Skip to main content

Properties, Chemical Characteristics and Application of Lignin and Its Derivatives

  • Chapter
  • First Online:
Production of Biofuels and Chemicals from Lignin

Part of the book series: Biofuels and Biorefineries ((BIOBIO))

Abstract

The chapter provides an introduction to lignin chemistry, characterization techniques and general applications. Information on natural lignin polymers regarding structure, distribution and function, as well as wet chemistry, spectroscopy and chromatography methods regularly used in qualitatively or quantitatively estimating the structural variation of lignin is presented. Given the importance of lignin as a biomass resource, several applications of using lignin for energy, renewable chemicals and material composites are highlighted along with future research needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bruijnincx PCA, Rinaldi R, Weckhuysen BM. Unlocking the potential of a sleeping giant: lignins as sustainable raw materials for renewable fuels, chemicals and materials. Green Chem. 2015;17:4860–1.

    Article  CAS  Google Scholar 

  2. Campbell MM, Sederoff RR. Variation in lignin content and composition (Mechanisms of control and implications for the genetic improvement of plants). Plant Physiol. 1996;110:3.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Heber dos Santos Abreu AMdN, Marcos Antônio Maria. Lignin structure and wood properties. Wood Finer Sci. 1999; 31: 426–33.

    Google Scholar 

  4. Higuchi T. Chapter 7 – Biosynthesis of lignin. In: Biosynthesis and biodegradation of wood components. Orlando: Academic; 1985. p. 141–60.

    Chapter  Google Scholar 

  5. Higuchi T. Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol. 1990;24:23–63.

    Article  CAS  Google Scholar 

  6. Freudenberg K, Neish AC. Constitution and biosynthesis of lignin. Berlin/Heidelberg: Springer; 1968. p. 132.

    Book  Google Scholar 

  7. Lewis NG, Yamamoto E. Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Biol. 1990;41:455–96.

    Article  CAS  Google Scholar 

  8. Lapierre C. Application of new methods for the investigation of lignin structure. In: Jung HG, Buxton DR, Hatfield RD, Ralph J, editors. Forage cell wall structure and digestibility. Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America; 1993.

    Google Scholar 

  9. Adler E. Lignin chemistry—past, present and future. Wood Sci Technol. 1977;11:169–218.

    Article  CAS  Google Scholar 

  10. Faulon J-L, Hatcher PG. Is there any order in the structure of lignin? Energy Fuels. 1994;8:402–7.

    Article  CAS  Google Scholar 

  11. Zobel B, Jv B. Wood variation: its causes and control, Springer series in wood science. Berlin: Springer; 1989.

    Book  Google Scholar 

  12. Santos RB, Capanema EA, Balakshin MY, H-m C, Jameel H. Lignin structural variation in hardwood species. J Agric Food Chem. 2012;60:4923–30.

    Article  CAS  PubMed  Google Scholar 

  13. de Man TJ, de Heus J. Lignin in grass (with special reference to the nitrogen present in the lignin preparations). Recl Trav Chim Pays-Bas. 1950;69:271–6.

    Article  CAS  Google Scholar 

  14. Mann DG, Labbé N, Sykes RW, Gracom K, Kline L, Swamidoss IM, Burris JN, Davis M, Stewart Jr CN. Rapid assessment of lignin content and structure in switchgrass (Panicum virgatum L.) grown under different environmental conditions. BioEnergy Res. 2009;2:246–56.

    Article  Google Scholar 

  15. Sarkanen K, Chang H-M, Allan G. Species variation in lignins. 2. Conifer lignins. ATPPI J. 1967;50:583–7.

    CAS  Google Scholar 

  16. Akiyama T, Goto H, Nawawi DS, Syafii W, Matsumoto Y, Meshitsuka G. Erythro/threo ratio of β-O-4-5 structures as an important structural characteristic of lignin. Part 4: Variation in the erythro/threo ratio in softwood and hardwood lignins and its relation to syringyl/guaiacyl ratio. Holzforschung. 2005;59:276–81.

    Article  CAS  Google Scholar 

  17. Wikberg H, Liisa Maunu S. Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydr Polym. 2004;58:461–6.

    Article  CAS  Google Scholar 

  18. Zhao J, Xiuwen W, Hu J, Liu Q, Shen D, Xiao R. Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS. Polym Degrad Stab. 2014;108:133–8.

    Article  CAS  Google Scholar 

  19. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev. 2010;110:3552–99.

    Article  CAS  PubMed  Google Scholar 

  20. Nimz HH, Robert D, Faix O, Nemr M. Carbon-13 NMR spectra of lignins, 8. Structural differences between lignins of hardwoods, softwoods, grasses and compression wood. Holzforschung. 1981;35:16–26.

    Article  CAS  Google Scholar 

  21. Chiang VL, Funaoka M. The difference between guaiacyl and guaiacyl-syringyl lignins in their responses to kraft delignification. Holzforschung-Int J Biol Chem Phys Technol Wood. 1990;44:309–13.

    CAS  Google Scholar 

  22. Holtzapple MT, Lundeen JE, Sturgis R, Lewis JE, Dale BE. Pretreatment of lignocellulosic municipal solid waste by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol. 1992;34:5–21.

    Article  Google Scholar 

  23. Galbe M, Zacchi G. A review of the production of ethanol from softwood. Appl Microbiol Biotechnol. 2002;59:618–28.

    Article  CAS  PubMed  Google Scholar 

  24. Agarwal U, Atalla R. In-situ Raman microprobe studies of plant cell walls: macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill.) BSP. Planta. 1986;169:325–32.

    Article  CAS  PubMed  Google Scholar 

  25. Ghaffar SH, Fan M. Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy. 2013;57:264–79.

    Article  CAS  Google Scholar 

  26. Doherty WOS, Mousavioun P, Fellows CM. Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod. 2011;33:259–76.

    Article  CAS  Google Scholar 

  27. Azuma J-I. Analysis of lignin-carbohydrate complexes of plant cell walls. In: Linskens H-F, Jackson JF, editors. Plant fibers. Berlin: Springer; 1989. p. 100–26.

    Chapter  Google Scholar 

  28. Smook GA. Handbook for pulp & and paper technologists. Vancouver: Angus Wilde Publicaitons; 2002. p. 425.

    Google Scholar 

  29. Sun R. Cereal straw as a resource for sustainable biomaterials and biofuels: chemistry, extractives, lignins, hemicelluloses and cellulose. Amsterdam: Elsevier; 2010. p. 292.

    Google Scholar 

  30. The Renewable Fuel Standard data. United States Environmental Protection Agency. 2016. https://www.epa.gov/.

  31. Mousavioun P, Doherty WO. Chemical and thermal properties of fractionated bagasse soda lignin. Ind Crop Prod. 2010;31:52–8.

    Article  CAS  Google Scholar 

  32. Wen J-L, Yuan T-Q, Sun S-L, Xu F, Sun R-C. Understanding the chemical transformations of lignin during ionic liquid pretreatment. Green Chem. 2014;16:181–90.

    Article  CAS  Google Scholar 

  33. Hüttermann A, Mai C, Kharazipour A. Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol. 2001;55:387–94.

    Article  PubMed  Google Scholar 

  34. Glasser WG, Hsu OHH, Reed DL, Forte RC, Wu LCF. Lignin-derived polyols, polyisocyanates, and polyurethanes. In: Urethane chemistry and applications. Washington, DC: American Chemical Society; 1981. p. 311–38.

    Chapter  Google Scholar 

  35. Lin S. Ultraviolet spectrophotometry. In: Methods in lignin chemistry. Berlin: Springer; 1992. p. 217–32.

    Chapter  Google Scholar 

  36. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of structural carbohydrates and lignin in biomass (NREL/TP-510-42618). Laboratory analytical procedures, National Renewable Energy Laboratory. 2004. p. 15.

    Google Scholar 

  37. Dence CW. The determination of lignin. In: Stephen YL, Dence CW, editors. Methods in lignin chemistry. Berlin: Springer; 1992. p. 33–61.

    Chapter  Google Scholar 

  38. Dorris GM, Gray DG. The surface analysis of paper and wood fibers by Esca-electron spectroscopy for chemical analysis-I. Applications to cellulose and lignin. Cellul Chem Technol. 1978;12:9–23.

    CAS  Google Scholar 

  39. Fardim P, Duran N. Surface chemical composition and mechanical properties of Eucalyptus Kraft pulp investigated by XPS and PCA. In: Proceedings of the 11th international symposium wood pulping chemistry; 2001. p. 305–8.

    Google Scholar 

  40. Li K, Reeve DW. Determination of surface lignin of wood pulp fibres by X-ray photoelectron spectroscopy. Cellul Chem Technol. 2004;38:197–210.

    CAS  Google Scholar 

  41. Johansson L-S, Campbell JM, Koljonen K, Stenius P. Evaluation of surface lignin on cellulose fibers with XPS. Appl Surf Sci. 1999;144–145:92–5.

    Article  Google Scholar 

  42. Chen H, Ferrari C, Angiuli M, Yao J, Raspi C, Bramanti E. Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr Polym. 2010;82:772–8.

    Article  CAS  Google Scholar 

  43. Boeriu CG, Bravo D, Gosselink RJA, van Dam JEG. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crop Prod. 2004;20:205–18.

    Article  CAS  Google Scholar 

  44. Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog. 2007;23:1333–9.

    Article  CAS  PubMed  Google Scholar 

  45. Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng. 2008;101:913–25.

    Article  CAS  PubMed  Google Scholar 

  46. Kristensen JB, Thygesen LG, Felby C, Jørgensen H, Elder T. Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels. 2008;1:1–9.

    Article  CAS  Google Scholar 

  47. Kaparaju P, Felby C. Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover. Bioresour Technol. 2010;101:3175–81.

    Article  CAS  PubMed  Google Scholar 

  48. Košíková B, Zakutna L, Joniak D. Investigation of the lignin-saccharidic complex by electron microscopy. Holzforschung-Int J Biol Chem Phys Technol Wood. 1978;32:15–8.

    Google Scholar 

  49. Donaldson LA. Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry. 2001;57:859–73.

    Article  CAS  PubMed  Google Scholar 

  50. Maximova N, Österberg M, Koljonen K, Stenius P. Lignin adsorption on cellulose fibre surfaces: effect on surface chemistry, surface morphology and paper strength. Cellulose. 2001;8:113–25.

    Article  CAS  Google Scholar 

  51. Xu Y, Li K, Zhang M. Lignin precipitation on the pulp fibers in the ethanol-based organosolv pulping. Colloids Surf A Physicochem Eng Asp. 2007;301:255–63.

    Article  CAS  Google Scholar 

  52. Lei X, Zhao Y, Li K, Pelletier A. Improved surface properties of CTMP fibers with enzymatic pretreatment of wood chips prior to refining. Cellulose. 2012;19:2205–15.

    Article  CAS  Google Scholar 

  53. Micic M, Radotic K, Jeremic M, Djikanovic D, Kämmer SB. Study of the lignin model compound supramolecular structure by combination of near-field scanning optical microscopy and atomic force microscopy. Colloids Surf B: Biointerfaces. 2004;34:33–40.

    Article  CAS  PubMed  Google Scholar 

  54. Wang Y, Hahn TH. AFM characterization of the interfacial properties of carbon fiber reinforced polymer composites subjected to hygrothermal treatments. Compos Sci Technol. 2007;67:92–101.

    Article  CAS  Google Scholar 

  55. Constantino C, Dhanabalan A, Cotta M, Pereira-da-Silva M, Curvelo A, Oliveira O. Atomic force microscopy (AFM) investigation of Langmuir-Blodgett (LB) films of sugar cane bagasse lignin. Holzforschung. 2000;54:55–60.

    Article  CAS  Google Scholar 

  56. Pasquini D, Balogh D, Antunes P, Constantino C, Curvelo A, Aroca R, Oliveira O. Surface morphology and molecular organization of lignins in Langmuir-Blodgett films. Langmuir. 2002;18:6593–6.

    Article  CAS  Google Scholar 

  57. Gustafsson J, Ciovica L, Peltonen J. The ultrastructure of spruce kraft pulps studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Polymer. 2003;44:661–70.

    Article  CAS  Google Scholar 

  58. Mansur HS, Mansur AA, Bicallho SM. Lignin-hydroxyapatite/tricalcium phosphate biocomposites: SEM/EDX and FTIR characterization. In: Key Engineering Materials; 2005. p. 745–8.

    Google Scholar 

  59. Liu B, Wang P, Kim JI, Zhang D, Xia Y, Chapple C, Cheng J-X. Vibrational fingerprint mapping reveals spatial distribution of functional groups of lignin in plant cell wall. Anal Chem. 2015;87:9436–42.

    Article  CAS  PubMed  Google Scholar 

  60. Dean JF. Lignin analysis. In: Methods in plant biochemistry and molecular biology. Boca Raton: CRC Press; 1997. p. 199–215.

    Google Scholar 

  61. Barsberg S, Matousek P, Towrie M. Structural analysis of lignin by resonance Raman spectroscopy. Macromol Biosci. 2005;5:743–52.

    Article  CAS  PubMed  Google Scholar 

  62. Yau WW, Kirkland JJ, Bly DD. Modern size-exclusion liquid chromatography: practice of gel permeation and gel filtration chrom atography. Wiley; 1979. p. 494.

    Google Scholar 

  63. Glasser WG, Dave V, Frazier CE. Molecular weight distribution of (semi-) commercial lignin derivatives. J Wood Chem Technol. 1993;13:545–59.

    Article  CAS  Google Scholar 

  64. Scholze B, Hanser C, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin): Part II. GPC, carbonyl goups, and 13C-NMR. J Anal Appl Pyrolysis. 2001;58:387–400.

    Article  Google Scholar 

  65. Sun R, Tomkinson J, Ye J. Physico-chemical and structural characterization of residual lignins isolated with TAED activated peroxide from ultrasound irradiated and alkali pre-treated wheat straw. Polym Degrad Stab. 2003;79:241–51.

    Article  CAS  Google Scholar 

  66. Gregorová A, Košíková B, Moravčík R. Stabilization effect of lignin in natural rubber. Polym Degrad Stab. 2006;91:229–33.

    Article  CAS  Google Scholar 

  67. Connors WJ, Sarkanen S, McCarthy JL. Gel chromatography and association complexes of lignin. Holzforschung-Int J Biol Chem Phys Technol Wood. 1980;34:80–5.

    CAS  Google Scholar 

  68. Walsh A, Campbell A. HPSEC analysis of kraft lignin on a Bondagel column. Holzforschung-Int J Biol Chem Phys Technol Wood. 1986;40:263–6.

    CAS  Google Scholar 

  69. Mansouri N-EE, Salvadó J. Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crop Prod. 2006;24:8–16.

    Article  CAS  Google Scholar 

  70. Sannigrahi P, Ragauskas AJ, Miller SJ. Lignin structural modifications resulting from ethanol organosolv treatment of loblolly pine. Energy Fuels. 2009;24:683–9.

    Article  CAS  Google Scholar 

  71. Lora JH, Glasser WG. Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ. 2002;10:39–48.

    Article  CAS  Google Scholar 

  72. Lundquist K. Proton (1H) NMR spectroscopy. In: Lin SY, Dence CW, editors. Methods in lignin chemistry. Berlin/Heidelberg: Springer; 1992. p. 242–9.

    Chapter  Google Scholar 

  73. Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem. 2006;54:5806–13.

    Article  CAS  PubMed  Google Scholar 

  74. Saito T, Perkins JH, Vautard F, Meyer HM, Messman JM, Tolnai B, Naskar AK. Methanol fractionation of softwood kraft lignin: impact on the lignin properties. ChemSusChem. 2014;7:221–8.

    Article  CAS  PubMed  Google Scholar 

  75. Tejado A, Peña C, Labidi J, Echeverria JM, Mondragon I. Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour Technol. 2007;98:1655–63.

    Article  CAS  PubMed  Google Scholar 

  76. Chum LH, Black KS, Johnson KD, Sarkanen VK, Robert D. Organosolv pretreatment for enzymatic hydrolysis of poplars: isolation and quantitative structural studies of lignins. Clean Prod Processes. 1999;1:187–98.

    Google Scholar 

  77. Argyropoulos DS. Quantitative phosphorus-31 NMR analysis of lignins, a new tool for the lignin chemist. J Wood Chem Technol. 1994;14:45–63.

    Article  CAS  Google Scholar 

  78. Granata A, Argyropoulos DS. 2-Chloro-4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins. J Agric Food Chem. 1995;43:1538–44.

    Article  CAS  Google Scholar 

  79. Argyropoulos DS, Jurasek L, Krištofová L, Xia Z, Sun Y, Paluš E. Abundance and reactivity of dibenzodioxocins in softwood lignin. J Agric Food Chem. 2002;50:658–66.

    Article  CAS  PubMed  Google Scholar 

  80. Guerra A, Filpponen I, Lucia LA, Saquing C, Baumberger S, Argyropoulos DS. Toward a better understanding of the lignin isolation process from wood. J Agric Food Chem. 2006;54:5939–47.

    Article  CAS  PubMed  Google Scholar 

  81. Tiainen E, Drakenberg T, Tamminen T, Kataja K, Hase A. Determination of phenolic hydroxyl groups in lignin by combined use of 1H NMR and UV spectroscopy. Holzforschung. 1999;53:529.

    Article  CAS  Google Scholar 

  82. Vazquez G, Gonzalez J, Freire S, Antorrena G. Effect of chemical modification of lignin on the gluebond performance of lignin-phenolic resins. Bioresour Technol. 1997;60:191–8.

    Article  CAS  Google Scholar 

  83. Lai Y-Z, Funaoka M. The distribution of phenolic hydroxyl groups in hardwood lignins. J Wood Chem Technol. 1993;13:43–57.

    Article  CAS  Google Scholar 

  84. Sonoda T, Ona T, Yokoi H, Ishida Y, Ohtani H, Tsuge S. Quantitative analysis of detailed lignin monomer composition by pyrolysis-gas chromatography combined with preliminary acetylation of the samples. Anal Chem. 2001;73:5429–35.

    Article  CAS  PubMed  Google Scholar 

  85. Holtman KM, Hm C, Jameel H, Kadla JF. Quantitative 13C NMR characterization of milled wood lignins isolated by different milling techniques. J Wood Chem Technol. 2006;26:21–34.

    Article  CAS  Google Scholar 

  86. Pu Y, Chen F, Ziebell A, Davison BH, Ragauskas AJ. NMR characterization of C3H and HCT down-regulated Alfalfa lignin. BioEnergy Res. 2009;2:198–208.

    Article  Google Scholar 

  87. Hallac BB, Pu Y, Ragauskas AJ. Chemical transformations of buddleja davidii lignin during ethanol organosolv pretreatment. Energy Fuels. 2010;24:2723–32.

    Article  CAS  Google Scholar 

  88. Palmer AG, Cavanagh J, Wright PE, Rance M. Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson. (1969). 1991; 93: 151–70.

    Google Scholar 

  89. Samuel R, Foston M, Jaing N, Cao S, Allison L, Studer M, Wyman C, Ragauskas AJ. HSQC (heteronuclear single quantum coherence) 13C–1H correlation spectra of whole biomass in perdeuterated pyridinium chloride–DMSO system: an effective tool for evaluating pretreatment. Fuel. 2011;90:2836–42.

    Article  CAS  Google Scholar 

  90. Li H, Pu Y, Kumar R, Ragauskas AJ, Wyman CE. Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol Bioeng. 2014;111:485–92.

    Article  CAS  PubMed  Google Scholar 

  91. Pu Y, Cao S, Ragauskas AJ. Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy Environ Sci. 2011;4:3154–66.

    Article  CAS  Google Scholar 

  92. Xu F, Sun J-X, Sun R, Fowler P, Baird MS. Comparative study of organosolv lignins from wheat straw. Ind Crop Prod. 2006;23:180–93.

    Article  CAS  Google Scholar 

  93. Tian X, Rehmann L, Xu CC, Fang Z. Pretreatment of eastern white pine (Pinus strobes L.) for enzymatic hydrolysis and ethanol production by organic electrolyte solutions. ACS Sustain Chem Eng. 2016;4:2822–9.

    Article  CAS  Google Scholar 

  94. Sills DL, Gossett JM. Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses. Biotechnol Bioeng. 2012;109:353–62.

    Article  CAS  PubMed  Google Scholar 

  95. Kubo S, Kadla JF. Hydrogen bonding in lignin: a fourier transform infrared model compound study. Biomacromolecules. 2005;6:2815–21.

    Article  CAS  PubMed  Google Scholar 

  96. Klingberg A, Odermatt J, Meier D. Influence of parameters on pyrolysis-GC/MS of lignin in the presence of tetramethylammonium hydroxide. J Anal Appl Pyrolysis. 2005;74:104–9.

    Article  CAS  Google Scholar 

  97. Hosoya T, Kawamoto H, Saka S. Pyrolysis behaviors of wood and its constituent polymers at gasification temperature. J Anal Appl Pyrolysis. 2007;78:328–36.

    Article  CAS  Google Scholar 

  98. Patwardhan PR, Brown RC, Shanks BH. Understanding the fast pyrolysis of lignin. ChemSusChem. 2011;4:1629–36.

    Article  CAS  PubMed  Google Scholar 

  99. Marques AV, Pereira H. Lignin monomeric composition of corks from the barks of Betula pendula, Quercus suber and Quercus cerris determined by Py–GC–MS/FID. J Anal Appl Pyrolysis. 2013;100:88–94.

    Article  CAS  Google Scholar 

  100. Adler E, Lundquist K, Miksche GE. The structure and reactivity of lignin. In: Gould RF, editor. Lignin structure and reactions. Washington, DC: American Chemical Society; 1966. p. 22–35.

    Chapter  Google Scholar 

  101. Rolando C, Monties B, Lapierre C. Thioacidolysis. In: Lin SY, Dence CW, editors. Methods in lignin chemistry. Berlin/Heidelberg: Springer; 1992. p. 334–49.

    Chapter  Google Scholar 

  102. Holtman KM, Chang H-M, Jameel H, Kadla JF. Elucidation of lignin structure through degradative methods: comparison of modified DFRC and thioacidolysis. J Agric Food Chem. 2003;51:3535–40.

    Article  CAS  PubMed  Google Scholar 

  103. Lu F, Ralph J. Derivatization Followed by Reductive Cleavage (DFRC Method), a new method for lignin analysis: protocol for analysis of DFRC monomers. J Agric Food Chem. 1997;45:2590–2.

    Article  CAS  Google Scholar 

  104. Lu F, Ralph J. The DFRC method for lignin analysis. 2. Monomers from isolated lignins. J Agric Food Chem. 1998;46:547–52.

    Article  CAS  PubMed  Google Scholar 

  105. Lu F, Ralph J. Detection and determination of p-Coumaroylated units in lignins. J Agric Food Chem. 1999;47:1988–92.

    Article  CAS  PubMed  Google Scholar 

  106. S-i T, Argyropoulos DS. Determination of arylglycerol-β-aryl ethers and other linkages in lignins using DFRC/31P NMR. J Agric Food Chem. 2001;49:536–42.

    Article  CAS  Google Scholar 

  107. Brebu M, Vasile C. Thermal degradation of lignin—a review. Cellul Chem Technol. 2010;44:353.

    CAS  Google Scholar 

  108. Roberts V, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA. Towards quantitative catalytic lignin depolymerization. Chem A Eur J. 2011;17:5939–48.

    Article  CAS  Google Scholar 

  109. Challinor J. Characterisation of wood by pyrolysis derivatisation—gas chromatography/mass spectrometry. J Anal Appl Pyrolysis. 1995;35:93–107.

    Article  CAS  Google Scholar 

  110. del Rıo J, Gutiérrez A, Romero J, Martınez M, Martınez A. Identification of residual lignin markers in eucalypt kraft pulps by Py–GC/MS. J Anal Appl Pyrolysis. 2001;58:425–39.

    Google Scholar 

  111. Ibarra D, José C, Gutiérrez A, Rodríguez IM, Romero J, Martínez MJ, Martínez ÁT. Chemical characterization of residual lignins from eucalypt paper pulps. J Anal Appl Pyrolysis. 2005;74:116–22.

    Article  CAS  Google Scholar 

  112. Meier D, Fortmann I, Odermatt J, Faix O. Discrimination of genetically modified poplar clones by analytical pyrolysis–gas chromatography and principal component analysis. J Anal Appl Pyrolysis. 2005;74:129–37.

    Article  CAS  Google Scholar 

  113. Meier D, Faix O. State of the art of applied fast pyrolysis of lignocellulosic materials—a review. Bioresour Technol. 1999;68:71–7.

    Article  CAS  Google Scholar 

  114. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  115. Pereira H. Chemical composition and variability of cork from Quercus suber L. Wood Sci Technol. 1988;22:211–8.

    Article  CAS  Google Scholar 

  116. Amen-Chen C, Pakdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol. 2001;79:277–99.

    Article  CAS  PubMed  Google Scholar 

  117. Lourenço A, Gominho J, Marques AV, Pereira H. Variation of lignin monomeric composition during kraft pulping of Eucalyptus globulus heartwood and sapwood. J Wood Chem Technol. 2013;33:1–18.

    Article  CAS  Google Scholar 

  118. De Wild P, Van der Laan R, Kloekhorst A, Heeres E. Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation. Environ Progress Sustain energy. 2009;28:461–9.

    Article  CAS  Google Scholar 

  119. Challinor J. A pyrolysis-derivatisation-gas chromatography technique for the structural elucidation of some synthetic polymers. J Anal Appl Pyrolysis. 1989;16:323–33.

    Article  CAS  Google Scholar 

  120. Jackson MG. Review article: the alkali treatment of straws. Anim Feed Sci Technol. 1977;2:105–30.

    Article  Google Scholar 

  121. Chakar FS, Ragauskas AJ. Review of current and future softwood kraft lignin process chemistry. Ind Crop Prod. 2004;20:131–41.

    Article  CAS  Google Scholar 

  122. Heikkila H. Production of pure sugars and lignosulfonate from sulfite spent liquor. US Patent, US4631129 A. 1986.

    Google Scholar 

  123. Matsushita Y, Yasuda S. Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin. Bioresour Technol. 2005;96:465–70.

    Article  CAS  PubMed  Google Scholar 

  124. Wörmeyer K, Ingram T, Saake B, Brunner G, Smirnova I. Comparison of different pretreatment methods for lignocellulosic materials. Part II: influence of pretreatment on the properties of rye straw lignin. Bioresour Technol. 2011;102:4157–64.

    Article  PubMed  CAS  Google Scholar 

  125. Pandey MP, Kim CS. Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol. 2011;34:29–41.

    Article  CAS  Google Scholar 

  126. H-m C, Cowling EB, Brown W. Comparative studies on cellulolytic enzyme lignin and milled wood lignin of sweetgum and spruce. Holzforschung-Int J Biol Chem Phys Technol Wood. 1975;29:153–9.

    Google Scholar 

  127. Wang K, Bauer S, R-c S. Structural transformation of miscanthus × giganteus lignin fractionated under mild formosolv, basic organosolv, and cellulolytic enzyme conditions. J Agric Food Chem. 2012;60:144–52.

    Article  CAS  PubMed  Google Scholar 

  128. Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S. Extraction and characterization of lignin from different biomass resources. J Mater Res Technol. 2015;4:26–32.

    Article  CAS  Google Scholar 

  129. Hou X-D, Smith TJ, Li N, Zong M-H. Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol Bioeng. 2012;109:2484–93.

    Article  CAS  PubMed  Google Scholar 

  130. Sun R, Xiao B, Lawther J. Fractional and structural characterization of ball-milled and enzyme lignins from wheat straw. J Appl Polym Sci. 1998;68:1633–41.

    Article  CAS  Google Scholar 

  131. Samuel R, Pu Y, Raman B, Ragauskas AJ. Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment. Appl Biochem Biotechnol. 2010;162:62–74.

    Article  CAS  PubMed  Google Scholar 

  132. Hammel K. Fungal degradation of lignin. In: Driven by nature: plant litter quality and decomposition. Wallingford: CAB International; 1997. p. 33–45.

    Google Scholar 

  133. Xf T, Fang Z, Guo F. Impact and prospective of fungal pre-treatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels Bioprod Biorefin. 2012;6:335–50.

    Article  CAS  Google Scholar 

  134. Varanasi P, Singh P, Auer M, Adams PD, Simmons BA, Singh S. Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Biotechnol Biofuels. 2013;6:1.

    Article  CAS  Google Scholar 

  135. Holladay JE, White JF, Bozell JJ, Johnson D. Top value-added chemicals from biomass-volume ii—results of screening for potential candidates from biorefinery lignin (PNNL-16983). Pacific Northwest National Laboratory; 2007. p. 79.

    Google Scholar 

  136. Azadi P, Inderwildi OR, Farnood R, King DA. Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energ Rev. 2013;21:506–23.

    Article  CAS  Google Scholar 

  137. Stewart D. Lignin as a base material for materials applications: chemistry, application and economics. Ind Crop Prod. 2008;27:202–7.

    Article  CAS  Google Scholar 

  138. Suhas CPJM, Ribeiro Carrott MML. Lignin – from natural adsorbent to activated carbon: a review. Bioresour Technol. 2007;98:2301–12.

    Article  CAS  PubMed  Google Scholar 

  139. Thakur VK, Thakur MK, Raghavan P, Kessler MR. Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng. 2014;2:1072–92.

    Article  CAS  Google Scholar 

  140. Thakur VK, Thakur MK. Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol. 2015;72:834–47.

    Article  CAS  PubMed  Google Scholar 

  141. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T. The path forward for biofuels and biomaterials. Science. 2006;311:484–9.

    Article  CAS  PubMed  Google Scholar 

  142. Maček A. Research on combustion of black-liquor drops. Prog Energy Combust Sci. 1999;25:275–304.

    Article  Google Scholar 

  143. Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94.

    Article  CAS  Google Scholar 

  144. ArthurL.Kohl, Hills W. Gasification of black liquor. US Patent, US4682985 A. 1987.

    Google Scholar 

  145. Backman R, Frederick WJ, Hupa M. Power production from biomass basic studies on black-liquor pyrolysis and char gasification. Bioresour Technol. 1993;46:153–8.

    Article  CAS  Google Scholar 

  146. Demirbaş A, Karshoğlu S, Ayas A. Hydrogen resources conversion of black liquor to hydrogen rich gaseous products. Fuel Sci Technol Int. 1996;14:451–63.

    Article  Google Scholar 

  147. Bach-Oller A, Furusjö E, Umeki K. Fuel conversion characteristics of black liquor and pyrolysis oil mixtures: efficient gasification with inherent catalyst. Biomass Bioenergy. 2015;79:155–65.

    Article  CAS  Google Scholar 

  148. Nong G, Zhou Z, Wang S. Generation of hydrogen, lignin and sodium hydroxide from pulping black liquor by electrolysis. Energies. 2016;9:13.

    Article  CAS  Google Scholar 

  149. Tumbalam Gooty A, Li D, Berruti F, Briens C. Kraft-lignin pyrolysis and fractional condensation of its bio-oil vapors. J Anal Appl Pyrolysis. 2014;106:33–40.

    Article  CAS  Google Scholar 

  150. Huet M, Roubaud A, Chirat C, Lachenal D. Hydrothermal treatment of black liquor for energy and phenolic platform molecules recovery in a pulp mill. Biomass Bioenergy. 2016;89:105–12.

    Article  CAS  Google Scholar 

  151. Naqvi M, Yan J, Dahlquist E. Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black liquor gasification and dry gasification using direct causticization. Appl Energy. 2012;90:24–31.

    Article  CAS  Google Scholar 

  152. Shabtai JS, Zmierczak WW, Chornet E. Process for conversion of lignin to reformulated, partially oxygenated gasoline. US Patent, US 6172272 B1. 2001.

    Google Scholar 

  153. Nenkova S, Vasileva T, Stanulov K. Production of phenol compounds by alkaline treatment of technical hydrolysis lignin and wood biomass. Chem Nat Compd. 2008;44:182–5.

    Article  CAS  Google Scholar 

  154. Mahmood N, Yuan Z, Schmidt J, Xu CC. Production of polyols via direct hydrolysis of kraft lignin: effect of process parameters. Bioresour Technol. 2013;139:13–20.

    Article  CAS  PubMed  Google Scholar 

  155. Odebunmi EO, Ollis DF. Catalytic hydrodeoxygenation: I. Conversions of o-, p-, and m-cresols. J Catal. 1983;80:56–64.

    Article  CAS  Google Scholar 

  156. Kallury R, Restivo WM, Tidwell TT, Boocock D, Crimi A, Douglas J. Hydrodeoxygenation of hydroxy, methoxy and methyl phenols with molybdenum oxide/nickel oxide/alumina catalyst. J Catal. 1985;96:535–43.

    Article  CAS  Google Scholar 

  157. Urban P, Engel DJ. Process for liquefaction of lignin. US Patent, US4731491 A. 1988.

    Google Scholar 

  158. Pepper J, Lee Y. Lignin and related compounds. I. A comparative study of catalysts for lignin hydrogenolysis. Can J Chem. 1969;47:723–7.

    Article  CAS  Google Scholar 

  159. Meier D, Berns J, Faix O, Balfanz U, Baldauf W. Hydrocracking of organocell lignin for phenol production. Biomass Bioenergy. 1994;7:99–105.

    Article  CAS  Google Scholar 

  160. Ratcliff M, Johnson D, Posey F, Maholland M, Cowley S, Chum H. Hydrodeoxygenation of a lignin model compound. In: Research in thermochemical biomass conversion. London: Springer; 1988. p. 941–55.

    Chapter  Google Scholar 

  161. Jv H, Scott EL, Sanders J. Bulk chemicals from biomass. Biofuels Bioprod Biorefin. 2008;2:41–57.

    Article  CAS  Google Scholar 

  162. Villar J, Caperos A, Garcia-Ochoa F. Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Sci Technol. 2001;35:245–55.

    Article  CAS  Google Scholar 

  163. Voitl T, Rudolf von Rohr P. Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols. ChemSusChem. 2008;1:763–9.

    Article  CAS  PubMed  Google Scholar 

  164. Partenheimer W. The aerobic oxidative cleavage of lignin to produce hydroxyaromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic acid/water mixtures. Adv Synth Catal. 2009;351:456–66.

    Article  CAS  Google Scholar 

  165. Vispute TP, Zhang H, Sanna A, Xiao R, Huber GW. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science. 2010;330:1222–7.

    Article  CAS  PubMed  Google Scholar 

  166. Shabtai J, Zmierczak W, Chornet E, Johnson D. Process for converting lignins into a high octane blending component. US Patent, US20030115792. 2003.

    Google Scholar 

  167. Huang S, Mahmood N, Tymchyshyn M, Yuan Z, Xu C. Reductive de-polymerization of kraft lignin for chemicals and fuels using formic acid as an in-situ hydrogen source. Bioresour Technol. 2014;171:95–102.

    Article  CAS  PubMed  Google Scholar 

  168. Reichert E, Wintringer R, Volmer DA, Hempelmann R. Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid. Phys Chem Chem Phys. 2012;14:5214–21.

    Article  CAS  PubMed  Google Scholar 

  169. Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, Salm MJ, Strathmann TJ, Beckham GT. Adipic acid production from lignin. Energy Environ Sci. 2015;8:617–28.

    Article  CAS  Google Scholar 

  170. Wang M, Leitch M, Xu C. Synthesis of phenol–formaldehyde resol resins using organosolv pine lignins. Eur Polym J. 2009;45:3380–8.

    Article  CAS  Google Scholar 

  171. Koike T. Progress in development of epoxy resin systems based on wood biomass in Japan. Polym Eng Sci. 2012;52:701–17.

    Article  CAS  Google Scholar 

  172. Ferdosian F, Yuan Z, Anderson M, Xu CC. Synthesis of lignin-based epoxy resins: optimization of reaction parameters using response surface methodology. RSC Adv. 2014;4:31745–53.

    Article  CAS  Google Scholar 

  173. Simionescu CI, Rusan V, Macoveanu MM, Cazacu G, Lipsa R, Vasile C, Stoleriu A, Ioanid A. Special issue microphenomena in advanced composites lignin/epoxy composites. Compos Sci Technol. 1993;48:317–23.

    Article  CAS  Google Scholar 

  174. Viswanathan T. Synthesis of lignosulfonic acid-doped polyaniline using transition metal ion catalysts. US Patent, US 6977050 B1. 2005.

    Google Scholar 

  175. Nägele H, Pfitzer J, Nägele E, Inone ER, Eisenreich N, Eckl W, Eyerer P. ARBOFORM®-a thermoplastic, processable material from lignin and natural fibers. In: Chemical modification, properties, and usage of lignin. New York: Springer; 2002. p. 101–19.

    Chapter  Google Scholar 

  176. Gandini A, Belgacem MN, Guo Z-X, Montanari S. Lignins as macromonomers for polyesters and polyurethanes. In: Chemical modification, properties, and usage of lignin. New York: Springer; 2002. p. 57–80.

    Chapter  Google Scholar 

  177. Bonini C, D’Auria M, Emanuele L, Ferri R, Pucciariello R, Sabia AR. Polyurethanes and polyesters from lignin. J Appl Polym Sci. 2005;98:1451–6.

    Article  CAS  Google Scholar 

  178. Sricharoenchaikul V, Hicks AL, Frederick WJ. Carbon and char residue yields from rapid pyrolysis of kraft black liquor. Bioresour Technol. 2001;77:131–8.

    Article  CAS  PubMed  Google Scholar 

  179. Gao Y, Yue Q, Gao B, Sun Y, Wang W, Li Q, Wang Y. Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption. Chem Eng J. 2013;217:345–53.

    Article  CAS  Google Scholar 

  180. Sun Y, Guo F, Zhang L. Optimization of the preparation of activated carbon from steam activated cornstraw black liquor for phenol removal. Asia‐Pacific J Chem Eng. 2016.

    Google Scholar 

  181. F-l P, Fang Z, Zakaria S, Guo F, C-h C. Direct production of biodiesel from high-acid value Jatrophaoil with solid acid catalyst derived from lignin. Biotechnol Biofuels. 2011;4:1–8.

    Article  CAS  Google Scholar 

  182. Huang M, Luo J, Fang Z, Li H. Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub- and super-critical ethanol. Appl Catal B Environ. 2016;190:103–14.

    Article  CAS  Google Scholar 

  183. Baumberger S, Lapierre C, Monties B, Della Valle G. Use of kraft lignin as filler for starch films. Polym Degrad Stab. 1998;59:273–7.

    Article  CAS  Google Scholar 

  184. Palm C, Sanchez P. Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents. Soil Biol Biochem. 1991;23:83–8.

    Article  CAS  Google Scholar 

  185. Pucciariello R, Villani V, Bonini C, D’Auria M, Vetere T. Physical properties of straw lignin-based polymer blends. Polymer. 2004;45:4159–69.

    Article  CAS  Google Scholar 

  186. Lora JH, Trojan MJ, Klingensmith WH. Rubber compositions containing high purity lignin derivatives. US Patent, US5196460 A. 1993.

    Google Scholar 

  187. Kubo S, Kadla JF. The formation of strong intermolecular interactions in immiscible blends of poly (vinyl alcohol)(PVA) and lignin. Biomacromolecules. 2003;4:561–7.

    Article  CAS  PubMed  Google Scholar 

  188. Kadla JF, Kubo S. Miscibility and hydrogen bonding in blends of poly (ethylene oxide) and kraft lignin. Macromolecules. 2003;36:7803–11.

    Article  CAS  Google Scholar 

  189. Pouteau C, Dole P, Cathala B, Averous L, Boquillon N. Antioxidant properties of lignin in polypropylene. Polym Degrad Stab. 2003;81:9–18.

    Article  CAS  Google Scholar 

  190. Kadla JF, Kubo S. Lignin-based polymer blends: analysis of intermolecular interactions in lignin–synthetic polymer blends. Compos A: Appl Sci Manuf. 2004;35:395–400.

    Article  CAS  Google Scholar 

  191. Kubo S, Kadla JF. Poly (ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules. 2004;37:6904–11.

    Article  CAS  Google Scholar 

  192. Ladwig RD. Method of wallboard manufacture. US Patent, US4222984 A. 1980.

    Google Scholar 

  193. Hu TQ. Chemical modification, properties, and usage of lignin. New York: Springer; 2002. p. 291.

    Book  Google Scholar 

  194. Sudo K, Shimizu K. A new carbon fiber from lignin. J Appl Polym Sci. 1992;44:127–34.

    Article  CAS  Google Scholar 

  195. Kubo S, Uraki Y, Sano Y. Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping. Carbon. 1998;36:1119–24.

    Article  CAS  Google Scholar 

  196. Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W. Lignin-based carbon fibers for composite fiber applications. Carbon. 2002;40:2913–20.

    Article  CAS  Google Scholar 

  197. Ruiz-Rosas R, Bedia J, Lallave M, Loscertales I, Barrero A, Rodríguez-Mirasol J, Cordero T. The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon. 2010;48:696–705.

    Article  CAS  Google Scholar 

  198. Gargulak J, Lebo S. Commercial use of lignin-based materials. In: ACS Symposium Series. Washington, DC: American Chemical Society; 2000. p. 304–20.

    Google Scholar 

  199. Lin SY, Dence CW. The determination of lignin. In: Methods in lignin chemistry. Berlin: Springer; 1992. p. 33–61.

    Chapter  Google Scholar 

  200. Hofrichter M. Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol. 2002;30:454–66.

    Article  CAS  Google Scholar 

  201. Beckham GT, Johnson CW, Karp EM, Salvachúa D, Vardon DR. Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol. 2016;42:40–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Tian, X., Fang, Z., Smith, R.L., Wu, Z., Liu, M. (2016). Properties, Chemical Characteristics and Application of Lignin and Its Derivatives. In: Fang, Z., Smith, Jr., R. (eds) Production of Biofuels and Chemicals from Lignin. Biofuels and Biorefineries. Springer, Singapore. https://doi.org/10.1007/978-981-10-1965-4_1

Download citation

Publish with us

Policies and ethics