Skip to main content

Biofuels and Chemicals from Lignin Based on Pyrolysis

  • Chapter
  • First Online:
Production of Biofuels and Chemicals from Lignin

Part of the book series: Biofuels and Biorefineries ((BIOBIO))

Abstract

Pyrolysis is a robust, thermal liquefaction technique that has been widely used to convert biomass for biofuels and chemicals. Upon pyrolysis, the phenylpropane-based lignin polymer is depolymerized into liquid intermediates rich in phenols, which can be upgraded into renewable aromatics. This chapter describes the fundamentals of lignin pyrolysis and catalytic upgrading and reviews the recent advance in the areas. Pyrolysis behavior and pyrolysis products of lignin have been investigated; along with various factors affecting lignin pyrolysis including lignin sources, pyrolysis conditions, inorganic impurities and the presence of carbohydrates. The technical problem in scaling up pyrolysis of technical lignin and recent approaches to overcome this challenge are described. Next, catalytic upgrading of lignin pyrolysis vapor and condensed liquid products using various catalysts and reactive agents are discussed. Finally, the potential applications of lignin pyrolysis products, as well as future prospect for lignin pyrolysis, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venderbosch RH, Prins W. Fast pyrolysis. In: Thermochemical processing of biomass: conversion into fuels, chemicals and power. Chichester: Wiley; 2011.

    Google Scholar 

  2. Van de Velden M, Baeyens J, Brems A, Janssens B, Dewil R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy. 2010;35:232–42.

    Article  Google Scholar 

  3. Brown RC, Brown TR. Why are we producing biofuels?: shifting to the ultimate source of energy. Ames: Brownia LLC; 2012.

    Google Scholar 

  4. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344:1246843.

    Article  PubMed  Google Scholar 

  5. De Wild P, Van der Laan R, Kloekhorst A, Heeres E. Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation. Environ Prog Sustainable Energy. 2009;28:461–9.

    Article  Google Scholar 

  6. Davin LB, Patten AM, Jourdes M, Lewis NG. Lignins: a twenty‐first century challenge. Oxford: Blackwell Publishing; 2008.

    Google Scholar 

  7. Nowakowski DJ, Bridgwater AV, Elliott DC, Meier D, de Wild P. Lignin fast pyrolysis: results from an international collaboration. J Anal Appl Pyrolysis. 2010;88:53–72.

    Article  CAS  Google Scholar 

  8. Li C, Zhao X, Wang A, Huber GW, Zhang T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev. 2015;115:11559–624.

    Article  CAS  PubMed  Google Scholar 

  9. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  10. Wang S, Ru B, Lin H, Sun W, Luo Z. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresour Technol. 2015;182:120–7.

    Article  CAS  PubMed  Google Scholar 

  11. Faix O, Jakab E, Till F, Székely T. Study on low mass thermal degradation products of milled wood lignins by thermogravimetry-mass-spectrometry. Wood Sci Technol. 1988;22:323–34.

    Article  CAS  Google Scholar 

  12. Liu Q, Wang S, Zheng Y, Luo Z, Cen K. Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J Anal Appl Pyrolysis. 2008;82:170–7.

    Article  CAS  Google Scholar 

  13. Cho J, Chu S, Dauenhauer PJ, Huber GW. Kinetics and reaction chemistry for slow pyrolysis of enzymatic hydrolysis lignin and organosolv extracted lignin derived from maplewood. Green Chem. 2012;14:428–39.

    Article  CAS  Google Scholar 

  14. Chen D, Zheng Y, Zhu X. In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: kinetic analysis for the drying and devolatilization stages. Bioresour technol. 2013;131:40–6.

    Article  CAS  PubMed  Google Scholar 

  15. Patwardhan PR, Brown RC, Shanks BH. Understanding the fast pyrolysis of lignin. ChemSusChem. 2011;4:1629–36.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang G, Nowakowski DJ, Bridgwater AV. Effect of the temperature on the composition of lignin pyrolysis products. Energy Fuel. 2010;24:4470–5.

    Article  CAS  Google Scholar 

  17. Kibet J, Khachatryan L, Dellinger B. Molecular products and radicals from pyrolysis of lignin. Environ Sci Technol. 2012;46:12994–3001.

    Article  CAS  PubMed  Google Scholar 

  18. Mu W, Ben H, Ragauskas A, Deng Y. Lignin pyrolysis components and upgrading—technology review. Bioenergy Res. 2013;6:1183–204.

    Article  CAS  Google Scholar 

  19. Chen W, McClelland DJ, Azarpira A, Ralph J, Luo Z, Huber GW. Low temperature hydrogenation of pyrolytic lignin over Ru/TiO 2: 2D HSQC and 13 C NMR study of reactants and products. Green Chem. 2016;18:271–81.

    Article  Google Scholar 

  20. Mullen CA, Boateng AA. Characterization of water insoluble solids isolated from various biomass fast pyrolysis oils. J Anal Appl Pyrolysis. 2011;90:197–203.

    Article  CAS  Google Scholar 

  21. Bayerbach R, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part IV: structure elucidation of oligomeric molecules. J Anal Appl Pyrolysis. 2009;85:98–107.

    Article  CAS  Google Scholar 

  22. Bai X, Kim KH, Brown RC, Dalluge E, Hutchinson C, Lee YJ, Dalluge D. Formation of phenolic oligomers during fast pyrolysis of lignin. Fuel. 2014;128:170–9.

    Article  CAS  Google Scholar 

  23. Asmadi M, Kawamoto H, Saka S. Pyrolysis reactions of Japanese cedar and Japanese beech woods in a closed ampoule reactor. J Wood Sci. 2010;56:319–30.

    Article  CAS  Google Scholar 

  24. Garcia-Perez M, Wang S, Shen J, Rhodes M, Lee WJ, Li C-Z. Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of mallee woody biomass. Energy Fuel. 2008;22:2022–32.

    Article  CAS  Google Scholar 

  25. Ben H, Ragauskas AJ. NMR characterization of pyrolysis oils from kraft lignin. Energy Fuel. 2011;25:2322–32.

    Article  CAS  Google Scholar 

  26. Patwardhan PR, Satrio JA, Brown RC, Shanks BH. Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol. 2010;101:4646–55.

    Article  CAS  PubMed  Google Scholar 

  27. Gray MR, Corcoran WH, Gavalas GR. Pyrolysis of a wood-derived material. Effects of moisture and ash content. Ind Eng Chem Process Des Dev. 1985;24:646–51.

    Article  CAS  Google Scholar 

  28. Di Blasi C, Galgano A, Branca C. Influences of the chemical state of alkaline compounds and the nature of alkali metal on wood pyrolysis. Ind Eng Chem Res. 2009;48:3359–69.

    Article  Google Scholar 

  29. Dalluge DL. Optimization of biomass fast pyrolysis for the production of monomers. Thesis/dissertation, Iowa State University; 2013.

    Google Scholar 

  30. Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuel. 2006;20:388–93.

    Article  CAS  Google Scholar 

  31. Qu T, Guo W, Shen L, Xiao J, Zhao K. Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin. Ind Eng Chem Res. 2011;50:10424–33.

    Article  CAS  Google Scholar 

  32. Hosoya T, Kawamoto H, Saka S. Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. J Anal Appl Pyrolysis. 2007;80:118–25.

    Article  CAS  Google Scholar 

  33. Hosoya T, Kawamoto H, Saka S. Solid/liquid-and vapor-phase interactions between cellulose-and lignin-derived pyrolysis products. J Anal Appl Pyrolysis. 2009;85:237–46.

    Article  CAS  Google Scholar 

  34. Wang S, Guo X, Wang K, Luo Z. Influence of the interaction of components on the pyrolysis behavior of biomass. J Anal Appl Pyrolysis. 2011;91:183–9.

    Article  CAS  Google Scholar 

  35. Kim KH, Bai X, Rover M, Brown RC. The effect of low-concentration oxygen in sweep gas during pyrolysis of red oak using a fluidized bed reactor. Fuel. 2014;124:49–56.

    Article  CAS  Google Scholar 

  36. Li D, Briens C, Berruti F. Oxidative pyrolysis of kraft lignin in a bubbling fluidized bed reactor with air. Biomass Bioenergy. 2015;76:96–107.

    Article  CAS  Google Scholar 

  37. De Wild P, Huijgen W, Heeres H. Pyrolysis of wheat straw-derived organosolv lignin. J Anal Appl Pyrolysis. 2012;93:95–103.

    Article  Google Scholar 

  38. Zhou S, Brown RC, Bai X. The use of calcium hydroxide pretreatment to overcome agglomeration of technical lignin during fast pyrolysis. Green Chem. 2015;17:4748–59.

    Article  CAS  Google Scholar 

  39. Gooty AT, Li D, Berruti F, Briens C. Kraft-lignin pyrolysis and fractional condensation of its bio-oil vapors. J Anal Appl Pyrolysis. 2014;106:33–40.

    Article  Google Scholar 

  40. Wilberink R, Van DLR, De WPJ. Pyrolysis of lignin. 2011. Google Patents.

    Google Scholar 

  41. De Wild PJ, Huijgen WJ, Gosselink RJ. Lignin pyrolysis for profitable lignocellulosic biorefineries. Biofuels Bioprod Biorefin. 2014;8:645–57.

    Article  Google Scholar 

  42. Mukkamala S, Wheeler MC, van Heiningen AR, DeSisto WJ. Formate-assisted fast pyrolysis of lignin. Energy Fuel. 2012;26:1380–4.

    Article  CAS  Google Scholar 

  43. Scholze B, Meier D. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY–GC/MS, FTIR, and functional groups. J Anal Appl Pyrolysis. 2001;60:41–54.

    Article  CAS  Google Scholar 

  44. Scholze B, Hanser C, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin): Part II. GPC, carbonyl goups, and 13C-NMR. J Anal Appl Pyrolysis. 2001;58:387–400.

    Article  Google Scholar 

  45. Bayerbach R, Nguyen VD, Schurr U, Meier D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin): Part III. Molar mass characteristics by SEC, MALDI-TOF-MS, LDI-TOF-MS, and Py-FIMS. J Anal Appl Pyrolysis. 2006;77:95–101.

    Article  CAS  Google Scholar 

  46. Kim KH, Bai X, Cady S, Gable P, Brown RC. Quantitative investigation of free radicals in bio‐oil and their potential role in condensed‐phase polymerization. ChemSusChem. 2015;8:894–900.

    Article  CAS  PubMed  Google Scholar 

  47. Rover MR, Hall PH, Johnston PA, Smith RG, Brown RC. Stabilization of bio-oils using low temperature, low pressure hydrogenation. Fuel. 2015;153:224–30.

    Article  CAS  Google Scholar 

  48. Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, Huber GW. Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal. 2011;279:257–68.

    Article  CAS  Google Scholar 

  49. Wang K, Kim KH, Brown RC. Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chem. 2014;16:727–35.

    Article  CAS  Google Scholar 

  50. Mullen CA, Boateng AA. Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Process Technol. 2010;91:1446–58.

    Article  CAS  Google Scholar 

  51. Yu Y, Li X, Su L, Zhang Y, Wang Y, Zhang H. The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts. Appl Catal A Gen. 2012;447:115–23.

    Article  Google Scholar 

  52. Jan O, Marchand R, Anjos LC, Seufitelli GV, Nikolla E, Resende FL. Hydropyrolysis of Lignin Using Pd/HZSM-5. Energy Fuel. 2015;29:1793–800.

    Article  CAS  Google Scholar 

  53. Xue Y, Kelkar A, Bai X. Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer. Fuel. 2016;166:227–36.

    Article  CAS  Google Scholar 

  54. Zhang H, Xiao R, Nie J, Jin B, Shao S, Xiao G. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor. Bioresour Technol. 2015;192:68–74.

    Article  CAS  PubMed  Google Scholar 

  55. Gayubo A, Valle B, Aguayo A, Olazar M, Bilbao J. Pyrolytic lignin removal for the valorization of biomass pyrolysis crude bio‐oil by catalytic transformation. J Chem Technol Biotechnol. 2010;85:132–44.

    Article  CAS  Google Scholar 

  56. Zhao Y, Deng L, Liao B, Fu Y, Guo Q-X. Aromatics production via catalytic pyrolysis of pyrolytic lignins from bio-oil. Energy Fuel. 2010;24:5735–40.

    Article  CAS  Google Scholar 

  57. Elliott DC, Wang H, Rover M, Whitmer L, Smith R, Brown R. Hydrocarbon liquid production via catalytic hydroprocessing of phenolic oils fractionated from fast pyrolysis of red oak and corn stover. ACS Sustain Chem Eng. 2015;3:892–902.

    Article  CAS  Google Scholar 

  58. Kaneko S, Yamaoka S, Mizuno M, Okabe Y. Crosslinked resin of epoxy compound and isocyanate and process for producing same. Google Patents. 1983.

    Google Scholar 

  59. Kim GH, Yoon SM, You IK, Kang SY, Ahn SD, Baek KH, Suh KS. Composition for thermosetting organic polymeric gate insulating layer and organic thin film transistor using the same. Google Patents. 2009.

    Google Scholar 

  60. Effendi A, Gerhauser H, Bridgwater AV. Production of renewable phenolic resins by thermochemical conversion of biomass: a review. Renew Sust Energ Rev. 2008;12:2092–116.

    Article  CAS  Google Scholar 

  61. Peralta J, Raouf MA, Tang S, Williams RC. Bio-renewable asphalt modifiers and asphalt substitutes. In: Sustainable bioenergy and bioproducts. London: Springer; 2012. p. 89–115.

    Chapter  Google Scholar 

  62. Friend A. Development of a co-firing fuel from biomass-derived binder and crushed coal. Dissertation, Iowa State University; 2013.

    Google Scholar 

  63. Calvo‐Flores FG, Dobado JA. Lignin as renewable raw material. ChemSusChem. 2010;3:1227–35.

    Article  PubMed  Google Scholar 

  64. Chum H, Diebold J, Scahill J, Johnson D, Black S, Schroeder H, Kreibich RE, Hemingway R, Conner A, Branham S. Biomass pyrolysis oil feedstocks for phenolic adhesives. In: Adhesives from renewable resources. Washington, DC: American Chemical Society; 1989. p. 135–51.

    Chapter  Google Scholar 

  65. Qin W, Kadla J. Carbon fibers based on pyrolytic lignin. J Appl Polym Sci. 2012;126:E204–13.

    Article  Google Scholar 

  66. Sharma RK, Wooten JB, Baliga VL, Lin X, Chan WG, Hajaligol MR. Characterization of chars from pyrolysis of lignin. Fuel. 2004;83:1469–82.

    Article  CAS  Google Scholar 

  67. Carrott P, Carrott MR. Lignin–from natural adsorbent to activated carbon: a review. Bioresour Technol. 2007;98:2301–12.

    Article  PubMed  Google Scholar 

  68. Hu X, Dong CQ, Yang YP, Zhang JJ. The effect of biomass pyrolysis gas reburning on N2O emission in a coal-fired fluidized bed boiler. Chin Sci Bull. 2011;56:1429–33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianglan Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Bai, X., Kim, K.H. (2016). Biofuels and Chemicals from Lignin Based on Pyrolysis. In: Fang, Z., Smith, Jr., R. (eds) Production of Biofuels and Chemicals from Lignin. Biofuels and Biorefineries. Springer, Singapore. https://doi.org/10.1007/978-981-10-1965-4_9

Download citation

Publish with us

Policies and ethics