Scholar 

  115. Wiederrich J.L., Roth B. Momentum balancing of four-bar linkages, TransASME, 98B (4), 1289–1295 (1976).

    Google Scholar 

  116. Yu Yue-Qing. Research on complete shaking force and shaking moment balancing of spatial linkages, Mech. and Mach. Theory, 22 (1), 27–37 (1987).

    Google Scholar 

  117. Yu Yue-Qing. Optimum shaking force and shaking moment balancing of the RSS’R spatial linkage, Mech. and Mach. Theory, 22 (1), 39–45 (1987).

    Google Scholar 

  118. Yu Yue-Qing. Complete shaking force and shaking moment balancing of spatial irregular force transmission mechanisms using additional link, Mech. and Mach. Theory, 23 (4), 279–285 (1988).

    Google Scholar 

  119. Yu Y.Q., Smith M.R. The effect of link form on the dynamic response of flexible mechanisms, Proc. of 9th World Congress on the Theory of Machines and Mechanisms, Milan, Italy (1995).

    Google Scholar 

  120. Yudin V.A. The balancing of machines and their stability (Russian). “Edition of Academy of Red Army”, Moscow, 124p. (1941).

    Google Scholar 

  121. Zhang S. A constitutive method of objective function for the dynamic optimum balance of shaking force in linkage, Mech. and Mach. Theory, 29 (6), 829–835 (1994).

    Google Scholar 

  122. Zang S., Chen J. The optimum balance of shaking force and shaking moment of linkages, Mech. and Mach. Theory, 30 (4), 589–597 (1995).

    Google Scholar 

  123. Zobairi M.A.K., Rao S.S., Sahay B. Kinetoelastodynamic balancing of 4R-four-bar mechanisms combining kinematic and dynamic stress consideration, Mech. and Mach. Theory, 21 (4), 307–315 (1986).

    Google Scholar 

  124. Zobairi M.A.K., Rao S.S., Sahay B. Kinetoelastodynamic balancing of 4R-four-bar mechanisms by internal mass redistribution, Mech. and Mach. Theory, 21 (4), 317–323 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Arakelian, V., Dahan, M., Smith, M. (2000). A Historical Review of the Evolution of the Theory on Balancing of Mechanisms. In: Ceccarelli, M. (eds) International Symposium on History of Machines and Mechanisms Proceedings HMM 2000. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9554-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9554-4_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5485-2

  • Online ISBN: 978-94-015-9554-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics