Skip to main content

An anatomical explanation for visco-elastic and mechano-sorptive creep in wood, and effects of loading rate on strength

  • Chapter
New Perspectives in Wood Anatomy

Part of the book series: Forestry Sciences ((FOSC,volume 1))

Summary

For wood, it is widely known that the steady application of force, in either of the several possible stress modes, causes deformation which increases with time (creep). With any particular intensity of stress, it is well documented that the rate of creep varies significantly, according to whether the stress mode is in compression, bending, tension or shear. Additionally, it has been shown that the amount of creep tends to be considerably greater, if the moisture content of wood is reduced or cycled, than if it is constant (saturated or dry) during application of the force. However, the literature does not contain a broadly acceptable explanation for these phenomena.

It is demonstrated herein that creep generally, and also the qualitative differences in rates of response for the alternative stress modes, may be explained simply in terms of stress-induced physical interactions between the crystalline and non-crystalline components of the cell wall. An added influence of moisture reduction or moisture cycling is similarly explicable. Furthermore, it is shown that effects so deduced are fully compatible with the extensive experimental data in the literature.

Experimental data show that, after the forces causing creep are removed, much of the deformation of the wood is recoverable. The reasons for that become apparent from continuing interactions between the crystalline and noncrystalline wall components, which occur in response to removal of the initial actuating force. It is discussed how creep deflection, which is associated with axial compression and with bending, induces formation of microscopic crinkles across the general alignment of the microfibrils, which constitute the crystalline structural framework of the fibre wall. In turn, those crinkles predispose the fibres and the wood as a whole to failure at much lower intensities of stress, than can be sustained with force application over a short period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandrov, W.G., L.I. Djaparidze. 1927. Ãœber das Entholzen und Verholzen der Zellhaut. Planta 4: 467–475.

    Article  Google Scholar 

  • Arima, T. 1972. Creep in process of temperature changes. 1. Creep in process of constant, elevated and decreased temperature. J. Japan Wood Res. Soc. 18: 349–353.

    Google Scholar 

  • Armstrong, L.D. 1972. Deformation of wood in compression during moisture movement. Wood Sci. 5: 81–86.

    Google Scholar 

  • Armstrong, L.D., G.N. Christensen. 1961. Influence of moisture changes on deformation of wood under stress. Nature 191: 869–870.

    Article  Google Scholar 

  • Armstrong, L.D., R.S.T. Kingston. 1960. Effect on moisture changes on creep in wood. Nature 185: 862–863.

    Article  Google Scholar 

  • Armstrong, L.D., R.S.T. Kingston. 1962. The effect of moisture content changes on the deformation of wood under stress. Austr. J. Appl. Sci. 13: 257–276.

    Google Scholar 

  • Bach, L. 1974. Rheological properties of beechwood in the ammonia-plasticized state. Mater. Sci., Engng. 15: 211–220.

    Google Scholar 

  • Balashov, V., R.D. Preston, G.W. Ripley, L.C. Spark. 1957. Structure and mechanical properties of vegetable fibres. 1. The influence of strain on the orientation of cellulose microfibrils in sisal leaf fibre. R. Soc. ( Lond.) Proc. ser. B, 156: 460–468.

    Google Scholar 

  • Bentum, A.L.K., W.A. Côté, A.C. Day, T.E. Time11. 1969. Distribution of lignin in normal and tension wood. Wood Sci. Technol. 3: 218–231.

    Google Scholar 

  • Bethe, E. 1969. Festigkeitseigenschaften von Bauholz bei Lagerung im Wechselklima unter gleichzeitiger mechanischer Belastung. Holz Roh u. Werkstoff 27: 291–303.

    Google Scholar 

  • Bolton, A.J., P. Jardine, M.H. Vine, J.C.F. Walker. 1974. The swelling of wood under mechanical constraint. Holzforschung 28: 139–145.

    Article  Google Scholar 

  • Boyd, J.D. 1950. Three growth stresses. I. Growth stress evaluation. Austr. J. Sci. Res. 3: 270–293.

    Google Scholar 

  • Boyd, J.D. 1972. Tree growth stresses. V. Evidence of an origin in differentiation and lignification. Wood Sci. Technol. 6: 251–262.

    Google Scholar 

  • Boyd, J.D. 1977a. Relationship between fibre morphology and shrinkage of wood. Wood Sci. Technol. 11: 3–22.

    Google Scholar 

  • Boyd, J.D. 1977b. Interpretation of X-ray diffractograms of wood for assessments of microfibril angle in fibre cell walls. Wood Sci. Technol. 11: 93–114.

    Google Scholar 

  • Boyd, J.D. 1980a. Relationship between fibre morphology, growth strains and physical properties of wood. Austr. For. Res. 10: 337–360.

    Google Scholar 

  • Boyd, J.D. 1980b. Biophysical controls of cellulose formation. In: C.H.A. Little (ed.), Control of Shoot Growth in Trees: 184–236. Proc. IUFRO Workshop on Xylem and Shoot Physiology, Fredericton, New Brunswick, Canada.

    Google Scholar 

  • Boyd, J.D. 1982. Biophysics of microfibril orientation in plant cell walls. In preparation.

    Google Scholar 

  • Boyd, J.D., R.C. Foster. 1974. Tracheid anatomy changes as responses to changing structural requirements of the tree. Wood Sci. Technol. 8: 91–105.

    Google Scholar 

  • Boyd, J.D., R.C. Foster. 1975. Microfibrils in primary and secondary wall growth develop trellis configurations. Canad. J. Bot. 53: 2687–2701.

    Google Scholar 

  • Chen, M.M. 1974. A proposed explanation for the phenomenological rheology of prefrozen redwood. Wood Sci. 7: 34–42.

    Google Scholar 

  • Choong, E.T. 1969. Effect of extractives on shrinkage and other hygroscopic properties of ten southern pine woods. Wood and Fiber 1: 124–133.

    Google Scholar 

  • Christensen, G.N. 1962. The use of small specimens for studying the effect of moisture content changes on the deformation of wood under load. Austr. J. Appl. Sci. 13: 242–256.

    Google Scholar 

  • Cleland, R. 1971. The mechanical behaviour of isolated Avena coleoptile walls subjected to constant stress. Properties and relation to cell elongation. Plant Physiol. 47: 805–811.

    Google Scholar 

  • Davidson, R.W. 1962. The influence of temperature on creep in wood. For. Prod. J. 12: 377–381.

    Google Scholar 

  • Dinwoodie, J.M. 1968. Failure in timber. 1. Microscopic changes in cell-wall structure associated with compression failure. J. Inst. Wood Sci. 21: 37–53.

    Google Scholar 

  • Dinwoodie, J.M. 1978. Failure in timber. 3. The effect of longitudinal compression on some mechanical properties. Wood Sci. Technol. 12: 271–285.

    Google Scholar 

  • Erickson, R.W. 1968. Drying of prefrozen redwood–fundamental and applied considerations. For. Prod. J. 18 (6): 49–56.

    Google Scholar 

  • Erickson, R.W., M.M. Chen, T. Lehtinen. 1972. The effect of unidirectional diffusion and pre-freezing upon flexural creep in redwood. For. Prod. J. 22: 56–60.

    Google Scholar 

  • Erickson, R.W., D.J. Sauer. 1969. Flexural creep behaviour of redwood heartwood drying from the green state. For. Prod. J. 19 (12): 45–51.

    Google Scholar 

  • Eshbach, O.W. 1952. Handbook of engineering fundamentals. 2nd Ed. John Wiley, Sons, New York; Chapman, Hall, London.

    Google Scholar 

  • Frei, E., R.D. Preston. 1961. Cell wall organization and wall growth in the filamentous green algae Cladophora and Chaetomorpha. I. The basic structure and its formation. R. Soc. ( Lond.) Proc. ser. B, 154: 70–94.

    Google Scholar 

  • Frey, A. 1926. Submikroskopische Struktur der Zellmembranen. Eine polarisationsoptische Studie zum Nachweis der Richtigkeit der Micellartheorie. Jahrb. Wiss. Bot. 65: 195–223.

    Google Scholar 

  • Frey-Wyssling, A. 1976. The plant cell wall. Gebr. Borntraeger, Berlin/Stuttgart.

    Google Scholar 

  • Fujita, S., A. Takahashi. 1969. Rheological properties of tropical wood. II. On the histological effects in mechanical properties of tropical wood applied to stress and temperature during drying. J. Japan Wood Res. Soc. 15: 271–277.

    Google Scholar 

  • Furukawa, I. 1978. Optical microscopic studies on the longitudinal tensile failure of notched microtome sections. J. Japan Wood Res. Soc. 24: 598–604.

    Google Scholar 

  • Gardner, R., E.J. Gibson, R.A. Laidlaw. 1969. Effects of organic vapours on the swelling of wood and on its deformation under load. For. Prod. J. 17: 50–51.

    Google Scholar 

  • Grossman, P.U.A. 1953. The recovery of plywood after compression at elevated temperatures. Austr. J. Appl. Sci. 4: 98–106.

    Google Scholar 

  • Grossman, P.U.A. 1976. Requirements for a model that exhibits mechano-sorptive behaviour. Wood Sci. Technol. 10: 163–168.

    Google Scholar 

  • Grossman, P.U.A. 1978. Mechano-sorptive behaviour. In: General constitutive relations for wood and wood-based materials. Report of Workshop sponsored by The Nat. Sci. Found.; Eng. Mechanics Sec.; Solid Mechanics Program. 313–322.

    Google Scholar 

  • Grossman, P.U.A., M.B. Wold. 1971. Compression failure of wood across the grain. Wood Sci. Technol. 5: 147–156.

    Google Scholar 

  • Grozdits, G.A., G. Ifju. 1969. Development of tensile strength and related properties in differentiating coniferous xylem. Wood Sci. 1: 137–147.

    CAS  Google Scholar 

  • Harada, H. 1965. Ultrastructure and organization of gymnosperm cell walls. In: W.A. Côté (ed.), Cellular Ultrastructure of Woody Plants: 215–233. Syracuse Univ. Press, Syracuse, N.Y.

    Google Scholar 

  • Hearmon, R.F.S., J.M. Paton. 1964. Moisture content changes and creep in wood. For. Prod. J. 14: 357–359.

    Google Scholar 

  • Hill, R.L. 1967. The creep behaviour of individual pulp fibres under tensile stress. TAPPI 50: 357–379.

    Google Scholar 

  • Jacobs, M.R. 1938. The fibre tension of woody stems, with special reference to the genus Eucalyptus. Commonw. For. Bur. Austr. Bull. No. 22.

    Google Scholar 

  • Kelsey, K.E. 1963. A critical review of the relationship between the shrinkage and structure of wood. CSIRO, Austr. Div. For. Prod. Technol. Paper No. 28.

    Google Scholar 

  • Kerr, A.J., D.A.I. Goring. 1975. The ultrastructural arrangement of the wood cell wall. Cellulose Chem. Technol. 9: 563–573.

    Google Scholar 

  • Kingston, R.S.T. 1962. Creep relaxation and failure in wood. Research 15: 164–170.

    Google Scholar 

  • Kingston, R.S.T., L.D. Armstrong. 1951. Creep in initially green wooden beams. Austr. J. Appl. Sci. 2: 306–325.

    Google Scholar 

  • Kingston, R.S.T., B. Budgen. 1972. Some aspects of the rheological behaviour of wood. IV. Non-linear behaviour at high stresses in bending and compression. Wood Sci. Technol. 6: 230–238.

    Google Scholar 

  • Kisser, J., H. Frenzel. 1950. Mikroskopische Veränderungen der Holzstruktur bei mechanischer Ãœberbeanspruchung von Holz in der Faserrichtung. Schr. Reihe öst. Ges. Holzforsch. 2: 7–31.

    Google Scholar 

  • Kitahara, K., K. Yukawa. 1964. The influence of change in temperature on creep in bending. J. Japan Wood Res. Soc. 10: 169–175.

    Google Scholar 

  • Kollmann, F.F.P., W.A. Côté. 1968. Principles of wood science and technology. 1. Solid wood. Springer, Berlin/Heidelberg/New York.

    Book  Google Scholar 

  • Kubler, H. 1973. Hygrothermal recovery under stress and release of inelastic strain. Wood Sci. 6: 78–86.

    Google Scholar 

  • Leaderman, H. 1944. Elastic and creep properties of filamentous materials and other high polymers. Textile Foundation, Washington.

    Google Scholar 

  • Mark, H. 1952. Cellulose: Physical evidence regarding its composition. In: L.E. Wise, E.C. Jahn (eds.), Wood Chemistry. Vol. 1: 132-seq. Reinhold, New York.

    Google Scholar 

  • Mark, R.E., P.P. Gillis. 1973. The relationship between fiber modulus and the S2 angle. TAPPI 56: 164–167.

    CAS  Google Scholar 

  • Murphey, W.K. 1963. Cell wall crystallinity as a function of tensile strain. For. Prod. J. 13: 151155.

    Google Scholar 

  • Nearn, W.T. 1955. Effect of water soluble extractives on the volumetric shrinkage and equilibrium moisture content of eleven tropical and domestic woods. Penn. State Univ., Agr. Exp. Sta. Bull. No. 598.

    Google Scholar 

  • Nicholson, J.E. 1973. Growth stress differences in eucalypts. For. Sci. 19: 169–174.

    Google Scholar 

  • Onaka, F. 1949. Studies on compression and tension wood. Wood Res. Inst., Wood Res., Kyoto, Bull. No. 1.

    Google Scholar 

  • Pearson, R.G., N.H. Kloot, J.D. Boyd. 1958. Timber engineering design handbook. CSIR9, Melbourne Univ. Press, Victoria, Australia.

    Google Scholar 

  • Preston, R.D. 1941. The fine structure of phloem fibres. II. Untreated and swollen jute. R. Soc. ( Lond.) Proc. ser. B, 130: 103–112.

    Google Scholar 

  • Preston, R.D. 1974. The physical biology of plant cell walls. Chapman, Hall, London. Preston, R.D., M. Middlebrook. 1949. The fine structure of sisal fibres. J. Text. Inst. 40: T715 - T722.

    Google Scholar 

  • Resch, H., B.A. Ecklund. 1964. Permeability of wood - exemplified by measurements on redwood. For. Prod. J. 14: 199–206.

    Google Scholar 

  • Roelofsen, P.A. 1959. The plant cell wall. Gebr. Borntraeger, Berlin-Nikolassee.

    Google Scholar 

  • Scallan, A.M. 1974. The structure of the cell wall of wood–a consequence of anisotropic intermicrofibrillar bonding? Wood Sci. 6: 266–271.

    Google Scholar 

  • Schniewind, A.P. 1966. On the influence of moisture content changes on the creep of beech wood perpendicular to the grain including effects of temperature and temperature change. Holz Roh u. Werkstoff 24: 87–98.

    Google Scholar 

  • Schniewind, A.P. 1967. Creep rupture life of Douglas fir under cyclic environmental conditions. Wood Sci. Technol. 1: 278–288.

    Google Scholar 

  • Schniewind, A.P. 1968. Recent progress in the study of rheology of wood. Wood Sci. Technol. 2: 188–206.

    Google Scholar 

  • Simpson, W.T. 1971. Moisture changes induced in red oak by transverse stress. Wood and Fiber 5: 13–21.

    Google Scholar 

  • Stamm, A.J. 1964. Wood and cellulose science. Ronald Press, New York.

    Google Scholar 

  • Tieman, H.D. 1944. Wood technology. 2nd Ed. Pitman Publ., New York.

    Google Scholar 

  • Timoshenko, S. 1940. Strength of materials. 1. Elementary theory and problems. 2nd. Ed. Van Nostrand, New York.

    Google Scholar 

  • Tokumoto, M. 1973. Moisture recovery of drying set. II. Effect of quantity of adsorbed moisture and dry-wet cyclings on set recovery in wood. J. Japan Wood Res. Soc. 19: 585–591.

    Google Scholar 

  • Urakami, H., K. Nakato. 1966. The effect of temperature on torsional stress relaxation of wet

    Google Scholar 

  • Hinoki wood. J. Japan Wood Res. Soc. 12: 118–123.

    Google Scholar 

  • Wardrop, A.B. 1971. Lignin occurrence and formation in plants. In: K.V. Sarkanen, C.H. Ludwig (eds.), Lignins: 19–41. John Wiley, Sons, New York.

    Google Scholar 

  • Wood, L.W. 1951. Relation of strength of wood to duration of load. U.S. For. Prod. Lab. Report R1916.

    Google Scholar 

  • Yamada, T., K. Sumiya N. Kanaya. 1966. Rheo-optics of wood. 1. Variations of infra-red spectra with creep in Hinoki (Chamaecyparis obtusa Sieb. et Zucc.). Wood Res. Bull., Wood Res. Inst., Kyoto Univ. No. 38: 21–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boyd, J.D. (1982). An anatomical explanation for visco-elastic and mechano-sorptive creep in wood, and effects of loading rate on strength. In: Baas, P. (eds) New Perspectives in Wood Anatomy. Forestry Sciences, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2418-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2418-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8269-5

  • Online ISBN: 978-94-017-2418-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics