Skip to main content

How Pupils Solve Problems in Technology Education and What They Learn

The Teaching-Learning Process for Transmitting Artefacts, Skills and Knowledge

  • Chapter
Fostering Human Development Through Engineering and Technology Education

Part of the book series: International Technology Education Studies ((ITES,volume 6))

Abstract

As is the case in several countries, the development of technology education in France involves a process of transmitting inter-generational knowledge aimed at children to develop their understanding of the technical world in which they live and to which they will contribute in structuring and helping to evolve. This process is, first and foremost, a cultural one; it is a matter of leading children to acquire knowledge that is socially shared by society. Beyond the social sharing of existing knowledge, gateways for children to enter into the adult world are also targeted. One of the roles of schooling is a social one that aims at educating future citizens by allowing them to build the knowledge they will need in order to be able to live and act responsibly within society. The notion of the school’s social role exists from the moment that a society, using its political leverage, decides to hand the responsibility for conveying the social knowledge that governs it to a teacher, so that children use the learning of such knowledge to evolve socially.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Akrich, M. (1987). Comment décrire les objets techniques? Techniques et culture, 9, 49–63.

    Google Scholar 

  • Altet, M., Lessard, C., Paquay, L., & Perrenoud, P. (2004). Entre sens commun et sciences humaines. Quels savoirs pour enseigner? Bruxelles: De Boeck.

    Google Scholar 

  • Amigues, R., & Ginestié, J. (1991). Représentations et stratégies des élèves dans l’apprentissage d’un langage de commande. Travail Humain, 54(1), 1–19.

    Google Scholar 

  • Amigues, R., Lataillade, G., & Mencherini, N. (2001). Travail du professeur et activité de l’élève dans les dispositifs d’aide aux élèves en difficulté: un exemple, les groupes de consolidation. Schweizerische Zeitschrift für Bildungswissenschaften, 23(2), 299–319.

    Google Scholar 

  • Andreucci, C., & Ginestié, J. (2001). Approach of assessment and teaching meaningful in technology education in France. In M. De Vries (Ed.), PATT Conference (pp. 212–219). Haarlem (Netherland): PATT Editions.

    Google Scholar 

  • Andreucci, C. (2008). The structuring role of artefacts in thought development. In J. Ginestié (Ed.), The cultural transmission of artefacts, skills and knowledge: Eleven studies in technology education (pp. 21–41). Rotterdam: Sense Publishers.

    Google Scholar 

  • Andreucci, C., & Ginestié, J. (2002). Un premier aperçu sur l’extension du concept d’objet technique chez les collégiens. Didaskalia, 20, 41–65.

    Google Scholar 

  • Aravecchia, L., & Ginestié, J. (2008). Describing an automated system with the GRAFCET for understanding how it functions. In J. Ginestié (Ed.), The cultural transmission of artefacts, skills and knowledge: eleven studies in technology education (pp. 149–171). Rotterdam: Sense Publishers.

    Google Scholar 

  • Bennacer, H. (2003). Prédiction de la performance scolaire: Étude de l’interaction entre l’élève et l’environnement social de la classe. European review of applied psychology, 53(1), 3–19.

    Google Scholar 

  • Besson, U. (2004). Students’ conceptions of fluids. International Journal of Science Education, 26(14), 1683–1714. doi: 10.1080/0950069042000243745.

    Article  Google Scholar 

  • Bloch, I. (1999). L’articulation du travail mathématique du professeur et de l’élève dans l’enseignement de l’analyse en première scientifique: Détermination d’un milieu: Connaissances et savoirs. Recherches en didactique des mathématiques, 19(2), 135–194.

    Google Scholar 

  • Bonnet, C. (2003). L’élève « tête À claques »: Une situation scolaire discriminatoire. VEI enjeux, 135, 164–174.

    Google Scholar 

  • Burton, R., & Flammang, C. (2001). D’une stratégie d’enseignement des sciences centrée sur l’enseignantv vers une stratégie centrée sur l’élève: analyse des processus d’enseignement. Les dossiers des sciences de l’éducation, 5, 53–65.

    Google Scholar 

  • Cazenobe, J. (1987). Esquisse d’une conception opératoire de l’objet technique. Techniques et culture, 10, 61–80.

    Google Scholar 

  • Chaiklin, S., Hedegaard, M., & Jensen, U. J. (1999). Activity theory and social practice: Cultural-Historical approaches. Aarhus, Danemark: Aarhus University Press.

    Google Scholar 

  • Chartrain, J.-L., Caillot, M. (2001). Conceptual change and student diversity: The case of volcanism at primary school. In H. Behrendt, H. Dahncke, R. Duit, W. Graeber, M. Komorek, & A. Kross (Eds.), Research in science education - Past, present, and future (pp. 265–270). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Chin, C. (2006). Classroom Interaction in Science: Teacher questioning and feedback to students’ responses. International Journal of Science Education, 28(11), 1315–1346.

    Article  Google Scholar 

  • Da-Silva, C., Mellado, V., Ruiz, C., & Porlan, R. (2007). Evolution of the conceptions of a secondary education biology teacher: Longitudinal analysis using cognitive maps. Science Education, 91(3), 461–491.

    Article  Google Scholar 

  • Delens, C., Carlier, G., Florence, J., Renard, J.-P., & Scheiff, A. (1996). Relation entre le portrait comportemental de l’élève et l’action pédagogique de l’enseignant. Sciences et techniques des activités physiques et sportives, 39, 7–24.

    Google Scholar 

  • Dobinson, T. (2001). Do learners learn from classroom interaction and does the teacher have a role to play? Language Teaching Research, 5(3), 189–211.

    Google Scholar 

  • Dupin, J.-J., & Johsua, S. (1988). Conceptions en électrocinétique. Permanences géographiques et évolution dans le temps. L’enseignement des circuits électriques: conceptions des élèves et aides didactiques. TIP, VII(2), 23–42.

    Google Scholar 

  • Ginestié, J. (1992). Contribution à la didactique des disciplines technologiques: acquisition et utilisation d’un langage d’automatisme. Doctorat, Université de Provence, Aix-en-Provence. Available from Atelier National de Reproduction des thèses, Lille.

    Google Scholar 

  • Ginestié, J. (2002). The industrial project method in French industry and in French schools. International Journal of Technology and Design Education, 12(2), 99–122.

    Article  Google Scholar 

  • Ginestié, J. (2005a, mars). Analyzing technology education through the curricular evolution and the investigation themes. Paper presented at the Conference PATT 13: Overview on the 25 years of technology education, Harlem.

    Google Scholar 

  • Ginestié, J. (2005b). Résolutions de problèmes en éducation technologique. Éducation technologique, 28, 23–34.

    Google Scholar 

  • Ginestié, J. (2006a). Analysing technology education through the curricular evolution and the investigation themes. In M. de Vries & I. Mottier (Eds.), International handbook of technology education: Reviewing the past twenty years (pp. 387–398). Rotterdam/Taipei: Sense Publishers.

    Google Scholar 

  • Ginestié, J. (2006b). Teacher Training: preparing young people for their future lives. In C. Benson (Trans.), J. Ginestié (Ed.), An international study in Technology Education. Santiago: Éditions Los Salesianos.

    Google Scholar 

  • Ginestié, J. (2008). From task to activity, a re-distribution of the roles between the teacher and the pupils. In J. Ginestié (Ed.), The cultural transmission of artefacts, skills and knowledge: Eleven studies in technology education (pp. 225–256). Rotterdam: Sense Publishers.

    Google Scholar 

  • Haudricourt, A.-G. (1988). La Technologie science humaine: recherches d’histoire et d’ethnologie des techniques. Paris: Éditions de la Maison des sciences de l’Homme.

    Google Scholar 

  • Leontiev, A. N. (1984). Activité, conscience, personnalité (3eme ed.). Moscou: Editions du Progrès.

    Google Scholar 

  • Mauss, M. (1936). Les techniques du corps. Journal de Psychologie, 32(176), 279–327.

    Google Scholar 

  • Mauss, M. (1948). Les techniques et la technologie. Journal de psychologie, n° spécial: Le travail et les techniques (dirigé par I. Meyerson et L. Febvre).

    Google Scholar 

  • Mervis, C. B., & Rosch, E. (1981). Categorization of natural objects. Annual Review of Psychology, 32, 89–115.

    Article  Google Scholar 

  • Mioduser, D., Venezky, R. L., & Gong, B. (1996). Students’ perceptions and designs of simple control systems. Computers in Human Behavior, 12(3), 363–388.

    Article  Google Scholar 

  • Ouarda, O., & Ginestié, J. (2009). Conceptions didactiques et épistémologiques de cinq enseignants tunisiens de sciences physiques. Didaskalia, 35, 101–138.

    Google Scholar 

  • Rabardel, P. (1993). Micro-genèse et fonctionnalité des représentations dans une activité avec instrument. In A. Weill-Fassina, P. Rabardel, & D. Dubois (Eds.), Représentations pour l’action. Toulouse: Editions Octares.

    Google Scholar 

  • Rabardel, P. (1995). Les hommes et les technologies; approche cognitive des instruments contemporains. Paris: Armand Colin Éditeurs.

    Google Scholar 

  • Rabardel, P. (2000). Influence of the development of knowledge systems and technological systems on cognition. International Journal of Psychology, 35(3–4), 274–274.

    Google Scholar 

  • Rabardel, P. (2001). Instrument mediated activity in situations. In A. Blandford, J. Vanderdonckt, & P., Gray (Eds.), People and computers XV-interactions without frontiers (pp. 17–33). Berlin: Springer.

    Google Scholar 

  • Rosch, E. (1975). Basic objects in natural categories. Bulletin of the Psychonomic Society, 6(NB4), 415–415.

    Google Scholar 

  • Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyesbraem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8(3), 382–439.

    Article  Google Scholar 

  • Roth, W.-M. (2007). Toward a dialectical notion and praxis of scientific literacy. Journal of Curriculum Studies, 39, 377–398.

    Article  Google Scholar 

  • Roth, W.-M., Tobin, K., & Ritchie, S. M. (2008). Time and temporality as mediators of science learning. Science Education, 92(1), 115–140.

    Article  Google Scholar 

  • Roux, J.-P. (2003a). Analyse interlocutoire, dynamiques interactives et étude des mécanismes des progrès cognitifs en situation asymétrique de résolution de problèmes. L’orientation scolaire et professionnelle, 3(3), 475–501.

    Google Scholar 

  • Roux, J.-P. (2003b). The interlocutory logic analysis as a methodological approach in studying semiotic mediations: interest, difficulties, limits. Paper presented at the XIth European Conference on Developmental Psychology, Milan.

    Google Scholar 

  • Séris, J.-P. (1994). La technique. Paris: Presses Universitaires de France.

    Google Scholar 

  • Sigault, F. (1990). Folie, réel et technologie. Technique et culture, 15, 167–179.

    Google Scholar 

  • Simondon, G. (1989). Du mode d’existence des objets techniques (Réédition ed.). Paris: Aubier.

    Google Scholar 

  • Trognon, A., Ball, M., Schwarz, B., Petrel-Clerraont, A.-N., & Marro, P. (2006). Logique interlocutoire de la résolution en dyade d’un problème d’arithmétique. Psychologie française, 51(2), 171–187.

    Article  Google Scholar 

  • Tsai, C. C. (2004). Conceptions of learning science among high school students in Taiwan: A phenomenographic analysis. International Journal of Science Education, 26(14), 1733–1750. doi: 10.1080/ 0950069042000230776.

    Article  Google Scholar 

  • Vérillon, P. (2000). Instruments and cognition: Piaget and Vigotsky revisited in search of a learning model for technology education. The Journal of Technology Studies, 26(1), 3–10.

    Google Scholar 

  • Vérillon, P. (2008). The transmission of higher-order technological skills in technology education from a social constructivist point of view. In J. Ginestié (Ed.), The cultural transmission of artefacts, skills and knowledge: Eleven studies in technology education (pp. 101–122). Rotterdam: Sense Publishers.

    Google Scholar 

  • Vérillon, P., & Andreucci, C. (2006). Artefacts and cognitive development: how do psychogenetic theories of intelligence help in understanding the influence of technical environments on the development of thought? In M. De Vries & E. Mottier (Eds.), International handbook of technology education: The state of the art (pp. 399–416). Rotterdam: Sense Publishers.

    Google Scholar 

  • Vérillon, P., Coué, A., Faillard, J., L’Haridonet, A., & Naji, E. (2005). Contribution à l’analyse d’activités de conception et de fabrication en écoles maternelle et primaire. In P. Vérillon, J. Ginestié, B. Hostein, J. Lebeaume, & P. Leroux (Eds.), Produire en technologie à l’école et au collège (pp. 211–247). Paris: INRP.

    Google Scholar 

  • Vérillon, P., Leroux, P., & Manneux, G. (2005). Activités productives et processus constructifs: les activités scolaires de production peuvent-elles être source de construction pour les élèves? Aster, 41, 3–26.

    Article  Google Scholar 

  • Vérillon, P., & Rabardel, P. (1995). Cognition and artefacts: a contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10(3), 77–101.

    Article  Google Scholar 

  • Watson, J. (1995). Teacher talk and pupil thought. Educational Psychology, 15(1), 57–68.

    Article  Google Scholar 

  • Weill-Fassina, A. (1979). Guidage et planification de l’action par les aides au travail. Bulletin de psychologie, XXXIII(334), 343–349.

    Google Scholar 

  • Weill-Fassina, A., Rabardel, P., & Dubois, D. (1993). Représentations pour l’action. Toulouse: Editions Octares.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Sense Publishers

About this chapter

Cite this chapter

Ginestié, J. (2011). How Pupils Solve Problems in Technology Education and What They Learn. In: Barak, M., Hacker, M. (eds) Fostering Human Development Through Engineering and Technology Education. International Technology Education Studies, vol 6. SensePublishers. https://doi.org/10.1007/978-94-6091-549-9_10

Download citation

Publish with us

Policies and ethics

Societies and partnerships