Skip to main content

2018 | OriginalPaper | Buchkapitel

5. Density Gradient Ultracentrifugation of Colloidal Nanostructures

verfasst von : Liang Luo, Qixian Xie, Yinglan Liu

Erschienen in: Nanoseparation Using Density Gradient Ultracentrifugation

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

According to the centrifugation theory, various factors, such as the media density (ρm), radius (r) and thickness (h) of nanostructures, and solvation shell thickness (t) in different media, will directly influence the particle behavior during the density gradient centrifugation process. Density gradient centrifugation has become a promising tool to purify nanomaterials, such as metal nanostructures, carbon materials (carbon nanotubes and graphene), non-metal nanostructures (e.g., rare-earth nanostructures and oxide nanostructures). For the practical separation, as demonstrated in previous chapters, on the basis of the theoretical analysis of the target nanostructures and the preliminary separation, one can optimize the centrifugation according to the comprehensive consideration. While after all, the optimization direction of nanoseparation should be mainly focused on the net density of nanostructures and media. In this chapter, we will discuss the separation examples according to the dimensional difference of colloidal nanostructures, including 0D, 1D, 2D nanostructures, and assemblies/clusters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sun X, Tabakman SM, Seo WS et al (2009) Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals. Angew Chem Int Edit 48 (5):939–942CrossRef Sun X, Tabakman SM, Seo WS et al (2009) Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals. Angew Chem Int Edit 48 (5):939–942CrossRef
2.
Zurück zum Zitat Akbulut O, Mace CR, Martinez RV et al (2012) Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett 12(8):4060–4064CrossRef Akbulut O, Mace CR, Martinez RV et al (2012) Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett 12(8):4060–4064CrossRef
3.
Zurück zum Zitat Peng W, Mahfouz R, Pan J et al (2013) Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation. Nanoscale 5(11):5017–5026CrossRef Peng W, Mahfouz R, Pan J et al (2013) Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation. Nanoscale 5(11):5017–5026CrossRef
4.
Zurück zum Zitat Bai L, Ma X, Liu J et al (2010) Rapid separation and purification of nanoparticles in organic density gradients. J Am Chem Soc 132(7):2333–2337CrossRef Bai L, Ma X, Liu J et al (2010) Rapid separation and purification of nanoparticles in organic density gradients. J Am Chem Soc 132(7):2333–2337CrossRef
5.
Zurück zum Zitat Hu C, Chen Y (2015) Uniformization of silica particles by theory directed rate-zonal centrifugation to build high quality photonic crystals. Chem Eng J 271:128–134CrossRef Hu C, Chen Y (2015) Uniformization of silica particles by theory directed rate-zonal centrifugation to build high quality photonic crystals. Chem Eng J 271:128–134CrossRef
6.
Zurück zum Zitat Mastronardi ML, Hennrich F, Henderson EJ et al (2011) Preparation of monodisperse silicon nanocrystals using density gradient ultracentrifugation. J Am Chem Soc 133(31):11928–11931CrossRef Mastronardi ML, Hennrich F, Henderson EJ et al (2011) Preparation of monodisperse silicon nanocrystals using density gradient ultracentrifugation. J Am Chem Soc 133(31):11928–11931CrossRef
7.
Zurück zum Zitat Ma X, Kuang Y, Bai L et al (2011) Experimental and mathematical modeling studies of the separation of zinc blende and wurtzite phases of CdS nanorods by density gradient ultracentrifugation. ACS Nano 5(4):3242–3249CrossRef Ma X, Kuang Y, Bai L et al (2011) Experimental and mathematical modeling studies of the separation of zinc blende and wurtzite phases of CdS nanorods by density gradient ultracentrifugation. ACS Nano 5(4):3242–3249CrossRef
8.
Zurück zum Zitat Li S, Chang Z, Liu J et al (2011) Separation of gold nanorods using density gradient ultracentrifugation. Nano Res 4(8):723–728CrossRef Li S, Chang Z, Liu J et al (2011) Separation of gold nanorods using density gradient ultracentrifugation. Nano Res 4(8):723–728CrossRef
9.
Zurück zum Zitat Xiong B, Cheng J, Qiao Y et al (2011) Separation of nanorods by density gradient centrifugation. J Chromatogr A 1218(25):3823–3829CrossRef Xiong B, Cheng J, Qiao Y et al (2011) Separation of nanorods by density gradient centrifugation. J Chromatogr A 1218(25):3823–3829CrossRef
10.
Zurück zum Zitat Dong S, Wang Y, Tu Y et al (2016) Separation of gold nanorods by viscosity gradient centrifugation. Microchim Acta 183(3):1269–1273CrossRef Dong S, Wang Y, Tu Y et al (2016) Separation of gold nanorods by viscosity gradient centrifugation. Microchim Acta 183(3):1269–1273CrossRef
11.
Zurück zum Zitat Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5(4):713–718CrossRef Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5(4):713–718CrossRef
12.
Zurück zum Zitat Green AA, Hersam MC (2008) Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett 8(5):1417–1422CrossRef Green AA, Hersam MC (2008) Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett 8(5):1417–1422CrossRef
13.
Zurück zum Zitat Arnold MS, Green AA, Hulvat JF et al (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1(1):60–65CrossRef Arnold MS, Green AA, Hulvat JF et al (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1(1):60–65CrossRef
14.
Zurück zum Zitat Green AA, Hersam MC (2009) Processing and properties of highly enriched double-wall carbon nanotubes. Nat Nanotechnol 4(1):64–70CrossRef Green AA, Hersam MC (2009) Processing and properties of highly enriched double-wall carbon nanotubes. Nat Nanotechnol 4(1):64–70CrossRef
15.
Zurück zum Zitat Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9(12):4031–4036CrossRef Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9(12):4031–4036CrossRef
16.
Zurück zum Zitat Sun X, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212CrossRef Sun X, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212CrossRef
17.
Zurück zum Zitat Sun X, Luo D, Liu J et al (2010) Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano 4(6):3381–3389CrossRef Sun X, Luo D, Liu J et al (2010) Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano 4(6):3381–3389CrossRef
18.
Zurück zum Zitat Agrawal KV, Topuz B, Jiang Z et al (2013) Solution-processable exfoliated zeolite nanosheets purified by density gradient centrifugation. AIChE J 59(9):3458–3467CrossRef Agrawal KV, Topuz B, Jiang Z et al (2013) Solution-processable exfoliated zeolite nanosheets purified by density gradient centrifugation. AIChE J 59(9):3458–3467CrossRef
20.
Zurück zum Zitat Chen G, Wang Y, Tan LH et al (2009) High-purity separation of gold nanoparticle dimers and trimers. J Am Chem Soc 131(12):4218–4219CrossRef Chen G, Wang Y, Tan LH et al (2009) High-purity separation of gold nanoparticle dimers and trimers. J Am Chem Soc 131(12):4218–4219CrossRef
21.
Zurück zum Zitat Chen G, Wang Y, Yang M et al (2010) Measuring ensemble-averaged surface-enhanced raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. J Am Chem Soc 132(11):3644–3645CrossRef Chen G, Wang Y, Yang M et al (2010) Measuring ensemble-averaged surface-enhanced raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. J Am Chem Soc 132(11):3644–3645CrossRef
22.
Zurück zum Zitat Deng L, Wang X, Kuang Y et al (2015) Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots. Nano Res 8(9):2810–2821CrossRef Deng L, Wang X, Kuang Y et al (2015) Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots. Nano Res 8(9):2810–2821CrossRef
Metadaten
Titel
Density Gradient Ultracentrifugation of Colloidal Nanostructures
verfasst von
Liang Luo
Qixian Xie
Yinglan Liu
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5190-6_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.