Skip to main content

The Transferable Belief Model for Quantified Belief Representation

  • Chapter
Quantified Representation of Uncertainty and Imprecision

Part of the book series: Handbook of Defeasible Reasoning and Uncertainty Management Systems ((HAND,volume 1))

Abstract

We present the transferable belief model (TBM), a model for the representation of quantified beliefs. The model aims in representing the same concept as the Bayesian model, i.e., the graded dispositions that guide ‘our’ behaviour. We use the word ‘belief’ in a broad sense. It could be replaced by quantified credibility, subjective support, strength of opinion... These beliefs are not categorical as in modal logic, but admits degrees as in probability theory. Our approach is normative. The beliefs are held by an idealized rational agent, denoted by You. This ‘You’ can be a human, but also a robot, a computer program...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bradley and N. Swartz. Possible worlds. Basil Blackwell, Oxford, UK, 1979.

    Google Scholar 

  2. R. Carnap. Logical Foundations of Probability. University of Chicago Press, Chicago, Illinois, 1962.

    Google Scholar 

  3. G. Choquet. Theory of capacities. Annales de l’Institut Fourier, Université de Grenoble, 5, 131–296, 1953.

    Google Scholar 

  4. M. H. DeGroot. Optimal statistical decisions. McGraw-Hill, New York, 1970. [Delgado and Moral, 19871 M. Delgado and S. Moral. On the concept of possibility-probabilty consistency. Fuzzy Sets and Systems, 21, 311–318, 1987.

    Article  Google Scholar 

  5. A. P. Dempster. Upper and lower probabilities induced by a multplevalued mapping. Ann. Math. Statistics, 38, 325–339, 1967.

    Article  Google Scholar 

  6. D. Dubois, P. Garbolino, H. E. Kyburg, H. Prade and Ph. Smets. Quantified Uncertainty. J. Applied Non-Classical Logics, 1, 105–197, 1991.

    Google Scholar 

  7. D. Dubois and H. Prade. A set theoretical view of belief functions. Int. J. Gen. Systems, 12, 193–226, 1986.

    Article  Google Scholar 

  8. D. Dubois and H. Prade. The principle of minimum specificity as a basis for evidential reasoning. In Uncertainty in knowledge-based systems, B. Bouchon and R. Yager, eds. pp. 75–84. Springer Verlag, Berlin, 1987.

    Google Scholar 

  9. D. Dubois, H. Prade and Ph. Smets. Representing partial ignorance. IEEE System Machine and Cybernetic, 361–377, 1996.

    Google Scholar 

  10. P. O. Ekelof. RättegOang IV. Fifth edition, Stockholm, 1982.

    Google Scholar 

  11. T. Fine. Theories of probability. Academic Press, New York, 1973.

    Google Scholar 

  12. P. Gärdenfors, B. Hansson and N. E. Sahlin. Evidentiary value: philosophical, judicial and psychological aspects of a theory. C.W.K. Gleerups, Lund, 1983.

    Google Scholar 

  13. P. Gärdenfors. Knowledge influx. Modelling the dynamics ofepistemic states. MIT Press, Cambridge, Mass, 1988.

    Google Scholar 

  14. R. Giles. Foundation for a possibility theory. In Fuzzy Information and Decision Pro- cesses, M. M. Gupta and E. Sanchez, eds. pp. 183–195. North Holland, Amsterdam, 1982.

    Google Scholar 

  15. Y.-T. Hsia. Characterizing Belief with Minimum Commitment. IJCAI-91, 1184— 1189, 1991.

    Google Scholar 

  16. R. Jeffrey. Conditioning, kinematics, and exchangeability. In Causation, Chance, and Credence, B. Skyrrns and W. L. Harper, eds. pp. 221–255. Reidel, Dordrecht, 1988.

    Google Scholar 

  17. R. Kennes. Evidential Reasoning in a Categorial Perspective: Conjunction and Disjunction of Belief Functions. In Uncertainty in AI 91, b. D’Ambrosio, Ph. Smets and P. P. Bonissone, eds. pp. 174–181. Morgan Kaufmann, San Mateo, Ca, USA, 1991.

    Google Scholar 

  18. R. Kennes. Computational aspects of the Moebius transform of a graph. IEEE- SMC, 22, 201–223, 1992.

    Google Scholar 

  19. F. Klawonn and Ph. Smets. The dynamic of belief in the transferable belief model and specialization-generalization matrices. In Uncertainty in Al 92, D. Dubois, M. P. Wellman, B. dAmbrosio and Ph. Smets, eds. pp. 130–137. Morgan Kaufmann, San Mateo, CA, 1992.

    Google Scholar 

  20. J. Kohlas and P. A. Monney. A Mathematical Theory of Hints. An Approach to Dempster-Shafer Theory of Evidence. Lecture Notes in Economics and Mathematical Systems No. 425. Springer-Verlag, 1995

    Google Scholar 

  21. B. O. Koopman. The bases of probability. Bull. Amer. Math. Soc., 46, 763–774, 1940.

    Article  Google Scholar 

  22. R. Kruse and E. Schwecke. Specialisation: a new concept for uncertainty handling iwth belief function. Int. J. Gen. Systems, 18, 49–60, 1990.

    Article  Google Scholar 

  23. N. Pal, J. Bezdek and R. Hemasinha. Uncertainty measures for evidential reaosningI: a review. Int. J. Approox. Reas., 7, 165–183, 1992.

    Article  Google Scholar 

  24. J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infernece. Morgan Kaufmann, San Mateo, CA, 1988.

    Google Scholar 

  25. E. P. Ramsey. Truth and probability. In Studies in subjective probability, H. E. Kyburg and H. E. Smolker, eds. pp. 61–92. Wiley, New york, 1931.

    Google Scholar 

  26. E. H. Ruspini.The logical foundations of evidential reasoning. Technical note 408, SRI International, Menlo Park, CA, 1986.

    Google Scholar 

  27. L. J. Savage. Foundations of Statistics. Wiley, New York, 1954.

    Google Scholar 

  28. G. Shafer. A mathematical theory of evidence. Princeton Univ. Press. Princeton, NJ, 1976.

    Google Scholar 

  29. G. Shafer. Rejoinder to Comments on “Perspectives in the theory and practice of belief functions”. Intern. J. Approx. Reasoning, 6, 445–480, 1992.

    Article  Google Scholar 

  30. G. Shafer and A. Tversky. Laages and designs for probability. Cognitive Sc., 9, 309–339, 1985.

    Article  Google Scholar 

  31. L. S. Shapley. A value for n-person games. In Contributions to the Theory of Games, vol. 2, H. Kuhn and A.W. Tucker, eds. pp. 307–317. Princeton University Press, 1953.

    Google Scholar 

  32. Ph. Smets. Un modèle mathématico-statistique simulant le processus du diagnostic médical. Doctoral dissertation, Université Libre de Bruxelles, Bruxelles, (Available through University Microfilm International, 30–32 Mortimer Street, London W1N 7RA, thesis 80–70, 003 ), 1978.

    Google Scholar 

  33. Ph. Smets. Medical diagnosis: fuzzy sets and degree of belief. Fuzzy Sets and Systems, 5, 259–266, 1981.

    Article  Google Scholar 

  34. Ph. Smets. Information Content of an Evidence. Int. J. Man Machine Studies,19, 33–43, 1983.

    Google Scholar 

  35. Ph Smets. Belief functions. In Non standard logics for automated reasoning, Ph. Smets, A. Mamdani, D. Dubois and H. Prade, eds. pp. 253–286. Academic Press, 1988.

    Google Scholar 

  36. Ph. Smets. The combination of evidence in the transferable belief model. IEEE- Pattern analysis and Machine Intelligence, 12, 447–458, 1990.

    Article  Google Scholar 

  37. Ph. Smets. Constructing the pignistic probability function in a context of uncertainty. Uncertainty in Artificial Intelligence 5, M. Henrion, R. D. Shachter, L. N. Kanal and J. E. Lemmer, eds, pp. 29–40. North Holland, Amsterdam, 1990.

    Google Scholar 

  38. Ph. Smets. Probability of provability and belief functions. Logique etAnalyse, 133–134, 177–195, 1991.

    Google Scholar 

  39. Ph. Smets. The nature of the unnormalized beliefs encountered in the transferable belief model. In Uncertainty in AI 92, D. Dubois, M. P. Wellman, B. d’Ambrosio and Ph. Smets, eds. pp. 292–297. Morgan Kaufmann, San Mateo, CA, USA, 1992.

    Google Scholar 

  40. Ph. Smets. The transferable belief model and random sets. Int. J. Intel!. Systems, 7, 37–46, 1992.

    Article  Google Scholar 

  41. Ph. Smets. The concept of distinct evidence. IPMU 92 Proceedings, pp. 789–794, 1992.

    Google Scholar 

  42. Ph. Smets. The transferable belief model for expert judgments and reliability problems. Reliability Engineering and System Safety, 38, 59–66, 1992.

    Article  Google Scholar 

  43. Ph. Smets. No Dutch Book can be built against the transferable belief model even though update is not obtained by Bayes rule of conditioning. SIS, Workshop on Probabilisitic Expert Systems, R. Scozzafava, ed. pp. 181–204. Roma, 1993.

    Google Scholar 

  44. Ph. Smets. Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem. Int. J. Approximate Reasoning, 9, 1–35, 1993.

    Article  Google Scholar 

  45. Ph. Smets. An axiomatic justifiaction for the use of belief function to quantify beliefs. IJCAI’93 (Inter. Joint Con! on AI), San Mateo, Ca, pp. 598–603, 1993.

    Google Scholar 

  46. Ph. Smets. What is Dempster-Shafer ‘s model? In Advances in the Dempster—Shafer Theory of Evidence. R. R. Yager, J. Kacprzyk and M. Fedrizzi, eds. pp. 5–34. Wiley, New York, 1994.

    Google Scholar 

  47. Ph. Smets. The representation of quantified belief by belief functions: an axiomatic justificiation. Artificial Intelligence, in press, 1997.

    Google Scholar 

  48. Ph. Smets and R. Kennes. The transferable belief model. Artificial Intelligence, 66, 191–234, 1994.

    Article  Google Scholar 

  49. Ph. Smets and R. Kruse. The transferable belief model for belief representation. In Uncertainty Management in information systems: from needs to solutions. A. Moto and Ph. Smets, eds. pp. 343–368. Kluwer, Boston, 1997.

    Chapter  Google Scholar 

  50. C. A. B. Smith. Consistency in statistical inference and decision. J. Roy. Statist. Soc, B23, 1–37, 1961.

    Google Scholar 

  51. P. Teller. Conditionalization and Observation. Synthesis, 26, 218- -258, 1973. [Voorbraak, 1993 ] F. Voorbraak. As Far as I Know: Epistemic Logic and Uncertainty. Dissertation, Utrecht University, 1993.

    Google Scholar 

  52. P. Walley. Statistical reasoning with imprecise probabilities. Chapman and Hall, London, 1991.

    Book  Google Scholar 

  53. N. Wilson. Decision making with belief functions and pignistic probabilities. In Symbolic and Quantitative Approaches to Reasoning and Uncertainty, M. Clarke, R. Kruse and S. Moral, eds. pp. 364–371. Springer Verlag, Berlin, 1993.

    Google Scholar 

  54. S. K. M. Wong, Y. Y. Yao, P. Bollmann and H. C. Bürger. Axiomatization of qualitative belief structure. IEEE Trans. SMC, 21, 726–734, 1990.

    Google Scholar 

  55. H. Xu. An efficient tool for reasoning with belief functions. IPMU 92 Proceedings, pp. 65–68, 1992.

    Google Scholar 

  56. H. Xu, Y.-T. Hsia and Ph. Smets. A belief function based decision support system. Uncertainty in AI 93, D. Heckerman and A. Mamdani, eds. pp. 535–542. Morgan Kaufmann, San Mateo, CA, 1993.

    Google Scholar 

  57. H. Xu and Ph. Smets. Evidential reasoning with conditional belief functions. In Uncertainty in AI 94, D. Heckerman, D. Poole and R. Lopez de Mantaras, eds. Morgan Kaufmann, San Mateo, CA, 1994.

    Google Scholar 

  58. R. Yager. The entailment principle for Dempster—Shafer granules. Int. J. Intel!. Systems, 1, 247–262, 1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smets, P. (1998). The Transferable Belief Model for Quantified Belief Representation. In: Smets, P. (eds) Quantified Representation of Uncertainty and Imprecision. Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1735-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1735-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5038-0

  • Online ISBN: 978-94-017-1735-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics