Skip to main content

A CT-based and mechanobiologic model for the simulation of rotation of tibia deformities during patient´s immobilization treatment

  • Conference paper
  • First Online:
VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th -28th, 2016

Part of the book series: IFMBE Proceedings ((IFMBE,volume 60))

Abstract

Tibial torsion deformity produces a change in the alignment of the planes of motion of the articulations of the knee and ankle. Lower limb immobilization by cast is one of the corrective treatments. The objective of this paper was to study the bone remodeling of rotation of tibia deformities during patient´s immobilization treatment. The Finite Element (FE) method was used in the simulation of bone remodeling of the correction process of tibial torsion. A mechanobiologic CT-based FE model of the tibia was defined. An user material subroutine was used to define the bone constitutive material model. Bone density increased its value when the torque was bigger than 12 Nm and it decreased when the torque was lower than 8 Nm. Stress during the iteration process for all load conditions increased. Except for a torque of 4 Nm, the strain decreased its value during the iteration process. At the final iteration step, strain was equal to 0.025 approximately for all load conditions. As it was expected, the variation of bone density during simulation indicates that the bone adapts its structure to load conditions. The bone showed the same density distribution at the end of the simulation for all torque values applied. The highest density was located at the mid-shaft of the diaphysis and at the epiphysis density decreased, adopting a circular ring arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fang J, Gong H, Kong L et al. (2013) Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments. Biomed Eng OnLine 12:1-17 DOI 10.1186/1475-925X-12-130

  2. Wolff J (1986) Concept of the Law of Bone Remodelling. Berlin: Springer Berlin Heidelberg DOI 10.1007/978-3-642-71031-5_1

  3. Cisneros Hidalgo YÁ, González Carbonell RA, Camue Corona E et al. (2014) Aplicación de los modelos mecanobiológicos en los procesos de regeneración ósea. Rev Cubana Ortop Traumatol 28:214-222

    Google Scholar 

  4. Cisneros Hidalgo YA, González Carbonell RA, Puente Alvarez A et al. (2014) Generación de imágenes tridimensionales: integración de tomografía computarizada y método de los elementos finitos. Rev Cubana Inv Bioméd 33:313-321

    Google Scholar 

  5. Chernikov A, Foteinos P, Liu Y et al. (2013) Tetrahedral Image-to-Mesh Conversion Approaches for Surgery Simulation and Navigation. In Y Zhang (Ed.), Image-Based Geometric Modeling and Mesh Generation vol. 3, pp 69-84: Springer Netherlands DOI 10.1007/978-94-007-4255-0_5

  6. Agnihotri G, Rath G, Kullar J et al. (2014) Human tibial torsion - Morphometric assessment and clinical relevance. Biomed J 37:10-13 DOI 10.4103/2319-4170.117890

  7. Hambli R, Lespessailles E, Benhamou C-L (2013) Integrated remodeling-to-fracture finite element model of human proximal femur behavior. J Mech Behav Biomed Mater 17:89-106 DOI 10.1016/j.jmbbm.2012.08.011

  8. Son D-S, Mehboob H, Jung H-J et al. (2014) The finite element analysis for endochondral ossification process of a fractured tibia applied with a composite IM-rod based on a mechano-regulation theory using a deviatoric strain. Compos Part B-Eng 56:189-196 DOI 10.1016/j.compositesb.2013.08.004

  9. González R, García E, Moya J (2013) Tacón de Torque para uso Ortopédico: Propuesta de un Nuevo Diseño. In J Folgueras Méndez, TY Aznielle Rodríguez, CF Calderón Marín et al. (Eds.), V Latin American Congress on Biomedical Engineering CLAIB 2011 May 16-21, 2011, Habana, Cuba vol. 33, pp 912-915: Springer Berlin Heidelberg DOI 10.1007/978-3-642-21198-0_232

  10. González-Carbonell RA, Ortiz-Prado A, Jacobo-Armendáriz VH et al. (2015) 3D patient-specific model of the tibia from CT for orthopedic use. J Orthop 12:11-16 DOI 10.1016/j.jor.2015.01.009

  11. González-Carbonell RA, Ortiz-Prado A, Cisneros-Hidalgo YA et al. (2015) Bone Remodeling Simulation of Subject-Specific Model of Tibia under Torque. In A Braidot, A Hadad (Eds.), VI Latin American Congress on Biomedical Engineering CLAIB 2014, Paraná, Argentina 29, 30 & 31 October 2014 vol. 49, pp 305-308: Springer International Publishing DOI 10.1007/978-3-319-13117-7_79

  12. Bright JA, Rayfield EJ (2011) The Response of Cranial Biomechanical Finite Element Models to Variations in Mesh Density. Anat Rec 294:610-620 DOI 10.1002/ar.21358

  13. González Carbonell RA, Ortiz Prado A, Jacobo Armendáriz VH et al. (2015) Consideraciones en la definición del modelo específico al paciente de la tibia. Rev Cubana Inv Bioméd 34:157-167

    Google Scholar 

  14. Beaupré GS, Orr TE, Carter DR (1990) An approach for time-dependent bone modeling and remodeling—theoretical development. J Orthop Res 8:651-661 DOI 10.1002/jor.1100080506

  15. Cisneros Hidalgo YA, González Carbonell RA, Ortiz Prado A et al. (2015) Modelo mecanobiológico de una tibia humana para determinar su respuesta ante estímulos mecánicos externos. Rev Cubana Inv Bioméd 34:54-63

    Google Scholar 

  16. Chen G, Schuetz M, Pearcy M (2010) Mechanobiology of Bone Development and Computational Simulations. In F Bronner, MC Farach-Carson, HI Roach (Eds.), Bone and Development vol. 6, pp 279-295: Springer London DOI 10.1007/978-1-84882-822-3_17

  17. Chou H-Y, Satpute D, Müftü A et al. (2013) Influence of mastication and edentulism on mandibular bone density. Comp Method Biomech Biomed Eng:1-13 DOI 10.1080/10255842.2013.792916

  18. Martin RB (1984) Porosity and specific surface of bone. Crit Rev Biomed Eng 10:179-222

    Google Scholar 

  19. Volpon JB, Falcai MJ, Moro CA et al. (2014) Torsional force applied to the tibia of living lambs in an attempt to change the bone rotational axis. Acta Cir Bras 29:193-200 DOI 10.1590/S0102-86502014000300008

  20. Cristofolini L (2015) In vitro evidence of the structural optimization of the human skeletal bones. J Biomech 48:787-796 DOI 10.1016/j.jbiomech.2014.12.010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. González-Carbonell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

González-Carbonell, R.A., Ortiz-Prado, A., Jacobo-Armendáriz, V.H., Cisneros-Hidalgo, Y.A., Morales-Acosta, L. (2017). A CT-based and mechanobiologic model for the simulation of rotation of tibia deformities during patient´s immobilization treatment. In: Torres, I., Bustamante, J., Sierra, D. (eds) VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th -28th, 2016. IFMBE Proceedings, vol 60. Springer, Singapore. https://doi.org/10.1007/978-981-10-4086-3_113

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4086-3_113

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4085-6

  • Online ISBN: 978-981-10-4086-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics