Skip to main content

Extraction of Technical Lignins from Pulping Spent Liquors, Challenges and Opportunities

  • Chapter
  • First Online:
Production of Biofuels and Chemicals from Lignin

Part of the book series: Biofuels and Biorefineries ((BIOBIO))

Abstract

Different value-added products can be produced from lignin. To produce lignin based products, lignin derivatives need to be isolated from pulping spent liquors, as pulping spent liquors are dilute in lignin and impure. In this chapter, methods for isolating lignin derivatives from pulping spent liquors are reviewed. The main challenges and perspectives in the development of viable lignin production processes are described. LignoBoost and LignoForce were designed based on the acidification concept to isolate Kraft lignin from black liquor on the commercial scale, both of which produce pure lignin. To extract lignosulfonate from sulfite spent liquors, ultrafiltration seemed to be an industrially viable method, but the extracted lignin will likely contain impurities. Laboratory studies on adsorption and flocculation techniques for isolating lignin from other spent liquors with a low lignin content, e.g. prehydrolysis liquor of Kraft based processes, or the spent liquor of the neutral sulfite semichemical processes, are also discussed. Although these techniques seem to be industrially attractive, the purity of lignin that is produced in these processes are not high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dansereau LP, El-Halwagi M, Mansoornejad B, Stuart P. Framework for margins-based planning: forest biorefinery case study. Comput Chem Eng. 2014;63:34–50.

    Article  CAS  Google Scholar 

  2. Saeed A, Fatehi P, Ni Y. Chitosan as a flocculant for pre-hydrolysis liquor of Kraft-based dissolving pulp production process. Carbohydr Polym. 2011;86:1630–6.

    Article  CAS  Google Scholar 

  3. Van Heiningen A. Converting a kraft pulp mill into an integrated forest biorefinery. Pulp Pap Canada. 2006;107:38–43.

    Google Scholar 

  4. El Mansouri NE, Salvadó J. Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, Kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crop Prod. 2006;24:8–16.

    Article  Google Scholar 

  5. Lora JH, Glasser WG. Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ. 2002;10:39–48.

    Article  CAS  Google Scholar 

  6. Yang D, Li H, Qin Y, Zhong R, Bai M, Qiu X. Structure and properties of sodium lignosulfonate with different molecular weight used as dye dispersant. J Dispers Sci Technol. 2014;36:532–9.

    Article  CAS  Google Scholar 

  7. Kumar S, Mohanty A, Erickson L, Misra M. Lignin and its applications with polymers. J Biobased Mater Bioenergy. 2009;3:1–24.

    Article  CAS  Google Scholar 

  8. Olsen SN, Bohlin C, Murphy L, Borch K, Mcfarland K, Sweeny M, Westh P. Effects of non-ionic surfactants on the interactions between cellulases and tannic acid: a model system for cellulase–poly-phenol interactions. Enzym Microb Technol. 2011;49:353–9.

    Article  CAS  Google Scholar 

  9. Sasaki C, Wanaka M, Takagi H, Tamura S, Asada C, Nakamura Y. Evaluation of epoxy resins synthesized from steam exploded bamboo lignin. Ind Crop Prod. 2013;43:757–61.

    Article  CAS  Google Scholar 

  10. Thakur VK, Thakur MK, Raghavan P, Kessler MR. Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng. 2014;2:1072–92.

    Article  CAS  Google Scholar 

  11. Kadla J, Kubo S, Venditti R, Gilbert R, Compere A, Griffith W. Lignin-based carbon fibers for composite fiber applications. Carbon. 2002;40:2913–20.

    Article  CAS  Google Scholar 

  12. Fatehi P, Hamdan FC, Ni Y. Adsorption of lignocelluloses of pre-hydrolysis liquor on calcium carbonate to induce functional filler. Carbohydr Polym. 2013;94:531–8.

    Article  CAS  PubMed  Google Scholar 

  13. Oveissi F, Fatehi P. Production of modified bentonite via adsorbing lignocelluloses from spent liquor of NSSC process. Bioresour Technol. 2015;174:152–8.

    Article  Google Scholar 

  14. Fatehi P, Ni Y. Integrated forest biorefinery-prehydrolysis/dissolving pulping process. In: Zhu J, Zhang X, Pan X, editors. Sustainable production of fuels, chemicals, and fibers from forest biomass, American chemical society symposium series, NY, 1067. Washington, DC: American Chemical Society; 2011. p. 475–506.

    Chapter  Google Scholar 

  15. Fatehi P, Ni Y. Integrated forest biorefinery-sulfite process. In: Zhu J, Zhang X, Pan X, editors. Sustainable production of fuels, chemicals, and fibers from forest biomass, American chemical society symposium series, NY, 1067. Washington, DC: American Chemical Society; 2011. p. 409–41.

    Chapter  Google Scholar 

  16. Velez J, Thies MC. Liquid lignin from the SLRP process: the effect of process conditions and black liquor properties. J Wood Chem Technol. 2016;36:27–41.

    Article  CAS  Google Scholar 

  17. Arkall A, Olsson J, Wallberg O. Process performance in lignin separation from softwood black liquor by membrane filtration. Chem Eng Res Des. 2014;92:1792–800.

    Article  Google Scholar 

  18. Manttari M, Hatakka JLH, Louhi-Kultanen M, Kallioinen M. Separation phenomena in UF and NF in the recovery of organic acids from Kraft black liquor. J Membr Sci. 2015;490:84–91.

    Article  CAS  Google Scholar 

  19. Sun RC, Tomkinson J, Bolton J. Effects of precipitation pH on the physicochemical properties of the lignins isolated from the black liquor of oil palm empty fruit bunch fibre pulping. Polym Degrad Stab. 1999;63(2):195–200.

    Article  CAS  Google Scholar 

  20. Mussatto SI, Fernandes M, Roberto IC. Lignin recovery from brewer’s spent grain black liquor. Carbohydr Polym. 2007;70:218–23.

    Article  CAS  Google Scholar 

  21. Helander M, Theliander H, Lawoko M, Hentiksson G, Zhang L, Lindstrom LE. Fractionation of technical lignin: molecular mass and pH effects. BioRes. 2013;8(2):2270–82.

    Article  Google Scholar 

  22. Laurencon TV, Hansel FA, Da Silva TA, Ramos LP, de Muniz GIB, Magalhaes WLE. Hardwood and softwood Kraft lignins fractionation by simple sequential acid precipitation. Sep Purif Technol. 2015;154:82–8.

    Article  Google Scholar 

  23. Tomani P. The LignoBoost process. Cell Chem Technol. 2010;44(1–3):53–8.

    CAS  Google Scholar 

  24. Kouisni L, Holt-Hindle P, Maki K, Paleologou M. The Lignoforce system: a new process for the production of high quality lignin from black liquor. J Sci Technol For Prod. 2012;2(4):6–10.

    Google Scholar 

  25. Velez J, Thies MC. Temperature effect on molecular weight properties of liquid lignin recovered from Kraft black liquor. ACS Sustain Chem Eng. 2015;3(6):1032–8.

    Article  CAS  Google Scholar 

  26. Lake MA, Blackburn JC. Process for recovering lignin. US patent WO2011037967 A2. 2011.

    Google Scholar 

  27. Alén R, Sjöström E, Vaskikari P. Ultrafiltration studies on alkaline pulping liquors. Cellul Chem Technol. 1986;20:417–20.

    Google Scholar 

  28. Bhattacharjee C, Sarkar P, Datta S, Gupta BB, Bhattacharya PK. Parameter estimation and performance study during ultrafiltration of Kraft black liquor. Sep Purif Technol. 2006;51(3):247–57.

    Article  CAS  Google Scholar 

  29. Paleologou M, Cloutier JN, Ramamurthy P, Berry RM, Azarniouch MK, Dorica J. Membrane technologies for pulp and paper applications: an outline of Paprican’s current work. Pulp Pap Can. 1994;95(10):386–90.

    Google Scholar 

  30. Wallberg O, Jönsson AS, Wimmerstedt R. Ultrafiltrationof Kraft black liquor with a ceramic membrane. Desalination. 2003;156:145–53.

    Article  CAS  Google Scholar 

  31. Keyoumu A, Sjödahl R, Henriksson G, Ek M, Gellerstedt G, Lindström ME. Continuous nano- and ultra-filtration of Kraft pulping black liquor with ceramic filters: a method for lowering the load on the recovery boiler while generating valuable side-products. Ind Crop Prod. 2004;20:143–50.

    Article  CAS  Google Scholar 

  32. Loutfi H, Blackwell B, Uloth V. Lignin recovery from Kraft black liquor: preliminary process design. Tappi. 1991;74:203–10.

    CAS  Google Scholar 

  33. Ghatak HR. Electrolysis of black liquor for hydrogen production: some initial findings. Intl J Hydrog Energy. 2006;31:934–8.

    Article  CAS  Google Scholar 

  34. Cloutier JN, Azarniouch MK, Callender D. Electrolysis of weak black liquor Part I: laboratory study. J Pulp Pap Sci. 1993;19(6):244–8.

    CAS  Google Scholar 

  35. Davy MF, Uloth VC, Cloutier JN. Economic evaluation of black liquor treatment processes for incremental Kraft pulp production. Pulp Pap Canada. 1998;99(2):35–9.

    CAS  Google Scholar 

  36. Whalen DM. A simple method for precipitating easily filterable acid lignin from Kraft black liquor. Tappi J. 1975;58(5):110–2.

    CAS  Google Scholar 

  37. Villar JC. Precipitation of Kraft black liquors by alcohol calcium solutions. Sep Purif Technol. 1996;31(12):1721–39.

    CAS  Google Scholar 

  38. Saeed A, Jahan MS, Li H, Liu Z, Ni Y, van Heiningen A. Mass balances of components dissolved in the pre-hydrolysis liquor of Kraft-based dissolving pulp production process from Canadian hardwoods. Biomass Bioen. 2012;39:14–9.

    Article  CAS  Google Scholar 

  39. Sixta H. Hand book of pulp, vol. 1. 1st ed. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2006.

    Book  Google Scholar 

  40. Liu Z, Fatehi P, Jahan MS, Ni Y. Separation of lignocellulosic materials by combined processes of prehydrolysis and ethanol extraction. Bioresour Technol. 2011;102:1264–9.

    Article  CAS  PubMed  Google Scholar 

  41. Shi H, Fatehi P, Xiao H, Ni Y. A combined acidification/peo flocculation process to improve the lignin removal from the pre-hydrolysis liquor of Kraft-based dissolving pulp production process. Bioresour Technol. 2011;102:5177–82.

    Article  CAS  PubMed  Google Scholar 

  42. Shi H, Fatehi P, Xiao H, Ni Y. Optimizing PEO flocculation process for isolating lignin of pre-hydrolysis liquor of Kraft-based dissolving pulp production process. Ind Eng Chem Res. 2012;51:5330–5.

    Article  CAS  Google Scholar 

  43. García A, Toledano A, Serrano L, Egüés I, González M, Marín F, Labidi J. Characterization of lignins obtained by selective precipitation. Sep Purif Technol. 2009;68:193–8.

    Article  Google Scholar 

  44. Shi H, Fatehi P, Xiao H, Ni Y. A process for isolating lignin of pre-hydrolysis liquor of Kraft pulping process based on surfactant and calcium oxide treatments. Biochem Eng J. 2012;68:19–24.

    Article  CAS  Google Scholar 

  45. Park Y, Doherty WOS, Halley PJ. Developing lignin based resin coating and composites. Ind Crop Prod. 2008;27:163–7.

    Article  CAS  Google Scholar 

  46. Kadla JF, Kubo S. Miscibility and hydrogen bonding in blends of poly ethylene oxide and Kraft lignin. Macromolecules. 2003;36:7803–11.

    Article  CAS  Google Scholar 

  47. Cheng S, Dcruz I, Yuan Z, Wang M, Anderson M, Leitch M, Xu C. Use of biocrude derived from woody biomass to substitute phenol at a high- substitution level for the production of biobased phenolic resol resins. J Appl Polym Sci. 2011;121:2743–51.

    Article  CAS  Google Scholar 

  48. Cheng S, Yuan Z, Anderson M, Leitch M, Xu C. Synthesis of bio-based phenolic resins/adhesives using methylolated wood-derived bio-oil. J Appl Polym Sci. 2012;126:E430–40.

    Article  CAS  Google Scholar 

  49. Liu X, Fatehi P, Ni Y. Removing the inhibitors of pre-hydrolysis liquor of Kraft-based dissolving pulp production process using adsorption and flocculation processes. Bioresour Technol. 2012;116:492–6.

    Article  CAS  PubMed  Google Scholar 

  50. Liu X, Fatehi P, Ni Y. Adsorption of lignocellulosic materials dissolved in pre-hydrolysis liquor of Kraft-based dissolving pulp process on oxidized activated carbons. Ind Eng Chem Res. 2011;50:11706–11.

    Article  CAS  Google Scholar 

  51. Saeed A, Fatehi P, Ni Y. An integrated process for removing the inhibitors of the pre-hydrolysis liquor of Kraft-based dissolving pulp process via cationic polymer treatment. Biotechnol Prog. 2012;68:19–24.

    Google Scholar 

  52. Shen J, Fatehi P, Soleymani P, Ni Y. A process to utilize the lignocelluloses of pre-hydrolysis liquor in the lime kiln of Kraft-based dissolving pulp production process. Bioresour Technol. 2011;102:10035–9.

    Article  CAS  PubMed  Google Scholar 

  53. Fatehi P, Shen J, Hamdan FC, Ni Y. Improving the adsorption of lignocelluloses of prehydrolysis liquor on precipitated calcium carbonate. Carbohydr Polym. 2013;92:2103–10.

    Article  CAS  PubMed  Google Scholar 

  54. Restolho JA, Prates A, de Pinho MN, Afonso MD. Sugars and lignosulphonates recovery from eucalyptus spent sulphite liquor by membrane processes. Biomass Bioenergy. 2009;33:1558–66.

    Article  CAS  Google Scholar 

  55. Ringena O, Saake B, Lehnen R. Isolation and fractionation of lignosulfonates by amine extraction and ultrafiltration: a comparative study. Holzforschung. 2005;59:405–12.

    CAS  Google Scholar 

  56. Fredheim GE, Braaten SM, Christensen BE. Molecular weight determination of lignosulfonates by size-exclusion chromatography and multi-angle laser light scattering. J Wood Chem Technol. 2003;23(2):197–215.

    Article  CAS  Google Scholar 

  57. Ekeberg D, Gretland KS, Gustafsson J, Braten SM, Fredheim GE. Characterization of lignosulfonate and Kraft lignin by hydrophobic interaction chromatography. Anal Chim Acta. 2006;565:121–8.

    Article  CAS  Google Scholar 

  58. Chakrabarty K, Krishna KV, Prabirkumar S, Ghoshal AK. Extraction and recovery of lignosulfonate from its aqueous solution using bulk liquid membrane. J Membr Sci. 2009;330:135–44.

    Article  CAS  Google Scholar 

  59. Sumerskii I, Korntner P, Zinovyev G, Rosenau T, Potthast A. Fast track for quantitative isolation of lignosulfonates from spent sulfite liquors. RSC Adv. 2015;5:92732–42.

    Article  CAS  Google Scholar 

  60. Tsapiuk EA, Byrk MT, Medvedev MI, Kochkodan VM. Fractionation and concentration of lignosulphonates by ultrafiltration. J Membr Sci. 1989;47:107–30.

    Article  Google Scholar 

  61. Wiley AJ, Ammerlaan ACF, Dubey GA. Application of reverse osmosis to processing of spent liquors from the pulp and paper industry. Tappi J. 1967;50:455–60.

    CAS  Google Scholar 

  62. Wiley AJ, Dubey GA, Holderby JM, Ammerlaan ACF. Concentration of dilute pulping wastes by reverse osmosis and ultrafiltration. J Water Pollut Control Fed. 1970;42:R279–89.

    CAS  Google Scholar 

  63. Ammerlaan ACF, Lueek BF, Wiley AJ. Membrane processing of dilute pulping wastes by reverse osmosis. Tappi J. 1969;52:118–22.

    CAS  Google Scholar 

  64. Bhattacharya A, Todi RK, Tiwari M, Bhattacharjee C, Bhattacharjee S, Datta S. Studies on ultrafiltration of spent sulfite liquor using various membranes for the recovery of lignosulphonates. Desalination. 2005;174:287–97.

    Article  CAS  Google Scholar 

  65. Basal IK, Wiley AJ. Fractionation of spent sulfite liquors using ultrafiltration cellulose acetate membrane. Environ Sci Technol. 1974;8(13):1085–90.

    Article  Google Scholar 

  66. Nystrom M, Lindstrom M. Optimal removal of chlorolignin by ultrafiltration achieved by pH control. Desalination. 1988;70:145–56.

    Article  CAS  Google Scholar 

  67. Wilde FG. Recovery of lignosulphonate from a calcium bisulphite pulp mill effluent by ultrafiltration. Desalination. 1988;67:495–505.

    Article  Google Scholar 

  68. Bansal IK, Wiley AJ. Membrane processes for fractionation and concentration of spent sulphite liquors. Tappi. 1975;58(1):125–30.

    CAS  Google Scholar 

  69. Magdzinski L. Tembec Temiscaming integrated biorefinery. Pulp Pap Canada. 2006;107(6):44–6.

    CAS  Google Scholar 

  70. Lin SY. Commercial spent pulping liquor. In: Lin SY, Dence CW, editors. Methods in lignin chemistry. Berlin: Springer; 1992. p. 75–80.

    Chapter  Google Scholar 

  71. Ringena O, Saake B, Lehnen R. Characterization of electrolyzed magnesium spent-sulfite liquor. Holzforschung. 2005;59(6):604–11.

    Article  CAS  Google Scholar 

  72. Eisenbraun EW. The separation and fractionation of lignosulfonic acid from spent sulfite liquor with tri-n-hexylamine in organic solvents. Tappi. 1963;2:104–7.

    Google Scholar 

  73. Haars A, Lohner S, Huttermann A. Quantitative determination of lignosulfonates from sulfite spend liquors using precipitation with polyethyleneimine. Holzforschung. 1981;3:59–65.

    Article  Google Scholar 

  74. Kontturi AK, Sundholm G. The extraction and fractionation of lignosulfonates with long chain aliphatic amine. Acta Chem Scand. 1986;40:121–5.

    Article  Google Scholar 

  75. Grigg RB, Bai BJ. Calcium lignosulfonate adsorption and desorption on Berea sandstone. J Colloid Interface Sci. 2004;279:36–45.

    Article  CAS  PubMed  Google Scholar 

  76. Pranovich AV, Reunanen M, Sjoholm R, Holmbom B. Dissolved lignin and other aromatic substances in thermomechanical pulp waters. J Wood Chem Technol. 2005;25:109–32.

    Article  CAS  Google Scholar 

  77. Sitter T, Oveissi F, Fatehi P. A process for producing lignocellulosic flocs from NSSC spent liquor. J Biotechnol. 2014;173:19–23.

    Article  CAS  PubMed  Google Scholar 

  78. Area MC, Felissia FE, Nunez CE, Venica A, Valade JL. Upgrading spent liquors from NSSC process: III separation of spent liquors components by ultrafiltration. Cellul Chem Technol. 2000;34:173–82.

    CAS  Google Scholar 

  79. Area MC, Felissia FE, Nunez CE, Venica A, Valade JL. Upgrading spent liquors from NSSC process: quality and quantity of organic components. Cellul Chem Technol. 2000;34:525–35.

    CAS  Google Scholar 

  80. Cave G, Fatehi P. Separation of lignosulfonate from spent liquor of neutral sulphite semichemical pulping process via surfactant treatment. Sep Purif Technol. 2015;151:39–46.

    Article  CAS  Google Scholar 

  81. Dashtban M, Gilbert A, Fatehi P. Separation of lignocelluloses from spent liquor of NSSC pulping process via adsorption. J Environ Manag. 2014;136:62–7.

    Article  CAS  Google Scholar 

  82. Dashtban M, Gilbert A, Fatehi P. A combined adsorption and flocculation process for producing lignocellulosic complexes from spent liquors of neutral sulfite semichemical pulping process. Bioresour Technol. 2014;159:373–9.

    Article  CAS  PubMed  Google Scholar 

  83. Tarasov D, Leitch M, Fatehi P. Production of lignosulfonate in NSSC‐based biorefinery. Biotechnol Prog. 2015;31(6):1508–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge Canada Research Chair program of Government of Canada and Industrial Research Chair program of NOHFC for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedram Fatehi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Fatehi, P., Chen, J. (2016). Extraction of Technical Lignins from Pulping Spent Liquors, Challenges and Opportunities. In: Fang, Z., Smith, Jr., R. (eds) Production of Biofuels and Chemicals from Lignin. Biofuels and Biorefineries. Springer, Singapore. https://doi.org/10.1007/978-981-10-1965-4_2

Download citation

Publish with us

Policies and ethics