Skip to main content

Role of Co-solvents in Biomass Conversion Reactions Using Sub/Supercritical Water

  • Chapter
  • First Online:
Near-critical and Supercritical Water and Their Applications for Biorefineries

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 2))

Abstract

Water above its critical point (T c = 647 K, P c = 22.1 MPa), which is regarded as supercritical water (SCW), is being given increasing attention as a medium for organic chemistry. This interest in SCW is mainly driven by the search for more “green” or environmentally benign chemical processes. The use of SCW instead of organic solvents in chemical processes offers environmental advantages and may lead to pollution prevention. SCW has been applied in synthetic fuels production, biomass processing, waste treatment, materials synthesis, and geochemistry. However, higher critical parameters of water indicate that the operation process is performed at harsh conditions, thereby increasing cost. Other drawbacks of the use of water as the medium for biomass liquefaction reaction include lower biofuel yield and higher oxygen content. Organic solvents, such as methanol, ethanol, and 2-propanol, have been utilized as co-solvents of SCW to enhance the biofuel yield with lower oxygen content and higher heating value. This paper mainly expounds the basic characteristics of the co-solvent in sub/supercritical water and analyzes the function of the co-solvent in reactions to provide readers with a more comprehensive knowledge of the co-solvent. Based on literature and related studies conducted by our group, systematic analysis about selection and application of co-solvent was conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrew AP, Frédéric V, Russell PL, Morgan F, Michael Jr JA, Jefferson WT. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci. 2008;1:32–65.

    Article  Google Scholar 

  2. James WL. Advanced biofuels and bioproducts. New York: Springer; 2013. ISBN 978-1-4614-3348-4.

    Google Scholar 

  3. Li H, Yuan XZ, Zeng GM, Tong JY, Yan Y, Cao HT, Wang LH, Cheng MY, Zhang JC, Yang D. Liquefaction of rice straw in sub- and supercritical 1, 4-dioxane-water mixture. Fuel Process Technol. 2009;90:657–63.

    Article  Google Scholar 

  4. Huang HJ, Yuan XZ, Zeng GM, Wang JY, Li H, Zhou CF, Pei XK, You Q, Chen L. Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol. Fuel Process Technol. 2011;92:147–53.

    Article  Google Scholar 

  5. Karagoz S, Bhaskar T, Muto A, Sakata Y. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel. 2005;84:875–84.

    Article  Google Scholar 

  6. Liu ZG, Zhang FS. Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy Convers Manag. 2008;49:3498–504.

    Article  Google Scholar 

  7. Ye Y, Fan J, Chang J. Effect of reaction conditions on hydrothermal degradation of cornstalk lignin. J Anal Appl Pyrolysis. 2012;94:190–5.

    Article  Google Scholar 

  8. Chen Y, Wu YL, Zhang PL, Hua DR, Yang MD, Li C, Chen Z, Liu J. Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water. Bioresour Technol. 2012;124:190–8.

    Article  Google Scholar 

  9. Cheng SN, D’cruz I, Wang MC, Leitch M, Xu CB. Highly efficient liquefaction of woody biomass in hot-compressed alcohol-water co-solvents. Energy Fuel. 2010;24:4659–67.

    Article  Google Scholar 

  10. George WH, Sara I, Avelino C. Synthesis of transportation fuels from biomass: chemistry, catalysts and engineering. Chem Rev. 2006;106:4044–98.

    Article  Google Scholar 

  11. Xu CB, Etcheverry T. Hydro-liquefaction of woody biomass in sub- and super-critical ethanol with iron-based catalysts. Fuel. 2008;87:335–45.

    Article  Google Scholar 

  12. Yuan XZ, Li H, Zeng GM, Tong JY, Xie W. Sub-and supercritical liquefaction of rice straw in the presence of ethanol-water and 2-propanol-water mixture. Energy. 2007;32:2081–8.

    Article  Google Scholar 

  13. Wang G, Li W, Chen H, Li B. The direct liquefaction of sawdust in tetralin. Energy Source Part A. 2007;29:1221–31.

    Article  Google Scholar 

  14. Wang CW, Zhou FL, Yang Z, Wang WG, Yu FQ, Wu YX, Chi R. Hydrolysis of cellulose into reducing sugar via hot-compressed ethanol/water mixture. Biomass Bioenergy. 2012;42:143–50.

    Article  Google Scholar 

  15. Brennecke JF, Eckert CA. Phase equilibria for supercritical fluid process design. AICHE J. 1989;35:1409–27.

    Article  Google Scholar 

  16. Takumi O, Shunsuke K, Takaaki H, Yoshiyuki S, Hiroshi I. Volumetric behavior and solution microstructure of methanol-water mixture in sub- and supercritical state via density measurement and MD simulation. Fluid Phase Equilib. 2011;302:55–9.

    Article  Google Scholar 

  17. Darja P, Valter D. Volumetric properties of ethanol-water mixtures under high temperatures and pressures. Fluid Phase Equilib. 2005;230:36–44.

    Article  Google Scholar 

  18. Dixit S, Crain J, Poon WC, Finney JL, Soper AK. Molecular segregation observed in a concentrated alcohol-water solution. Nature. 2002;416:829–32.

    Article  Google Scholar 

  19. Ikushima Y, Hatakeda K, Saito N, Arai M. An in situ Raman spectroscopy studies of subcritical and supercritical water the peculiarity of hydrogen bonding near the critical point. J Chem Phys. 1998;108:5855–60.

    Article  Google Scholar 

  20. Lamanna S, Cannistraro R. Effect of ethanol addition upon the structure and the cooperativity of the water H bond network. Chem Phys. 1996;213:95–110.

    Article  Google Scholar 

  21. Lee JH, Foster NR. Oxidation of methanol in supercritical water. J Ind Eng Chem. 1999;5:116–22.

    Google Scholar 

  22. Anitescu G, Zhang ZH, Tavlarides LL. A kinetic study of methanol oxidation in supercritical water. Ind Eng Chem Res. 1999;1999(38):2231–7.

    Article  Google Scholar 

  23. Gao J. Supercritical hydration of organic compounds. The potential of mean force for benzene dimer in supercritical water. J Am Chem Soc. 1993;115:6893–5.

    Article  Google Scholar 

  24. Van Konynenburg PH, Scott RL. Critical lines and phase equilibria in binary Van Der Waals mixtures. Phil Trans R Soc Lond A. 1980;298:495–540.

    Article  Google Scholar 

  25. Weingartner H, Franck EU. Supercritical water as a solvent. Angew Chem Int Ed. 2005;44:2672–92.

    Article  Google Scholar 

  26. Carlos ND, Josep BA, Oliver C, Philippe U, Jacqueline R. Dynamical and structural properties of benzene in supercritical water. J Chem Phys. 2004;121:10566–76.

    Article  Google Scholar 

  27. Rasulov SM, Abdulagatov IM. PVTx measurements of water-n-pentane mixtures in critical and supercritical regions. J Chem Eng Data. 2010;55:3247–61.

    Article  Google Scholar 

  28. Kiselev M, Puhovskia Y, Kerdcharoen T, Hannongbua S. The study of hydrophobic hydration in supercritical water-methanol mixtures. J Mol Graphics Model. 2001;19:412–6.

    Article  Google Scholar 

  29. Antal MJ, Allen SG, Schulman D, Xu XD, Divilio RJ. Biomass gasification in supercritical water. Ind Eng Chem Res. 2009;39:4040–53.

    Article  Google Scholar 

  30. Aida TM, Sato Y, Watanabe M, Tajima K, Nonaka T, Hattori H, Arai K. Dehydration of d-glucose in high temperature water at pressures up to 80 MPa. J Supercrit Fluids. 2007;40:381–8.

    Article  Google Scholar 

  31. Watanabe M, Matsuo Y, Matsushita T, Inomata H, Miyake T, Hironaka K. Chemical recycling of polycarbonate in high pressure high temperature steam at 573 K. Polym Degrad Stab. 2009;94:2157–62.

    Article  Google Scholar 

  32. Genta M, Iwaya T, Sasaki M, Goto M. Supercritical methanol for polyethylene terephthalate depolymerization: observation using simulator. Waste Manag. 2007;27:1167–77.

    Article  Google Scholar 

  33. Takesue M, Suino A, Hakuta Y, Hayashi H, Smith RL. Formation mechanism and luminescence appearance of Mn-doped zinc silicate particles synthesized in supercritical water. J Solid State Chem. 2008;181:1307–13.

    Article  Google Scholar 

  34. Saka S, Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel. 2001;80:225–31.

    Article  Google Scholar 

  35. Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag. 2000;41:633–46.

    Article  Google Scholar 

  36. Ogi T, Minowa T, Dote Y, Yokoyama S. Characterization of oil produced by the direct liquefaction of Japanese oak in an aqueous 2-propanol solvent system. Biomass Bioenergy. 1994;7:193–9.

    Article  Google Scholar 

  37. Ogi T, Yokoyama S. Liquid fuel production from woody biomass by direct liquefaction. Sekiyu Gakkaishi. 1993;36:73–84.

    Article  Google Scholar 

  38. Demirbas A. Effect of lignin content on aqueous liquefaction products of biomass. Energy Convers Manag. 2000;41:1601–7.

    Article  Google Scholar 

  39. Heitz M, Brown A, Chornet E. Solvent effects on liquefaction: solubilization profiles of a Canadian prototype wood, populus deltoids, in the presence of different solvents. Can J Chem Eng. 1994;72:1021–7.

    Article  Google Scholar 

  40. Demirbas A. Conversion of wood to liquid products using alkaline glycerol. Fuel Sci Technol Int. 1992;10:173–84.

    Article  Google Scholar 

  41. Yao YG. Soluble properties of liquefied biomass prepared in organic solvents. Mokuzai Gakkaishi. 1994;40:176–84.

    Google Scholar 

  42. Akiya N, Savage PE. Roles of water for chemical reactions in high-temperature water. Chem Rev. 2002;102:2725–50.

    Article  Google Scholar 

  43. Li L, Kiran E. Interaction of supercritical fluids with lignocellulosic materials. Ind Eng Chem Res. 1988;27:1301–12.

    Article  Google Scholar 

  44. Pasquini D, Pimenta MTB, Ferreira LH, Curvelo AAS. Extraction of lignin from sugar cane bagasse and Pinus taeda wood chips using ethanol–water mixtures and carbon dioxide at high pressures. J Supercrit Fluids. 2005;36:31–9.

    Article  Google Scholar 

  45. Kabyemela BM, Adschiri T, Malalua R, Arai MK, Ohzeki H. Rapid and selective conversion of glucose to erythrose in supercritical water. Ind Eng Chem Res. 1997;36:5063–7.

    Article  Google Scholar 

  46. Antal MJ, Leesomboon T, Mok WS, Richards GN. Mechanism of formation of 2-furaldehyde from D-xylose. Carbohydr Res. 1991;217:71–85.

    Article  Google Scholar 

  47. Liu Y, Yuan XZ, Huang HJ, Wang XL, Wang H, Zeng GM. Thermochemical liquefaction of rice husk for bio-oil production in mixed solvent (ethanol-water). Fuel Process Technol. 2013;112:93–9.

    Article  Google Scholar 

  48. Liu HM, Xie XA, Li MF, Sun RC. Hydrothermal liquefaction of cypress: effects of reaction conditions on 5-lump distribution and composition. J Anal Appl Pyrolysis. 2012;94:177–83.

    Article  Google Scholar 

  49. Muppaneni T, Reddy HK, Patil PD, Dailey P, Aday C, Deng S. Ethanolysis of camelina oil under supercritical condition with hexane as a co-solvent. Appl Energy. 2012;94:84–8.

    Article  Google Scholar 

  50. Yang RL, Chen Y, Wu YL, Hua DR, Yang MD, Li C, Chen Z, Liu J. Production of liquid fuel via co-liquefaction of coal and Dunaliella tertiolecta in sub/supercritical water-ethanol system. Energy Fuel. 2013;27:2619–27.

    Article  Google Scholar 

  51. Ross DS, Green TK, Mansani R, Hum GP. Coal conversion in CO/water. 1. Conversion mechanism. Energy Fuel. 1987;1:287–91.

    Article  Google Scholar 

  52. Guo ZX, Bai ZQ, Bai J, Wang ZQ, Li W. Co-liquefaction of lignite and sawdust under syngas. Fuel Process Technol. 2011;92:119–25.

    Article  Google Scholar 

  53. Alonso MV, Oliet M, Perez JM, Rodriguez F, Echeverria J. Determination of curing kinetic parameters of lignin-phenol-formaldehyde resol resins by several dynamic differential scanning calorimetry methods. Thermochim Acta. 2004;419:161–7.

    Article  Google Scholar 

  54. Cheng SN, Wilks C, Yuan ZS, Leitch M, Xu CB. Hydrothermal degradation of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water–ethanol co-solvent. Polym Degrad Stab. 2012;97:839–48.

    Article  Google Scholar 

  55. Chandler K, Deng F, Dillow AK, Liotta CL, Eckert CA. Alkylation reactions in near-critical water in the absence of acid catalysts. Ind Eng Chem Res. 1997;36:5175–9.

    Article  Google Scholar 

  56. McCormick RL, Graboski MS, Alleman TL, Herring AM. Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environ Sci Technol. 2001;35:1742–7.

    Article  Google Scholar 

  57. Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin Jr JG. Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res. 2005;44:5353–63.

    Article  Google Scholar 

  58. Iso M, Chen B, Eguchi M, Kudo T, Shrestha S. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B: Enzym. 2001;16:53–8.

    Article  Google Scholar 

  59. Madras G, Kolluru C, Kumar R. Synthesis of biodiesel in supercritical fluids. Fuel. 2004;83:2029–33.

    Article  Google Scholar 

  60. Kusdiana D, Saka S. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour Technol. 2004;91:289–95.

    Article  Google Scholar 

  61. van Kasteren JMN, Nisworo AP. A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification. Resour Conserv Recycl. 2007;50:442–58.

    Article  Google Scholar 

  62. Silva C, Weschenfelder TA, Rovani S, Corazza FC, Corazza ML, Dariva C, Vladimir OJ. Continuous production of fatty acid ethyl esters from soybean oil in compressed ethanol. Ind Eng Chem Res. 2007;46:5304–9.

    Article  Google Scholar 

  63. Ignacio V, da Camila S, Isabella A, Gustavo RB, Fernanda CC, Vladimir OJ, Maria AG, Iván J. Continuous catalyst-free methanolysis and ethanolysis of soybean oil under supercritical alcohol/water mixtures. Renew Energy. 2010;35:1976–81.

    Article  Google Scholar 

  64. Kusdiana D, Saka S. Methyl esterification of free fatty acids of rapeseed oil as treated in supercritical methanol. J Chem Eng Jpn. 2001;34:383–7.

    Article  Google Scholar 

  65. Zhang T, Zhou YJ, Liu DH, Petrus L. Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol. Bioresour Technol. 2007;98:1454–9.

    Article  Google Scholar 

  66. Zhi YP, Zhen B, Ying XC. Depolymerization of poly (bisphenol A carbonate) in subcritical and supercritical toluene. Chin Chem Lett. 2006;17:545–8.

    Google Scholar 

  67. Vijaykumar S, Mayank RP, Jigar VP. Pet waste management by chemical recycling: a review. J Polym Environ. 2010;18:8–25.

    Article  Google Scholar 

  68. Mohammad NS, Dimitris S, Halim HR, Dimitris NB, Konstantios AGK, George PK. Hydrolytic depolymerization of PET in a microwave reactor. Macromol Mater Eng. 2010;295:575–84.

    Article  Google Scholar 

  69. Liu FS, Li Z, Yu ST, Cui X, Xie CX, Ge XP. Methanolysis and hydrolysis of polycarbonate under moderate conditions. J Polym Environ. 2009;17:208–11.

    Article  Google Scholar 

  70. Chen L, Wu Y, Ni Y, Huang K, Zhu Z. Depolymerization of polycarbonate in critical region of methanol. Acta Sci Cir. 2004;24:604.

    Google Scholar 

  71. Raul P, Juan G, Maria JC. Chemical recycling of polycarbonate in a semi-continuous lab-plant. A green route with methanol and methanol-water mixtures. Green Chem. 2005;7:380–7.

    Article  Google Scholar 

  72. Nayeleh D, Abdul RR. Hydrolysis degradation of polycarbonate using different co–solvent under microwave irradiation. APCBEE Procedia. 2012;3:172–6.

    Article  Google Scholar 

  73. Motofumi S, Takafumi S, Masaru W, Tadafumi A, Kunio A. Conversion of lignin with supercritical water-phenol mixtures. Energy Fuel. 2003;17:922–8.

    Article  Google Scholar 

  74. Wayman M, Lora JH. Aspen autohydrolysis: the effects of 2-naphthol and other aromatic compounds. Tappi Tech Assoc Pulp Pap Ind. 1978;61:55–7.

    Google Scholar 

  75. Lin L, Yao Y, Yoshioka M, Shiraishi N. Liquefaction mechanism of lignin in the presence of phenol at elevated temperature without catalysts. Studies on β-O-4 lignin model compound. I. Structural characterization of the reaction products. Holzforschung. 1997;51:316–24.

    Article  Google Scholar 

  76. Saisu M, Sato T, Adschiri MWT, Arai K. Conversion of lignin with supercritical water-phenol mixtures. Energy Fuel. 2003;17:922–8.

    Article  Google Scholar 

  77. Okuda K, Umetsu M, Takami S, Adschiri T. Disassembly of lignin and chemical recovery-rapid depolymerization of lignin without char formation in water-phenol mixtures. Fuel Process Technol. 2004;85:803–13.

    Article  Google Scholar 

  78. Okuda K, Man X, Umetsu M, Takami S, Adschiri T. Efficient conversion of lignin into single chemical species by solvothermal reaction in water-p-cresol solvent. J Phys Condens Matter. 2004;16:S1325.

    Article  Google Scholar 

  79. Takami S, Okuda K, Man X, Umetsu M, Ohara S, Adschiri T. Kinetic study on the selective production of 2-(Hydroxybenzyl)-4-methylphenol from organosolv lignin in a mixture of supercritical water and p-cresol. Ind Eng Chem Res. 2012;51:4804–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wu, Y., Chen, Y., Wu, K. (2014). Role of Co-solvents in Biomass Conversion Reactions Using Sub/Supercritical Water. In: Fang, Z., Xu, C. (eds) Near-critical and Supercritical Water and Their Applications for Biorefineries. Biofuels and Biorefineries, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8923-3_3

Download citation

Publish with us

Policies and ethics