Skip to main content

Production of Bionanomaterials from Agricultural Wastes

  • Chapter
  • First Online:
Nanotechnology

Abstract

Nature is gifted with numerous nanomaterials which could be simply prepared from plant materials. Agricultural waste (waste produced on a farm through various farming activities) includes both natural and nonnatural wastes. In the agricultural residues, refuse and wastes create a significant amount of worldwide agricultural productivity. It has variously been estimated that wastes can account for over 30% of worldwide agricultural productivity. The goal of this chapter is to assess the most recent trends to produce bionano nanomaterials from agricultural waste. Nanocellulose extraction from agricultural wastes is a promising substitute for waste treatment, and a few more wide applications of nanocellulose in biological science are much expected in the near future. The most salient nanocellulose applications in this chapter deal with the production and support matrices for enzyme immobilization, biosensors, and antimicrobial agents. Silicon nanoparticles concluded to be one of the elite compounds for the enhancement of agricultural yields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Yano H (2010) Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose 17(2):271–277

    Article  CAS  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278

    Article  CAS  PubMed  Google Scholar 

  • Abe K, Nakatsubo F, Yano H (2009) High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp. Compos Sci Technol 69(14):2434–2437

    Article  CAS  Google Scholar 

  • Affandi S, Setyawan H, Winardi S, Purwanto A, Balgis R (2009) A facile method for the production of high purity silica xerogels from bagasse ash. J Adv Powder Technol 20:468–472

    Article  CAS  Google Scholar 

  • Affandi MM, Julianto T, Majeed A (2011) Development and stability evaluation of astaxanthin nanoemulsion. Asian J Pharma Clin Res 4:143–148

    Google Scholar 

  • Ajayan P, Zhou O (2001) Applications of carbon nanotubes. In: Dresselhaus M, Dresselhaus G, Avouris P (eds) Carbon nanotubes. Springer, Berlin, pp 391–425

    Chapter  Google Scholar 

  • Akhtar MS, Panwar J, Yun YS (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 1(6):591–602

    Article  CAS  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues – wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671

    Article  CAS  PubMed  Google Scholar 

  • Antonyraj CA, Jeong J, Kim B, Shin S, Kim S, Lee KY, Cho JK (2013) Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production. J Ind Eng Chem 19(3):1056–1059

    Article  CAS  Google Scholar 

  • Asano H, Muraki S, Endo H, Bandow S, Iijima S (2010) Strong magnetism observed in carbon nanoparticles produced by the laser vaporization of a carbon pellet in hydrogen-containing Ar balance gas. J Phys Condens Matter 22:1–6

    Article  CAS  Google Scholar 

  • Aspler J, Bouchard J, Hamad W, Berry R, Beck S, Drolet F, Zou X (2013) Review of nanocellulosic products and their applications. In: Dufresne A, Thomas S, Pothan LA (eds) Biopolymer nanocomposites. Wiley, Hoboken, pp 461–508

    Chapter  Google Scholar 

  • Awan AT, Tsukamoto J, Tasic L (2013) Orange waste as a biomass for 2G-ethanol production using low cost enzymes and co-culture fermentation. RSC Adv 3:25071–25078

    Article  CAS  Google Scholar 

  • Bachilo S, Balzano L, Herrera J, Pompeo F, Resasco D, Weisman R (2003) Narrow (n,m)- distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J Am Chem Soc 125:11186–11187

    Article  CAS  PubMed  Google Scholar 

  • Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Preiss J, Stumpf PK, Conn EE (eds) The biochemistry of plants. Academic Press, New York, pp 297–371

    Chapter  Google Scholar 

  • Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  PubMed  Google Scholar 

  • Batalov A, Jacques V, Kaiser F, Siyushev P, Neumann P, Rogers LJ, McMurtrie RL, Manson NB, Jelezko F, Wrachtrup J (2009) Low temperature studies of the excited-state structure of negatively charge nitrogen-vacancy color centers in diamond. Phys Rev Lett 102:195506. http://dx.doi.org/10.1103/PhysRevLett.102.195506

    Article  CAS  PubMed  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomol Ther 6:1048–1054

    CAS  Google Scholar 

  • Bennett SW, Adeleye A, Ji Z, Keller AA (2013) Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes. Water Res 47:4074–4085

    Article  CAS  PubMed  Google Scholar 

  • Bergmann CP, Machado F (2015) Carbon nanomaterials as adsorbents for environmental and biological applications. Springer, Berlin, pp 1–122

    Google Scholar 

  • Bhatnagar, A. Sain, M (2003) US Patent Pending, Application No. 60/512, 912

    Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259–1268

    Article  CAS  Google Scholar 

  • Birla SS, Gaikwad SC, Gade AK, Rai MK (2013) Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J 2013:796018. http://dx.doi.org/10.1155/2013/796018

    Article  CAS  Google Scholar 

  • Boufi S (2014) Nanofibrillated cellulose: sustainable nanofiller with broad potentials use. In: Hakeem KR, Jawaid M, Rashid U (eds) Biomass and bioenergy. Springer, Berlin, pp 267–305

    Google Scholar 

  • Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP (2008) Photoluminescent carbogenic dots. Chem Mater 20:4539–4541

    Article  CAS  Google Scholar 

  • Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259

    Article  Google Scholar 

  • Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129(37):11318–11319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassell A, Raymakers J, Kong J, Dai H (1999) Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B 103:6484–6492

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2006) Reinforcing potential of wood pulp derived microfibres in a PVA matrix. Holzforschung 60(1):53–58

    Article  CAS  Google Scholar 

  • Chan YS, Don MM (2013) Biosynthesis and structural characterization of Ag nanoparticles from white rot fungi. Mater Sci Eng C 33(1):282–288

    Article  CAS  Google Scholar 

  • Charreau H, Foresti ML, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated cellulose and bacterial cellulose. Recent Pat Nanotechnol 7(1):56–80

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009) Bionanocomposites based on pea starch and cellulose nano whiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76(4):607–615

    Article  CAS  Google Scholar 

  • Chen H, Wang F, Zhang C, Shi Y, Jin G, Yuan S (2010) Preparation of nano-silica materials: the concept from wheat straw. J Non-Cryst Solids 356(50–51):2781–2785

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811

    Article  CAS  Google Scholar 

  • Chen J, Yao B, Li C, Shi G (2013) An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229

    Article  CAS  Google Scholar 

  • Cheng Q, Wang S, Rials TG (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos Part A: Appl Sci Manuf 40:218–224

    Article  CAS  Google Scholar 

  • Cheng Q, Wang S, Han Q (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication II. Fibril characterization. J Appl Polym Sci 115(5):2756–2762

    Article  CAS  Google Scholar 

  • Cherian BM, Leao AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81(3):720–725

    Article  CAS  Google Scholar 

  • Chiang I, Brinson B, Huang A, Willis P, Bronikowski M, Margrave J, Smalley R, Hauge R (2001) Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPCO process). J Phys Chem B 105:8297–8301

    Article  CAS  Google Scholar 

  • Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46:2211–2224

    Article  CAS  PubMed  Google Scholar 

  • Clowes FAL, Juniper BE (1968) Plant cells. Blackwell Scientific Publications Ltd, Oxford, pp 203–297

    Google Scholar 

  • De Jong KP, Geus JW (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev 42:481–510

    Article  Google Scholar 

  • De Morais TE, Correa AC, Manzoli A, de Lima LF, de Oliveira CR, Mattoso LHL (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606

    Article  CAS  Google Scholar 

  • Dinand E, Chanzy H, Vignon RM (1999) Suspensions of cellulose micro fibrils from sugar beet pulp. Food Hydrocoll 13(3):275–283

    Article  CAS  Google Scholar 

  • Ding LH, Olesik SV (2004) Synthesis of polymer nanospheres and carbon nanospheres using the monomer 1,8-dihydroxymethyl-1,3,5,7-octatetrayne. Nano Lett 4:2271–2276

    Article  CAS  Google Scholar 

  • Ding LH, Olesik SV (2005) Carbon micro beads produced through synthesis and pyrolysis of poly(1,8-dibutyl-1,3,5,7-octatetrayne). Chem Mater 17:2353–2360

    Article  CAS  Google Scholar 

  • Dodson JR, Hunt AJ, Matharu AS, Budarin VL, Clark JH (2011) The chemical value of wheat straw combustion residues. RSC Adv 1:523–530

    Article  CAS  Google Scholar 

  • Dominko R, Gaberscek M, Drofenik J, Bele M, Jamnik J (2003) Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochim Acta 48:3709–3716

    Article  CAS  Google Scholar 

  • Donia AM, Atia AA, Abouzayed FI (2012) Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions. Chem Eng J 191:22–30

    Article  CAS  Google Scholar 

  • Du Y, Yin Z, Zhu J, Huang X, Wu X, Zeng Z, Yan Q, Zhang H (2012) A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat Commun 3:1177. doi:10.1038/ncomms2181

    Article  PubMed  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227

    Article  CAS  Google Scholar 

  • Dufresne A, Vignon M (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31:2693–2696

    Article  CAS  Google Scholar 

  • Dufrense A, Cavaille JY, Helbert W (1997a) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18:199

    Google Scholar 

  • Dufresne A, Caville J, Vignon M (1997b) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    Article  CAS  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J App Polym Sci 76(14):2080–2092

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65

    Article  CAS  PubMed  Google Scholar 

  • Espindola-Gonzalez A, Martinez-Hernadez AL, Angeles-Chavez C, Castano VM, Velasco-Santos C (2010) Novel crystalline SiO2 nanoparticles via annelids bioprocessing of agro-industrial wastes. Nanoscale Res Lett 5(9):1408–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernando F, María LH, Ana ME, Italo C, Fernando A (2005) Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem 91:395–401

    Article  CAS  Google Scholar 

  • Frances N, Nikolay AP, Michael JFB, Tim G, Paul AM (2009) Novel one-pot synthesis and characterization of bioactive thiol-silicate nanoparticles for biocatalytic and biosensor applications. Nanotechnology 20(5):055612. doi:10.1088/0957-4484/20/5/055612

    Article  CAS  Google Scholar 

  • Fu H, Yang X, Jiang X, Yu A (2013) Bimetallic Ag–Au nanowires: synthesis, growth mechanism, and catalytic properties. Langmuir 29(23):7134–7142

    Article  CAS  PubMed  Google Scholar 

  • Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214

    Article  CAS  PubMed  Google Scholar 

  • Gherghel L, Kubel C, Lieser G, Rader HJ, Mullen K (2002) Pyrolysis in the mesophase: a chemist’s approach toward preparing carbon nano- and microparticles. J Am Chem Soc 124:13130–13138

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani F, Sanati AM, Malek M (2015) Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique. Environ Stud Persian Gulf 2(1):56–65

    Google Scholar 

  • Ghosh S, Ranebennur TK, Vasan H (2011) Study of antibacterial efficacy of hybrid chitosan-silver nanoparticles for prevention of specific biofilm and water purification. Int J Carbohydr Chem. 693759. doi:10.1155/2011/693759

    Google Scholar 

  • Glinka YD, Lin KW, Chang HC, Lin SHJ (1999) Multiphoton-excited luminescence from diamond nanoparticles. J Phys Chem B 103(21):4251–4263

    Article  CAS  Google Scholar 

  • Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C (1997) Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276(5321):2012–2014

    Article  CAS  Google Scholar 

  • Gu S, Zhou J, Yu C, Luo Z, Wang Q, Shi Z (2015) A novel two-staged thermal synthesis method of generating nanosilica from rice husk via pre-pyrolysis combined with calcination. Ind Crop Prod 65:1–6

    Article  CAS  Google Scholar 

  • Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40:2644–2672

    Article  CAS  PubMed  Google Scholar 

  • Habibi Y, Heux L, Mahrouz M, Vignon MR (2008) Morphological and structural study of seed pericarp of Opuntia ficus-indica prickly pear fruits. Carbohydr Polym 72(1):102–112

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self assembling, and applications. Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Hakim LF, Portman JL, Casper MD, Weimer AW (2005) Aggregation behavior of nanoparticles in fluidized beds. Powder Technol 160(3):149–160

    Article  CAS  Google Scholar 

  • Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Potschke P (2004) Carbon nanofibers for composite applications. Carbon 42:1153–1158

    Article  CAS  Google Scholar 

  • Hanus MJ, Harris AI (2010) Synthesis, characterisation and applications of coiled carbon nanotubes. J Nanosci Nanotechnol 10:2261–2283

    Article  CAS  PubMed  Google Scholar 

  • Hariharan V, Sivakumar G (2013) Studies on synthesized nanosilica obtained from bagasse ash. Int J Chem Tech Res 5(3):1263–1266

    CAS  Google Scholar 

  • Hassan AF, Abdelghny AM, Elhadidy H, Youssef AM (2014) Synthesis and characterization of high surface area nanosilica from rice husk ash by surfactant-free sol–gel method. J Sol-Gel Sci Technol 69:465–472

    Article  CAS  Google Scholar 

  • Hata K, Futaba D, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362

    Article  CAS  PubMed  Google Scholar 

  • He W, Jiang S, Zhang Q, Pan M (2013) Nanofiber from Bambusa. Bioresources 8(4):5678–5689

    Article  Google Scholar 

  • Healy ML, Dahlben LJ, Isaacs JA (2008) Environmental assessment of single-walled carbon nanotube processes. J Ind Ecol 12:376–393

    Article  CAS  Google Scholar 

  • Hokkanen S, Repo E, Suopajärvi T, Liimatainen H, Niinimäki J, Sillanpää M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47

    Article  CAS  Google Scholar 

  • Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173

    Article  CAS  PubMed  Google Scholar 

  • Honek JF (2013) Bionanotechnology and bionanomaterials: John Honek explains the good things that can come in very small packages. BMC Biochem 14:29. doi:10.1186/1471-2091-14-29

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong G, Diao S, Antaris AL, Dai H (2015) Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 115:10816–10906

    Article  CAS  PubMed  Google Scholar 

  • Hsu WK, Terrones M, Hare JP, Terrones H, Kroto HW, Walton DRM (1996) Electrolytic formation of carbon nanostructures. Chem Phys Lett 262:161–166

    Article  CAS  Google Scholar 

  • Huang J, Lin L, Sun D, Chen H, Yang D, Li Q (2015) Bioinspired synthesis of metal nanomaterials and applications. Chem Soc Rev 44(17):6330–6374

    Article  CAS  PubMed  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  • Hurt RH, Monthioux M, Kane A (2006) Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon 44:1028–1033

    Article  CAS  Google Scholar 

  • Hussain HI, Yi Z, Rookes JE, Kong LX, Cahill DM (2013) Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res 15:1676. doi:10.1007/s11051-013-1676-4

    Article  Google Scholar 

  • Indhumathi P, Shabhudeen SSP, Saraswathy CP (2011) Synthesis and characterization of nano silica from the pods of Delonix regia ash. Int J Adv Eng Technol 2(4):421–426

    Google Scholar 

  • Jang J, Oh JH, Stucky GD (2002) Fabrication of ultrafine conducting polymer and graphite nanoparticles. Angew Chem Int Ed 41:4016–4019

    Article  CAS  Google Scholar 

  • Javed SH, Shah FH, Manasha M (2011) Extraction of amorphous silica from wheat husk using KMNO4. J Fac Eng Technol 18(1):39–46

    Google Scholar 

  • Johnson MP, Donnet JB, Wang TK, Wang CC, Locke RW, Brinson BE, Marriott T (2002) A dynamic continuum of nano structured carbons in the combustion furnace. Carbon 40:189–194

    Article  Google Scholar 

  • Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292(1):5–31

    Article  CAS  Google Scholar 

  • Kamath SR, Proctor A (1998) Silica gel from rice husk ash: preparation and characterization. Cereal Chem 75:484–487

    Article  CAS  Google Scholar 

  • Kanchi S, Kumar G, Lo AY, Tseng CM, Chen SK, Lin CY, Chin TS (2014) Exploitation of de-oiled Jatropha waste for gold nanoparticles synthesis: a green approach. Arab J Chem. http://dx.doi.org/10.1016/j.arabjc.2014.08.006

  • Kardam A, Raj KR, Srivastava S, Srivastava MM (2014) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol Environ Policy 16:385–393

    Article  CAS  Google Scholar 

  • Karimi J, Mohsenzadeh S (2016) Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russ J Plant Physiol 63:119–123

    Article  CAS  Google Scholar 

  • Kettunen M, Silvennoinen RJ, Houbenov N, Nykänen A, Ruokolainen J, Saini J, Pore V, Kemell M, Ankerfors M, Lindström T (2011) Photoswitchable super absorbency based on nanocellulose aerogels. Adv Funct Mater 21(3):510–517

    Article  CAS  Google Scholar 

  • Khalil MMH, Ismail EH, El-Magdoub F (2012) Biosynthesis of Au nanoparticles using olive leaf extract: 1st nano updates. Arab J Chem 5(4):431–437

    Article  CAS  Google Scholar 

  • Khawas P, Das AJ, Dash KK, Deka SC (2014) Thin-layer drying characteristics of Kachkal banana peel (Musa ABB) of Assam, India. Int Food Res J 21(3):1011–1018

    Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int 50:5438–5466

    Article  CAS  Google Scholar 

  • Kumar KS, Amutha R, Arumugam P, Berchmans S (2011) Synthesis of gold nanoparticles: an ecofriendly approach using Hansenula anomala. ACS Appl Mater Interfaces 3(5):1418–1425

    Article  CAS  Google Scholar 

  • Kumar A, Mohanta K, Kumar D, Parkash O (2012) Properties and industrial applications of rice husk: a review. Int J Emerg Technol Adv Eng 2(10):86–90

    Google Scholar 

  • Kwon SJ, Bard AJ (2012) DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. J Am Chem Soc 134(26):10777–10779

    Article  CAS  PubMed  Google Scholar 

  • Larciprete R, Lizzit S, Botti S, Cepek C, Goldoni A (2002) Structural reorganization of carbon nanoparticles into single-wall nanotubes. Phys Rev B 66:12140–12142

    Article  CAS  Google Scholar 

  • Lario YE, Sendra E, Fuentes C, Pérez-Álvarez JA (2004) Preparation of high dietary fiber powder from lemon juice by-products. Innovative Food Sci Emerg Technol 5(1):113–117

    Article  CAS  Google Scholar 

  • Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science 321:385–388

    Article  CAS  PubMed  Google Scholar 

  • Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76(1):94–99

    Article  CAS  Google Scholar 

  • Li HT, He XD, Liu Y, Huang H, Lian SY, Lee ST, Kang ZH (2011) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49:605–609

    Article  CAS  Google Scholar 

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41:2268–2275

    Article  CAS  Google Scholar 

  • Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int 46(34):6473–6485

    Article  CAS  Google Scholar 

  • Liu R, Wu D, Liu S, Koynov K, Knoll W, Li Q (2009) An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem Int 48(25):4598–4601

    Article  CAS  Google Scholar 

  • Liu H, Liu D, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101(14):5685–5692

    Article  CAS  PubMed  Google Scholar 

  • Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:1297–1300

    Article  CAS  Google Scholar 

  • Lu P, Hsieh YL (2012) Highly pure amorphous silica nano-disks from rice straw. Powder Technol 225:149–155

    Article  CAS  Google Scholar 

  • Lu G, Park S, Yu K, Ruoff RS, Ocola LE, Rosenmann D, Chen J (2011) Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano 5:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18(4):319–326

    Article  CAS  Google Scholar 

  • Manjula-Rani K, Palanisamy PN, Sivakumar P (2014) Synthesis and characterization of amorphous nano-silica from biomass ash. Int J Adv Technol Eng Sci 2(10):71–76

    Google Scholar 

  • Mansaray KG, Ghaly AE (1997) Physical and thermochemical properties of rice husk. Energy Sources 19(9):989–1004

    Article  CAS  Google Scholar 

  • Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA, Mahmoudi M (2013) Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem Rev 113:3407–3424

    Article  CAS  PubMed  Google Scholar 

  • Mariño M, da Silva LL, Durán N, Tasic L (2015) Enhanced materials from nature: nanocellulose from citrus waste. Molecules 20:5908–5923

    Article  PubMed  CAS  Google Scholar 

  • Marschilok A, Lee CY, Subramanian A, Takeuchi KJ, Takeuchi ES (2011) Carbon nanotube substrate electrodes for lightweight, long-life rechargeable batteries. Energy Environ Sci 4(8):2943–2951

    Article  CAS  Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  CAS  PubMed  Google Scholar 

  • May JW (1969) Platinum surface LEED rings. Surf Sci 17:267–270

    Article  CAS  Google Scholar 

  • Metreveli G, Wågberg L, Emmoth E, Belák S, Strømme M, Mihranyan A (2014) A size-exclusion nanocellulose filter paper for virus removal. Adv Healthc Mater 10(3):1546–1550

    Article  CAS  Google Scholar 

  • Mishra A, Tripathy SK, Yun SI (2012) Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from Escherichia coli and Staphylococcus aureus. Process Biochem 47(5):701–711

    Article  CAS  Google Scholar 

  • Mohammadinejad R, Karimi S, Iravani S, Varma RS (2016) Plant-derived nanostructures: types and applications. Green Chem 18(1):20–52

    Article  Google Scholar 

  • Mohanraj K, Kannan S, Barathan S, Sivakumar G (2012) Preparation and characterization of nano SiO2 from corn cob ash by precipitation method. Optoelectron Adv Mater 6:394–397

    CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519

    Article  CAS  Google Scholar 

  • Muramatsu H, Kim YA, Yang KS, Cruz-Silva R, Toda I, Yamada T, Terrones M, Endo M, Hayashi T, Saitoh H (2014) Rice husk-derived graphene with nano-sized domains and clean edges. Small 10(14):2766–2770

    Article  CAS  PubMed  Google Scholar 

  • Murthy SK (2007) Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine 2(2):129–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Musyoka S, Ngila C, Moodley B, Kindness A, Petrik L, Greyling C (2011) Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption. J Hazard Mater 192:922–927

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Néabo JR, Gagné SR, Carrière CV, Morin JF (2013) Soluble conjugated one-dimensional nanowires prepared by topochemical polymerization of a butadiynes-containing star-shaped molecule in the xerogel state. Langmuir 29:3446–3452

    Article  PubMed  CAS  Google Scholar 

  • Neugart F, Zappe A, Jelezko F, Tietz C, Boudou JP, Krueger A, Wrachtrup J (2007) Dynamics of diamond nanoparticles in solution and cells. Nano Lett 7(12):3588–3591

    Article  CAS  PubMed  Google Scholar 

  • Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for grapheme. Nature 490:192–200

    Article  CAS  PubMed  Google Scholar 

  • Okoronkwo EA, Imoisili PE, Olubayode SA, Olusunle SOO (2016) Development of silica nanoparticle from corn cob ash. Adv Nanoparticles 5:135–139

    Article  Google Scholar 

  • Omid A, Keyvan B, Ali M (2014) Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Adv 4:20441–20448

    Article  CAS  Google Scholar 

  • Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahol S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  CAS  PubMed  Google Scholar 

  • Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–119

    Article  Google Scholar 

  • Pelissari MF, Sobral PJA, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21(1):417–432

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles:963961. http://dx.doi.org/10.1155/2014/963961

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, International Publishing, Cham. ISBN:978-3-319-42989-2

    Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi:10.1002/wnan.1363

    Article  Google Scholar 

  • Prerna K, Sankar CD (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr Polym 137:608–616

    Article  CAS  Google Scholar 

  • Qadri SB, Gorzkowski E, Rath BB, Feng J, Qadri SN, Kim H, Caldwell JD, Imam MA (2015) Nanoparticles and nanorods of silicon carbide from the residues of corn. J Appl Phys 117:044306. http://dx.doi.org/10.1063/1.4906974

    Article  CAS  Google Scholar 

  • Rafiee E, Shahebrahimi S, Feyzi M, Shaterzadeh M (2012) Optimization of synthesis and characterization of nanosilica produced from rice husk (a common waste material). Int Nano Lett 2(29):1–9

    Google Scholar 

  • Rajesh K, Rajesh KS, Dinesh PS (2016) Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: graphene and CNTs. Renew Sust Energ Rev 58:976–1006

    Article  CAS  Google Scholar 

  • Ray SC, Saha A, Jana NR, Sarkar NR (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113:18546–18551

    Article  CAS  Google Scholar 

  • Rezanezhad S, Nazanezhad N, Asadpur G (2013) Nanocellulose from straw. Lignocellulose 2(1):282–291

    Google Scholar 

  • Riddin T, Gericke M, Whiteley CG (2010) Biological synthesis of platinum nanoparticles: effect of initial metal concentration. Enzym Microb Technol 46(6):501–505

    Article  CAS  Google Scholar 

  • Rodionova G, Saito T, Lenes M, Eriksen O, Gregersen O, Fukuzumi H, Isogai A (2011) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and eucalyptus pulps. Cellulose 19(3):705–711

    Article  CAS  Google Scholar 

  • Rondeau-Mouro C, Bouchet B, Pontoire B, Robert P, Mazoyer J, Buleon A (2003) Structural features and potential texturising properties of lemon and maize cellulose microfibrils. Carbohydr Polym 53(3):241–252

    Article  CAS  Google Scholar 

  • Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glennb G, Ortsb WJ, Imam SH (2010) Cellulose nano whiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81(1):83–92

    Article  CAS  Google Scholar 

  • Roy N, Gaur A, Jain A, Bhattacharya S, Rani V (2013) Green synthesis of silver nanoparticles: an approach to overcome toxicity. Environ Toxicol Pharmacol 36(3):807–812

    Article  CAS  PubMed  Google Scholar 

  • Sana NO, Kurs C, Tümtas UY, Yas Ö, Ortac B, Tekinay T (2014) Novel one-step synthesis of silica nanoparticles from sugarbeet bagasse by laser ablation and their effects on the growth of freshwater algae culture. Particuology 17:29–35

    Article  CAS  Google Scholar 

  • Santi G, Crognale S, Moresi M, Petruccioli M, D’Annibale A (2012) Improved orange peel waste pretreatments for bioethanol production. Environ Eng Manag J 11(3):S55

    Google Scholar 

  • Saumya S, Pillai B, Abraham DE, Girija N, Geetha P, Jacob L, Koshy M (2013) Biosorption of Cd(II) from aqueous solution using xanthated nano banana cellulose: equilibrium and kinetic studies. Ecotoxicol Environ Saf 98:352–360

    Article  CAS  Google Scholar 

  • Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor LM (2014) Applications of biosynthesized metallic nanoparticles- a review. Acta Biomater 10(10):4023–4042

    Article  PubMed  CAS  Google Scholar 

  • Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496

    Article  CAS  PubMed  Google Scholar 

  • See CH, Harris ATA (2007) Review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Int Eng Chem Res 46:997–1012

    Article  CAS  Google Scholar 

  • Selvi BR, Jagadeesan D, Suma BS, Nagashankar G, Arif M, Balasubramanyam K, Eswaramoorthy M, Kundu TK (2008) Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett 8(10):3182–3188

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46(9):1800–1807

    Article  CAS  Google Scholar 

  • Si YC, Samulski ET (2008) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20:6792–6797

    Article  CAS  Google Scholar 

  • Sidheswaran P, Bhat AN (1996) Recovery of amorphous silica in pure form from rice husk. Trans Indian Ceram Soc 55:93–96

    Article  CAS  Google Scholar 

  • Singh PS, Vidyasagar GM (2014) Biosynthesis, characterization, and antidermatophytic activity of silver nanoparticles using Raamphal plant (Annona reticulata) aqueous leaves extract. Indian J Mater Sci. 412452. http://dx.doi.org/10.1155/2014/412452

  • Singh K, Arora JK, Sinha JMT, Srivastava S (2014) Functionalization of nanocrystalline cellulose for decontamination of Cr(III) and Cr(VI) from aqueous system: computational modelling approach. Clean Techn Environ Policy 16:1179–1191

    Article  CAS  Google Scholar 

  • Somanathan T, Prasad K, Ostrikov K, Saravanan A, Krishna VM (2015) Graphene oxide synthesis from agro waste. Nanomaterials 5(2):826–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song H, Zhang L, He C, Qu Y, Tian YF, Lv Y (2011) Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors. J Mater Chem 21:5972–5977

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Pawlak JJ, Hubbe MA (2011) Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. Bioresources 6(4):4370–4388

    CAS  Google Scholar 

  • Srivastava V, Gusain D, Sharma YC (2015) Critical review on the toxicity of some widely used engineered nanoparticles. Ind Eng Chem Res 54:6209–6233

    Article  CAS  Google Scholar 

  • Staniland SS (2011) Magnetosomes: bacterial biosynthesis of magnetic nanoparticles and potential biomedical applications. In: Nanotechnologies for the life sciences. Wiley, Hoboken, doi: 10.1002/9783527610419.ntls0173

  • Staudenmaier L (1898) Verfahren zur darstellung der graphitsäure. Ber Dtsch Chem Ges 31:1481–1487

    Article  CAS  Google Scholar 

  • Stephen JR, Macnaughtont SJ (1999) Developments in terrestrial bacterial remediation of metals. Curr Opin Biotechnol 10(3):230–233

    Article  CAS  PubMed  Google Scholar 

  • Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Hussain HI, Yi Z, Rookes JE, Kong L, Cahill DM (2016) Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 152:81–91

    Article  CAS  PubMed  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N (2014) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol 8(3):133–137

    Article  CAS  PubMed  Google Scholar 

  • Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytotoxicity using normal and cancer cell lines Spectrochim. Acta A Mol Biomol Spectrosc 114:144–147

    Article  CAS  Google Scholar 

  • Terzioglu P, Yucel S (2012) Synthesis of magnesium silicate from wheat husk ash: effects of parameters on structural and surface properties. Bioresources 7(4):5435–5447

    Article  Google Scholar 

  • Tessonnier JP, Rosenthal D, Hansen TW, Hess C, Schuster ME, Blume R, Girgsdies F, Pfänder N, Timpe O, Su DS, Schlögl R (2009) Analysis of the structure and 187 chemical properties of some commercial carbon nanostructures. Carbon 47:1779–1798

    Article  CAS  Google Scholar 

  • Thygesen LG, Hidayat BJ, Johansen KS, Felby C (2011) Role of supramolecular structures in enzymatic hydrolysis of plant cell walls. J Ind Microbiol Biotechnol 38:975–983

    Article  CAS  PubMed  Google Scholar 

  • Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT-Food Sci Technol 59(2):1311–1318

    Article  CAS  Google Scholar 

  • Tischer PCSF, Sierakowski MR, Westfahl H, Tischer CA (2010) Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromolecules 11(5):1217–1224

    Article  CAS  PubMed  Google Scholar 

  • Tripp SL, Pusztay SV, Ribbe AE, Wei A (2002) Self-assembly of cobalt nanoparticle rings. J Am Chem Soc 124(27):7914–7915

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto J, Durán N, Tasic L (2013) Nanocellulose and bioethanol production from orange waste using isolated microorganisms. J Braz Chem Soc 24:1537–1543

    CAS  Google Scholar 

  • Van HL, Thuc CNH, Thuc HH (2013) Synthesis of silica nano particles from Vietnamese rice husk by sol–gel method. Nanoscale Res Lett 8:58. doi:10.1186/1556-276X-8-58

    Article  CAS  Google Scholar 

  • Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication part 1: process optimization. J Appl Polym Sci 113(2):1270–1275

    Article  CAS  Google Scholar 

  • Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67(11–12):2521–2527

    Article  CAS  Google Scholar 

  • Wang XZ, Hu Z, Chen X, Chen Y (2001) Preparation of carbon nanotubes and nanoparticles by microwave plasma-enhanced chemical vapor deposition. Sci Mater 44:1567–1570

    CAS  Google Scholar 

  • Wang Y, Zhang X, He X, Zhang W, Zhang X, Lu C (2014a) In situ synthesis of MnO2 coated cellulose nanofibers hybrid for effective removal of methylene blue. Carbohydr Polym 110:302–308

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Fang C, Megharaj M (2014b) Characterization of iron polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustain Chem Eng 2(4):1022–1025

    Article  CAS  Google Scholar 

  • Wei H, Rodriguez K, Renneckar S, Vikesland PJ (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1:302–316

    Article  CAS  Google Scholar 

  • Wen ZQ, Li G, Ren D (2011) Detection of trace melamine in raw materials used for protein pharmaceutical manufacturing using surface-enhanced Raman spectroscopy (SERS) with gold nanoparticles. Appl Spectrosc 65(5):514–521

    Article  CAS  PubMed  Google Scholar 

  • Wen X, Chen X, Tian N, Gong J, Liu J, Rümmeli MH, Chu PK, Mijiwska E, Tang T (2014) Nanosized carbon black combined with Ni2O3 as “Universal” catalysts for synergistically catalyzing carbonization of polyolefin wastes to synthesize carbon nanotubes and application for supercapacitors. Environ Sci Technol 48:4048–4055

    Article  CAS  PubMed  Google Scholar 

  • Williams DF (1999) The Williams dictionary of biomaterials. Liverpool University Press, Liverpool

    Google Scholar 

  • Worathanakul P, Payubnop W, Muangpet A (2009) Characterization for post treatment effect of bagasse ash for silica extraction. Int J Chem Mol Nucl Mater Metall Eng 3(8):398–400

    Google Scholar 

  • Wu X, Lu C, Zhou Z, Yuan G, Xiong R, Zhang X (2014) Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance. Environ Sci Nano 1(1):71–79

    Article  CAS  Google Scholar 

  • Xia Y, Yang H, Campbell CT (2013) Nanoparticles for catalysis. Acc Chem Res 46(8):1671–1672

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Long C, Zheng M, Dong H, Lei B, Zhang H, Liu Y (2014) High-capacity porous carbons prepared by KOH activation of activated carbon for super capacitors. Chin Chem Lett 25(6):865–868

    Article  CAS  Google Scholar 

  • Xie K, Zhao W, He X (2011a) Adsorption properties of nano-cellulose hybrid containing polyhedral oligomeric silsesquioxane and removal of reactive dyes from aqueous solution. Carbohydr Polym 83(4):1516–1520

    Article  CAS  Google Scholar 

  • Xie K, Jing L, Zhao W, Zhang Y (2011b) Adsorption removal of Cu2+ and Ni2+ from waste water using nano-cellulose hybrids containing reactive polyhedral oligomeric silsesquioxanes. J Appl Polym Sci 122(5):2864–2868

    Article  CAS  Google Scholar 

  • Yadav S, Kumar D, Sinha S (2014) Chemical carbonization of papaya seed originated charcoals for sorption of Pb(II) from aqueous solution. J Environ Chem Eng 2:9–14

    Article  CAS  Google Scholar 

  • Yalcin N, Sevinc V (2001) Studies on silica obtained from rice husk. Ceram Int 27:219–224

    Article  CAS  Google Scholar 

  • Yallappa S, Manjanna J, Dhananjaya BL (2015) Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta A Mol Biomol Spectrosc 137:236–243

    Google Scholar 

  • Yang XG, Li C, Wang W, Yang BJ, Zhang SY, Qian YTA (2004) Chemical route from PTFE to amorphous carbon nanospheres in supercritical water. Chem Commun 3:342–343

    Article  CAS  Google Scholar 

  • Yoon K, Hsiao BS, Chu B (2008) Functional nanofibers for environmental applications. J Mater Chem 18(44):5326–5334

    Article  CAS  Google Scholar 

  • Yu J, Ahn J, Zhang Q, Yoon SF, Rusli LYJ, Gan B, Chew K, Tan KH (2002) Catalyzed growth of carbon nanoparticles by microwave plasma chemical vapor deposition and their field emission properties. J Appl Phys 91:433–436

    Article  CAS  Google Scholar 

  • Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127(50):17604–17605

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25:933–943

    Article  CAS  Google Scholar 

  • Zain NFM, Yusop SM, Ahmad I (2014) Preparation and characterization of cellulose and nanocellulose from pomelo (Citrus grandis) albedo. J Nutr Food Sci 5(1):334. doi:10.4172/2155-9600.1000334

    Google Scholar 

  • Zavaglia CA, Prado da Silva MH (2016) Biomaterials. Ref Module Mater Sci Mater Eng. doi:10.1016/B978-0-12-803581-8.04109-6

    Google Scholar 

  • Zhang L, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5:128–142

    Article  CAS  Google Scholar 

  • Zhang L, Bai X, Tian H, Zhong L, Ma C, Zhou Y, Chen S, Li D (2012) Synthesis of antibacterial film CTS/PVP/TiO2/Ag for drinking water system. Carbohydr Polym 89(4):1060–1066

    Article  CAS  PubMed  Google Scholar 

  • Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 7(41):5116–5118

    Article  CAS  Google Scholar 

  • Zheng B, Lu C, Gu G, Makarovski A, Finkelstein G, Liu J (2002) Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor. Nano Lett 2:895–898

    Article  CAS  Google Scholar 

  • Zhou C, Lee S, Dooley K, Wu Q (2013a) A facile approach to fabricate porous nanocomposite gels based on partially hydrolyzed polyacrylamide and cellulose nanocrystals for adsorbing methylene blue at low concentrations. J Hazard Mater 263:334–341

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Lu C, Wu X, Zhang X (2013b) Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: facile synthesis and their application to 4-nitrophenol reduction. RSC Adv 3(48):26066–26073

    Article  CAS  Google Scholar 

  • Zuluaga R, Putaux JL, Cruz J, Velez J, Mondragon I, Ganan P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76(1):51–59

    Article  CAS  Google Scholar 

  • Zyubin AS, Mebel AM, Hayashi M, Chang HC, Lin SHJ (2009) Quantum chemical modeling of photo adsorption properties of the nitrogen-vacancy point defect in diamond. J Comput Chem 30(1):119–131

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeyabalan Sangeetha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sangeetha, J. et al. (2017). Production of Bionanomaterials from Agricultural Wastes. In: Prasad, R., Kumar, M., Kumar, V. (eds) Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4573-8_3

Download citation

Publish with us

Policies and ethics