Skip to main content

Generalised Compositional Theories and Diagrammatic Reasoning

  • Chapter
  • First Online:
Quantum Theory: Informational Foundations and Foils

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 181))

Abstract

This chapter provides an introduction to the use of diagrammatic language, or perhaps more accurately, diagrammatic calculus, in quantum information and quantum foundations. We illustrate the use of diagrammatic calculus in one particular case, namely the study of complementarity and non-locality, two fundamental concepts of quantum theory whose relationship we explore in later part of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We jest; reading Mac Lane’s book is eventually unavoidable, however the paper [18] is an easy introduction to the subject of monoidal categories.

  2. 2.

    The term “basic” simply means a process whose internal structure is of no interest. Typically we construct diagrams from some given set of basic processes.

  3. 3.

    This is actually true even for non-symmetric monoidal categories; see [7].

  4. 4.

    Since we identify sets of the same cardinality, we can equivalently say that the systems of \(\mathbf {FRel}\) are just the natural numbers.

  5. 5.

    To show completeness for a rewrite theory it is typically necessary, but rarely sufficient, to check that the rewrite rules are confluent; that is, whenever two rewrites simultaneously apply to a given diagram, then the choice between then (eventually) does not matter. Since this property must hold for every diagram and every pair of rewrites, even a simple rewrite system can produce an extremely large number of cases, necessitating a computer-assisted proof. For example see the work of Lafont on Boolean circuits [20].

  6. 6.

    In other words, rank 1 projectors.

  7. 7.

    For the experts in category theory, this additional structure can be summed up by saying we operate in a dagger-compact category, rather than just a symmetric monoidal category.

  8. 8.

    Indeed Eqs. (6) and (11) are equivalent in any theory wherever at least one of the observable structures has enough classical points.

  9. 9.

    For a formal statement and proof of this theorem, in terms of factorisation systems see [36].

References

  1. J. Barrett, Phys. Rev. A 75(3), 032304 (2007)

    Article  ADS  Google Scholar 

  2. M. Pawlowski, T. Paterek, D. Kazlikowski, V. Scarani, A. Winter, M. Zukowski, Nature 461, 1101 (2009). arXiv:0905.2292

    Google Scholar 

  3. H. Barnum, J. Barrett, L.O. Clark, M. Leifer, R.W. Spekkens, N. Stepanik, A. Wilce, R. Wilke, New J. Phys. 12, 033024 (2009). arXiv:0909.5075

  4. E. Schrödinger, in Proceedings of the Cambridge Philosophical Society, vol. 31 (Academic Press, New York, 1935), pp. 555–563

    Google Scholar 

  5. R. Penrose, in Combinatorial Mathematics and Its Applications (Academic Press, New York, 1971)

    Google Scholar 

  6. G.M. Kelly, M.L. Laplaza, J. Pure Appl. Algebra 19, 193 (1980)

    Article  MathSciNet  Google Scholar 

  7. A. Joyal, R. Street, Adv. Math. 102, 20 (1993)

    Article  MathSciNet  Google Scholar 

  8. S. Abramsky, B. Coecke, in Proceedings of 19th IEEE Conference on Logic in Computer Science, LiCS’04 (IEEE Press, 2004), pp. 415–425

    Google Scholar 

  9. B. Coecke, in Quantum Theory: Reconsiderations of the Foundations III (AIP, Press, New York, 2005), pp. 81–98

    Google Scholar 

  10. G.M. D’Ariano, G. Chiribella, P. Perinotti, Phys. Rev. A 84, 012311 (2010). arXiv:1011.6451

  11. L. Hardy, in Deep Beauty: Understanding the Quantum World Through Mathematical Innovation (Cambridge University Press, Cambridge, 2011), pp. 409–442. arXiv:0912.4740

  12. B. Coecke, B. Edwards, R.W. Spekkens, Electron. Notes Theor. Comput. Sci. 270(2), 15 (2011)

    Article  Google Scholar 

  13. B. Edwards, Phase groups and local hidden variables. Technical report RR-10-15, Department of Computer Science, University of Oxford (2010)

    Google Scholar 

  14. B. Coecke, A. Kissinger, in Proceedings of ICALP Automata, Languages, and Programming. Lecture Notes in Computer Science, vol. 6199 (Springer, Heidelberg, 2010), pp. 297–308

    Google Scholar 

  15. R. Duncan, S. Perdrix, in Proceedings of the 37th International Colloquium Conference on Automata, Languages and Programming, ICALP’10: Part II (Springer, Berlin, 2010), pp. 285–296. http://dl.acm.org/citation.cfm?id=1880999.1881030

  16. C. Horsman, New J. Phys. 13, 095011 (2011). arXiv:1101.4722

    Google Scholar 

  17. S. Mac Lane, Categories for the Working Mathematician, 2nd edn. (Springer, New York, 1997)

    MATH  Google Scholar 

  18. B. Coecke, E.O. Paquette, in New Structures for Physics. Springer Lecture Notes in Physics, vol. 813 (2011), pp. 173–286

    Google Scholar 

  19. P. Selinger, in New Structures for Physics. Springer Lecture Notes in Physics, vol. 813 (2011), pp. 289–355

    Google Scholar 

  20. Y. Lafont, J. Pure Appl. Algebra 184(2–3), 257 (2003)

    Article  MathSciNet  Google Scholar 

  21. A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter, Phys. Rev. A 52, 3457 (1995). doi:10.1103/PhysRevA.52.3457

    Article  ADS  Google Scholar 

  22. B. Coecke, E.O. Paquette, D. Pavlovic, in Semantic Techniques for Quantum Computation (Cambridge University Press, Cambridge, 2009), pp. 29–69

    Google Scholar 

  23. D.G.B.J. Dieks, Phys. Lett. A 92, 271 (1982)

    Article  ADS  Google Scholar 

  24. W.K. Wootters, W. Zurek, Nature 299, 802 (1982)

    Article  ADS  Google Scholar 

  25. A.K. Pati, S.L. Braunstein, Nature 404, 164 (2000). arXiv:quant-ph/9911090

    Google Scholar 

  26. B. Coecke, D. Pavlovic, J. Vicary, Math. Struct. Comput. Sci. 23, 555 (2013)

    Google Scholar 

  27. D. Pavlovic, in Proceedings of the Symposium on Quantum Interaction. Lecture Notes in Computer Science, vol. 5494 (Springer, New York, 2009), pp. 143–157. arXiv:0812.2266

    Google Scholar 

  28. B. Coecke, R. Duncan, in Proceedings of ICALP 2008 Automata, Languages, and Programming Lecture Notes in Computer Science, vol. 5126 (Springer, New York, 2008), pp. 298–310

    Google Scholar 

  29. B. Coecke, R. Duncan, New J. Phys. 13, 043016 (2011). arXiv:0906.4725

    Google Scholar 

  30. R.W. Spekkens, Phys. Rev. A 75, 032110 (2007). arXiv:quant-ph/0401052

  31. B. Coecke, B. Edwards, Spekkens’s toy theory as a category of processes (2011). arXiv:1108.1978v1[quant-ph]

  32. A. Kissinger, Pictures of processes: automated graph rewriting for monoidal categories and applications to quantum computing. Ph.D. thesis, University of Oxford (2012)

    Google Scholar 

  33. P. Selinger, Electron. Notes Theor. Comput. Sci. 170, 139 (2007)

    Article  MathSciNet  Google Scholar 

  34. D.M. Greenberger, M.A. Horne, A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, ed. by M. Kafatos (Sringer, New York, 1989), pp. 69–72

    Google Scholar 

  35. N.D. Mermin, Am. J. Phys. 58, 731 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  36. S. Lack, Theory Appl. Categ. 13(9), 147 (2004)

    MathSciNet  Google Scholar 

  37. M.A. Horne, A. Shimony, D.M. Greenberger, A. Zeilinger, Am. J. Phys. 58, 1131 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Backens, in Proceedings of Quantum Physics and Logic (2012), pp. 15–27

    Google Scholar 

  39. A. Hillebrand, Quantum protocols involving multiparticle entanglement and their representations in the ZX-calculus. Master’s thesis, University of Oxford (2011)

    Google Scholar 

  40. B. Coecke, C. Heunen, A. Kissinger, in Proceedings of Quantum Physics and Logic (2012), pp. 87–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bob Coecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coecke, B., Duncan, R., Kissinger, A., Wang, Q. (2016). Generalised Compositional Theories and Diagrammatic Reasoning. In: Chiribella, G., Spekkens, R. (eds) Quantum Theory: Informational Foundations and Foils. Fundamental Theories of Physics, vol 181. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7303-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7303-4_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7302-7

  • Online ISBN: 978-94-017-7303-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics