Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

1. General Introduction

verfasst von : Dr. Dongliang Chao

Erschienen in: Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy is the lifeblood of modern society and plays a vital role in the advancement of human civilization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photon. 3, 649–653 (2009)CrossRef H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photon. 3, 649–653 (2009)CrossRef
2.
Zurück zum Zitat A. Pan, D. Liu, X. Zhou, B.B. Garcia, S. Liang, J. Liu, G. Cao, Enhanced lithium-ion intercalation properties of coherent hydrous vanadium pentoxide–carbon cryogel nanocomposites. J. Power Sources 195, 3893–3899 (2010)CrossRef A. Pan, D. Liu, X. Zhou, B.B. Garcia, S. Liang, J. Liu, G. Cao, Enhanced lithium-ion intercalation properties of coherent hydrous vanadium pentoxide–carbon cryogel nanocomposites. J. Power Sources 195, 3893–3899 (2010)CrossRef
3.
Zurück zum Zitat J.K. Kaldellis, D. Zafirakis, The wind energy (r)evolution: a short review of a long history. Renewable Energy 36, 1887–1901 (2011)CrossRef J.K. Kaldellis, D. Zafirakis, The wind energy (r)evolution: a short review of a long history. Renewable Energy 36, 1887–1901 (2011)CrossRef
4.
Zurück zum Zitat P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRef P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRef
5.
Zurück zum Zitat Y. He, W. Chen, C. Gao, J. Zhou, X. Li, E. Xie, An overview of carbon materials for flexible electrochemical capacitors. Nanoscale 5, 8799–8820 (2013)CrossRef Y. He, W. Chen, C. Gao, J. Zhou, X. Li, E. Xie, An overview of carbon materials for flexible electrochemical capacitors. Nanoscale 5, 8799–8820 (2013)CrossRef
6.
Zurück zum Zitat G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRef G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRef
7.
Zurück zum Zitat F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries. Adv. Mater. 23, 1695–1715 (2011)CrossRef F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries. Adv. Mater. 23, 1695–1715 (2011)CrossRef
8.
Zurück zum Zitat C. Xu, B. Xu, Y. Gu, Z. Xiong, J. Sun, X. Zhao, Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6, 1388–1414 (2013)CrossRef C. Xu, B. Xu, Y. Gu, Z. Xiong, J. Sun, X. Zhao, Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6, 1388–1414 (2013)CrossRef
9.
Zurück zum Zitat J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)CrossRef J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)CrossRef
10.
Zurück zum Zitat Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011)CrossRef Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011)CrossRef
11.
Zurück zum Zitat J.B. Goodenough, Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 7, 14–18 (2014)CrossRef J.B. Goodenough, Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 7, 14–18 (2014)CrossRef
12.
Zurück zum Zitat B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009)CrossRef B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009)CrossRef
13.
Zurück zum Zitat M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)CrossRef M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)CrossRef
14.
Zurück zum Zitat J. Cabana, L. Monconduit, D. Larcher, M.R. Palacín, Beyond intercalation-based Li-Ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010)CrossRef J. Cabana, L. Monconduit, D. Larcher, M.R. Palacín, Beyond intercalation-based Li-Ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010)CrossRef
15.
Zurück zum Zitat J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries†. Chem. Mater. 22, 587–603 (2009)CrossRef J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries†. Chem. Mater. 22, 587–603 (2009)CrossRef
16.
Zurück zum Zitat V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)CrossRef V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)CrossRef
17.
Zurück zum Zitat J.-M. Tarascon, Key challenges in future Li-battery research. Philosophical Trans. Royal Soc. A Math. Phys. Eng. Sci. 368, 3227–3241 (2010)CrossRef J.-M. Tarascon, Key challenges in future Li-battery research. Philosophical Trans. Royal Soc. A Math. Phys. Eng. Sci. 368, 3227–3241 (2010)CrossRef
18.
Zurück zum Zitat M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013)CrossRef M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013)CrossRef
19.
Zurück zum Zitat B.L. Ellis, L.F. Nazar, Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 16, 168–177 (2012)CrossRef B.L. Ellis, L.F. Nazar, Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 16, 168–177 (2012)CrossRef
20.
Zurück zum Zitat V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884 (2012)CrossRef V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884 (2012)CrossRef
21.
Zurück zum Zitat S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2, 710–721 (2012)CrossRef S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2, 710–721 (2012)CrossRef
22.
Zurück zum Zitat H. Pan, Y.-S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338 (2013)CrossRef H. Pan, Y.-S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338 (2013)CrossRef
23.
Zurück zum Zitat L.P. Wang, L. Yu, X. Wang, M. Srinivasan, Z.J. Xu, Recent developments in electrode materials for sodium-ion batteries. J. Mater. Chem. A. 3(18), 9353–9378 (2015)CrossRef L.P. Wang, L. Yu, X. Wang, M. Srinivasan, Z.J. Xu, Recent developments in electrode materials for sodium-ion batteries. J. Mater. Chem. A. 3(18), 9353–9378 (2015)CrossRef
24.
Zurück zum Zitat M.S. Whittingham, Materials challenges facing electrical energy storage. MRS Bull. 33, 411–419 (2008)CrossRef M.S. Whittingham, Materials challenges facing electrical energy storage. MRS Bull. 33, 411–419 (2008)CrossRef
25.
Zurück zum Zitat E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart, M. Hazelton, D. Mitlin, High-density sodium and lithium ion battery anodes from banana peels. ACS Nano. 8, 7115–7129 (2014)CrossRef E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart, M. Hazelton, D. Mitlin, High-density sodium and lithium ion battery anodes from banana peels. ACS Nano. 8, 7115–7129 (2014)CrossRef
26.
Zurück zum Zitat S.Y. Hong, Y. Kim, Y. Park, A. Choi, N.-S. Choi, K.T. Lee, Charge carriers in rechargeable batteries: Na ions versus Li ions. Energy Environ. Sci. 6, 2067 (2013)CrossRef S.Y. Hong, Y. Kim, Y. Park, A. Choi, N.-S. Choi, K.T. Lee, Charge carriers in rechargeable batteries: Na ions versus Li ions. Energy Environ. Sci. 6, 2067 (2013)CrossRef
27.
Zurück zum Zitat X. Huang, X.Y. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)CrossRef X. Huang, X.Y. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)CrossRef
28.
Zurück zum Zitat C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef
29.
Zurück zum Zitat A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef
30.
Zurück zum Zitat C.J. Fu, G.G. Zhao, H.J. Zhang, S. Li, Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-ion batteries. Int. J. Electrochem. Sci. 8, 6269–6280 (2013) C.J. Fu, G.G. Zhao, H.J. Zhang, S. Li, Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-ion batteries. Int. J. Electrochem. Sci. 8, 6269–6280 (2013)
31.
Zurück zum Zitat J. Zhu, K. Sakaushi, G. Clavel, M. Shalom, M. Antonietti, T.P. Fellinger, A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. J. Am. Chem. Soc. 137, 5480–5485 (2015)CrossRef J. Zhu, K. Sakaushi, G. Clavel, M. Shalom, M. Antonietti, T.P. Fellinger, A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. J. Am. Chem. Soc. 137, 5480–5485 (2015)CrossRef
32.
Zurück zum Zitat X. Xie, T. Makaryan, M. Zhao, K.L. Van Aken, Y. Gogotsi, G. Wang, MoS2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 6(5), 1502161 (2016)CrossRef X. Xie, T. Makaryan, M. Zhao, K.L. Van Aken, Y. Gogotsi, G. Wang, MoS2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 6(5), 1502161 (2016)CrossRef
33.
Zurück zum Zitat D. Chao, C. Zhu, X. Xia, J. Liu, X. Zhang, J. Wang, P. Liang, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 15, 565–573 (2015)CrossRef D. Chao, C. Zhu, X. Xia, J. Liu, X. Zhang, J. Wang, P. Liang, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 15, 565–573 (2015)CrossRef
34.
Zurück zum Zitat L. Chen, M. Zhang, W. Wei, Graphene-based composites as cathode materials for lithium ion batteries. J. Nanomater. 2013, 2 (2013) L. Chen, M. Zhang, W. Wei, Graphene-based composites as cathode materials for lithium ion batteries. J. Nanomater. 2013, 2 (2013)
35.
Zurück zum Zitat Y. Ding, Y. Jiang, F. Xu, J. Yin, H. Ren, Q. Zhuo, Z. Long, P. Zhang, Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem. Commun. 12, 10–13 (2010)CrossRef Y. Ding, Y. Jiang, F. Xu, J. Yin, H. Ren, Q. Zhuo, Z. Long, P. Zhang, Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem. Commun. 12, 10–13 (2010)CrossRef
36.
Zurück zum Zitat X.F. Zhou, F. Wang, Y.M. Zhu, Z.P. Liu, Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem. 21, 3353–3358 (2011)CrossRef X.F. Zhou, F. Wang, Y.M. Zhu, Z.P. Liu, Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem. 21, 3353–3358 (2011)CrossRef
37.
Zurück zum Zitat H. Liu, P. Gao, J. Fang, G. Yang, Li3V2(PO4)(3)/graphene nanocomposites as cathode material for lithium ion batteries. Chem. Commun. 47, 9110–9112 (2011)CrossRef H. Liu, P. Gao, J. Fang, G. Yang, Li3V2(PO4)(3)/graphene nanocomposites as cathode material for lithium ion batteries. Chem. Commun. 47, 9110–9112 (2011)CrossRef
38.
Zurück zum Zitat H. Wang, Y. Yang, Y. Liang, L.-F. Cui, H.S. Casalongue, Y. Li, G. Hong, Y. Cui, H. Dai, LiMn1-xFexPO4 Nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angewandte Chemie-Int. Ed. 50, 7364–7368 (2011)CrossRef H. Wang, Y. Yang, Y. Liang, L.-F. Cui, H.S. Casalongue, Y. Li, G. Hong, Y. Cui, H. Dai, LiMn1-xFexPO4 Nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angewandte Chemie-Int. Ed. 50, 7364–7368 (2011)CrossRef
39.
Zurück zum Zitat S.-M. Bak, K.-W. Nam, C.-W. Lee, K.-H. Kim, H.-C. Jung, X.-Q. Yang, K.-B. Kim, Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries. J. Mater. Chem. 21, 17309–17315 (2011)CrossRef S.-M. Bak, K.-W. Nam, C.-W. Lee, K.-H. Kim, H.-C. Jung, X.-Q. Yang, K.-B. Kim, Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries. J. Mater. Chem. 21, 17309–17315 (2011)CrossRef
40.
Zurück zum Zitat K.-C. Jiang, S. Xin, J.-S. Lee, J. Kim, X.-L. Xiao, Y.-G. Guo, Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks. PCCP 14, 2934–2939 (2012)CrossRef K.-C. Jiang, S. Xin, J.-S. Lee, J. Kim, X.-L. Xiao, Y.-G. Guo, Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks. PCCP 14, 2934–2939 (2012)CrossRef
41.
Zurück zum Zitat H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–2647 (2011)CrossRef H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–2647 (2011)CrossRef
42.
Zurück zum Zitat G. Du, K.H. Seng, Z. Guo, J. Liu, W. Li, D. Jia, C. Cook, Z. Liu, H. Liu, Graphene–V2O5 nH2O xerogel composite cathodes for lithium ion batteries. RSC Adv. 1, 690–697 (2011)CrossRef G. Du, K.H. Seng, Z. Guo, J. Liu, W. Li, D. Jia, C. Cook, Z. Liu, H. Liu, Graphene–V2O5 nH2O xerogel composite cathodes for lithium ion batteries. RSC Adv. 1, 690–697 (2011)CrossRef
43.
Zurück zum Zitat H. Liu, W. Yang, Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy Environ. Sci. 4, 4000–4008 (2011)CrossRef H. Liu, W. Yang, Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy Environ. Sci. 4, 4000–4008 (2011)CrossRef
44.
Zurück zum Zitat J.W. Lee, S.Y. Lim, H.M. Jeong, T.H. Hwang, J.K. Kang, J.W. Choi, Extremely stable cycling of ultra-thin V2O5 nanowire–graphene electrodes for lithium rechargeable battery cathodes. Energy Environ. Sci. 5, 9889–9894 (2012)CrossRef J.W. Lee, S.Y. Lim, H.M. Jeong, T.H. Hwang, J.K. Kang, J.W. Choi, Extremely stable cycling of ultra-thin V2O5 nanowire–graphene electrodes for lithium rechargeable battery cathodes. Energy Environ. Sci. 5, 9889–9894 (2012)CrossRef
45.
Zurück zum Zitat J. Cheng, B. Wang, H.L. Xin, G. Yang, H. Cai, F. Nie, H. Huang, Self-assembled V2O5 nanosheets/reduced graphene oxide hierarchical nanocomposite as a high-performance cathode material for lithium ion batteries. J. Mater. Chem. A 1, 10814–10820 (2013)CrossRef J. Cheng, B. Wang, H.L. Xin, G. Yang, H. Cai, F. Nie, H. Huang, Self-assembled V2O5 nanosheets/reduced graphene oxide hierarchical nanocomposite as a high-performance cathode material for lithium ion batteries. J. Mater. Chem. A 1, 10814–10820 (2013)CrossRef
46.
Zurück zum Zitat H. Zhu, K.T. Lee, G.T. Hitz, X. Han, Y. Li, J. Wan, S. Lacey, A.V.W. Cresce, K. Xu, E. Wachsman, L. Hu, Free-Standing Na2/3Fe1/2Mn1/2O2@graphene film for a sodium-ion battery cathode. ACS Appl. Mater. Interfaces. 6, 4242–4247 (2014)CrossRef H. Zhu, K.T. Lee, G.T. Hitz, X. Han, Y. Li, J. Wan, S. Lacey, A.V.W. Cresce, K. Xu, E. Wachsman, L. Hu, Free-Standing Na2/3Fe1/2Mn1/2O2@graphene film for a sodium-ion battery cathode. ACS Appl. Mater. Interfaces. 6, 4242–4247 (2014)CrossRef
47.
Zurück zum Zitat D. Yang, X.-Z. Liao, J. Shen, Y.-S. He, Z.-F. Ma, A flexible and binder-free reduced graphene oxide/Na2/3[Ni1/3Mn2/3]O2 composite electrode for high-performance sodium ion batteries. J. Mater. Chem. A 2, 6723 (2014)CrossRef D. Yang, X.-Z. Liao, J. Shen, Y.-S. He, Z.-F. Ma, A flexible and binder-free reduced graphene oxide/Na2/3[Ni1/3Mn2/3]O2 composite electrode for high-performance sodium ion batteries. J. Mater. Chem. A 2, 6723 (2014)CrossRef
48.
Zurück zum Zitat P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)CrossRef P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)CrossRef
49.
Zurück zum Zitat N. Lavoie, P.R.L. Malenfant, F.M. Courtel, Y. Abu-Lebdeh, I.J. Davidson, High gravimetric capacity and long cycle life in Mn3O4/graphene platelet/LiCMC composite lithium-ion battery anodes. J. Power Sources 213, 249–254 (2012)CrossRef N. Lavoie, P.R.L. Malenfant, F.M. Courtel, Y. Abu-Lebdeh, I.J. Davidson, High gravimetric capacity and long cycle life in Mn3O4/graphene platelet/LiCMC composite lithium-ion battery anodes. J. Power Sources 213, 249–254 (2012)CrossRef
50.
Zurück zum Zitat A. Yu, H.W. Park, A. Davies, D.C. Higgins, Z. Chen, X. Xiao, Free-standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries. J. Phys. Chem. Lett. 2, 1855–1860 (2011)CrossRef A. Yu, H.W. Park, A. Davies, D.C. Higgins, Z. Chen, X. Xiao, Free-standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries. J. Phys. Chem. Lett. 2, 1855–1860 (2011)CrossRef
51.
Zurück zum Zitat J. Luo, J. Liu, Z. Zeng, C.F. Ng, L. Ma, H. Zhang, J. Lin, Z. Shen, H.J. Fan, Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 13, 6136–6143 (2013)CrossRef J. Luo, J. Liu, Z. Zeng, C.F. Ng, L. Ma, H. Zhang, J. Lin, Z. Shen, H.J. Fan, Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 13, 6136–6143 (2013)CrossRef
52.
Zurück zum Zitat X. Zhu, Y. Zhu, S. Murali, M.D. Stollers, R.S. Ruoff, Nanostructured reduced graphene Oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5, 3333–3338 (2011)CrossRef X. Zhu, Y. Zhu, S. Murali, M.D. Stollers, R.S. Ruoff, Nanostructured reduced graphene Oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5, 3333–3338 (2011)CrossRef
53.
Zurück zum Zitat Z.Y. Wang, H. Zhang, N. Li, Z.J. Shi, Z.N. Gu, G.P. Cao, Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries. Nano Res. 3, 748–756 (2010)CrossRef Z.Y. Wang, H. Zhang, N. Li, Z.J. Shi, Z.N. Gu, G.P. Cao, Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries. Nano Res. 3, 748–756 (2010)CrossRef
54.
Zurück zum Zitat S.Z. Liang, X.F. Zhu, P.C. Lian, W.S. Yang, H.H. Wang, Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries. J. Solid State Chem. 184, 1400–1404 (2011)CrossRef S.Z. Liang, X.F. Zhu, P.C. Lian, W.S. Yang, H.H. Wang, Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries. J. Solid State Chem. 184, 1400–1404 (2011)CrossRef
55.
Zurück zum Zitat J. Luo, X. Zhao, J. Wu, H.D. Jang, H.H. Kung, J. Huang, Crumpled graphene-encapsulated si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 3, 1824–1829 (2012)CrossRef J. Luo, X. Zhao, J. Wu, H.D. Jang, H.H. Kung, J. Huang, Crumpled graphene-encapsulated si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 3, 1824–1829 (2012)CrossRef
56.
Zurück zum Zitat X. Zhou, Y.X. Yin, L.J. Wan, Y.G. Guo, Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chem. Commun. (Camb.) 48, 2198–2200 (2012)CrossRef X. Zhou, Y.X. Yin, L.J. Wan, Y.G. Guo, Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chem. Commun. (Camb.) 48, 2198–2200 (2012)CrossRef
57.
Zurück zum Zitat J.Y. Ji, H.X. Ji, L.L. Zhang, X. Zhao, X. Bai, X.B. Fan, F.B. Zhang, R.S. Ruoff, Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries. Adv. Mater. 25, 4673–4677 (2013)CrossRef J.Y. Ji, H.X. Ji, L.L. Zhang, X. Zhao, X. Bai, X.B. Fan, F.B. Zhang, R.S. Ruoff, Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries. Adv. Mater. 25, 4673–4677 (2013)CrossRef
58.
Zurück zum Zitat H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim, G. Yoon, K. Kang, Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6(19), 1600943 (2016)CrossRef H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim, G. Yoon, K. Kang, Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6(19), 1600943 (2016)CrossRef
59.
Zurück zum Zitat W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, L. Hu, Na-ion battery anodes: materials and electrochemistry. Acc. Chem. Res. 49, 231–240 (2016)CrossRef W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, L. Hu, Na-ion battery anodes: materials and electrochemistry. Acc. Chem. Res. 49, 231–240 (2016)CrossRef
60.
Zurück zum Zitat Y. Yan, Y.X. Yin, Y.G. Guo, L.J. Wan, a sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 4(8), 1301584 (2014)CrossRef Y. Yan, Y.X. Yin, Y.G. Guo, L.J. Wan, a sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 4(8), 1301584 (2014)CrossRef
61.
Zurück zum Zitat Y. Zhang, J. Xie, S. Zhang, P. Zhu, G. Cao, X. Zhao, Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries. Electrochim. Acta 151, 8–15 (2015)CrossRef Y. Zhang, J. Xie, S. Zhang, P. Zhu, G. Cao, X. Zhao, Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries. Electrochim. Acta 151, 8–15 (2015)CrossRef
62.
Zurück zum Zitat B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y.S. Meng, T. Wang, J.Y. Lee, Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26, 3854–3859 (2014)CrossRef B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y.S. Meng, T. Wang, J.Y. Lee, Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26, 3854–3859 (2014)CrossRef
63.
Zurück zum Zitat X. Xie, D. Su, S. Chen, J. Zhang, S. Dou, G. Wang, SnS2 Nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem. Asian J. 9, 1611–1617 (2014) X. Xie, D. Su, S. Chen, J. Zhang, S. Dou, G. Wang, SnS2 Nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem. Asian J. 9, 1611–1617 (2014)
64.
Zurück zum Zitat L. Zhuo, Y. Wu, L. Wang, Y. Yu, X. Zhang, F. Zhao, One-step hydrothermal synthesis of SnS2/graphene composites as anode material for highly efficient rechargeable lithium ion batteries. RSC Adv. 2, 5084–5087 (2012)CrossRef L. Zhuo, Y. Wu, L. Wang, Y. Yu, X. Zhang, F. Zhao, One-step hydrothermal synthesis of SnS2/graphene composites as anode material for highly efficient rechargeable lithium ion batteries. RSC Adv. 2, 5084–5087 (2012)CrossRef
65.
Zurück zum Zitat T. Zhou, W.K. Pang, C. Zhang, J. Yang, Z. Chen, H.K. Liu, Z. Guo, Enhanced sodium-ion battery performance by structural phase transition from two-dimensional Hexagonal-SnS2 to Orthorhombic-SnS. ACS Nano 8, 8323–8333 (2014)CrossRef T. Zhou, W.K. Pang, C. Zhang, J. Yang, Z. Chen, H.K. Liu, Z. Guo, Enhanced sodium-ion battery performance by structural phase transition from two-dimensional Hexagonal-SnS2 to Orthorhombic-SnS. ACS Nano 8, 8323–8333 (2014)CrossRef
66.
Zurück zum Zitat Y.N. Ko, Y. Chan Kang, S.B. Park, A new strategy for synthesizing yolk-shell V2O5 powders with low melting temperature for high performance Li-ion batteries. Nanoscale 5, 8899–8903 (2013)CrossRef Y.N. Ko, Y. Chan Kang, S.B. Park, A new strategy for synthesizing yolk-shell V2O5 powders with low melting temperature for high performance Li-ion batteries. Nanoscale 5, 8899–8903 (2013)CrossRef
67.
Zurück zum Zitat L. Mai, F. Dong, X. Xu, Y. Luo, Q. An, Y. Zhao, J. Pan, J. Yang, Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene) & MnO2 nanowires with enhanced electrochemical cyclability. Nano Lett. 13, 740–745 (2013)CrossRef L. Mai, F. Dong, X. Xu, Y. Luo, Q. An, Y. Zhao, J. Pan, J. Yang, Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene) & MnO2 nanowires with enhanced electrochemical cyclability. Nano Lett. 13, 740–745 (2013)CrossRef
68.
Zurück zum Zitat X. Ren, C. Shi, P. Zhang, Y. Jiang, J. Liu, Q. Zhang, An investigation of V2O5/polypyrrole composite cathode materials for lithium-ion batteries synthesized by sol–gel. Mater. Sci. Eng., B 177, 929–934 (2012)CrossRef X. Ren, C. Shi, P. Zhang, Y. Jiang, J. Liu, Q. Zhang, An investigation of V2O5/polypyrrole composite cathode materials for lithium-ion batteries synthesized by sol–gel. Mater. Sci. Eng., B 177, 929–934 (2012)CrossRef
69.
Zurück zum Zitat M.J. Armstrong, D.M. Burke, T. Gabriel, C. O’Regan, C. O’Dwyer, N. Petkov, J.D. Holmes, Carbon nanocage supported synthesis of V2O5 nanorods and V2O5/TiO2 nanocomposites for Li-ion batteries. J. Mater. Chem. A 1, 12568–12578 (2013)CrossRef M.J. Armstrong, D.M. Burke, T. Gabriel, C. O’Regan, C. O’Dwyer, N. Petkov, J.D. Holmes, Carbon nanocage supported synthesis of V2O5 nanorods and V2O5/TiO2 nanocomposites for Li-ion batteries. J. Mater. Chem. A 1, 12568–12578 (2013)CrossRef
70.
Zurück zum Zitat X.-F. Zhang, K.-X. Wang, X. Wei, J.-S. Chen, Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chem. Mater. 23, 5290–5292 (2011)CrossRef X.-F. Zhang, K.-X. Wang, X. Wei, J.-S. Chen, Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chem. Mater. 23, 5290–5292 (2011)CrossRef
71.
Zurück zum Zitat Y.L. Cheah, V. Aravindan, S. Madhavi, Chemical lithiation studies on combustion synthesized V2O5 cathodes with full cell application for lithium ion batteries. J. Electrochem. Soc. 160, A1016–A1024 (2013)CrossRef Y.L. Cheah, V. Aravindan, S. Madhavi, Chemical lithiation studies on combustion synthesized V2O5 cathodes with full cell application for lithium ion batteries. J. Electrochem. Soc. 160, A1016–A1024 (2013)CrossRef
72.
Zurück zum Zitat B. Wang, Y. Wang, B. Sun, P. Munroe, G. Wang, Coral-like V2O5 nanowhiskers as high-capacity cathode materials for lithium-ion batteries. RSC Adv. 3, 5069–5075 (2013)CrossRef B. Wang, Y. Wang, B. Sun, P. Munroe, G. Wang, Coral-like V2O5 nanowhiskers as high-capacity cathode materials for lithium-ion batteries. RSC Adv. 3, 5069–5075 (2013)CrossRef
73.
Zurück zum Zitat H. Yu, X. Rui, H. Tan, J. Chen, X. Huang, C. Xu, W. Liu, Y. Denis, H.H. Hng, H.E. Hoster, Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries. Nanoscale 5, 4937–4943 (2013)CrossRef H. Yu, X. Rui, H. Tan, J. Chen, X. Huang, C. Xu, W. Liu, Y. Denis, H.H. Hng, H.E. Hoster, Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries. Nanoscale 5, 4937–4943 (2013)CrossRef
74.
Zurück zum Zitat W. Shi, X. Rui, J. Zhu, Q. Yan, Design of nanostructured hybrid materials based on carbon and metal oxides for Li ion batteries. J. Phys. Chem. C 116, 26685–26693 (2012)CrossRef W. Shi, X. Rui, J. Zhu, Q. Yan, Design of nanostructured hybrid materials based on carbon and metal oxides for Li ion batteries. J. Phys. Chem. C 116, 26685–26693 (2012)CrossRef
75.
Zurück zum Zitat Y. Wang, H.J. Zhang, W.X. Lim, J.Y. Lin, C.C. Wong, Designed strategy to fabricate a patterned V2O5 nanobelt array as a superior electrode for Li-ion batteries. J. Mater. Chem. 21, 2362–2368 (2011)CrossRef Y. Wang, H.J. Zhang, W.X. Lim, J.Y. Lin, C.C. Wong, Designed strategy to fabricate a patterned V2O5 nanobelt array as a superior electrode for Li-ion batteries. J. Mater. Chem. 21, 2362–2368 (2011)CrossRef
76.
Zurück zum Zitat X. Zhou, C. Cui, G. Wu, H. Yang, J. Wu, J. Wang, G. Gao, A novel and facile way to synthesize vanadium pentoxide nanospike as cathode materials for high performance lithium ion batteries. J. Power Sources 238, 95–102 (2013)CrossRef X. Zhou, C. Cui, G. Wu, H. Yang, J. Wu, J. Wang, G. Gao, A novel and facile way to synthesize vanadium pentoxide nanospike as cathode materials for high performance lithium ion batteries. J. Power Sources 238, 95–102 (2013)CrossRef
77.
Zurück zum Zitat Y.L. Cheah, V. Aravindan, S. Madhavi, Electrochemical lithium insertion behavior of combustion synthesized V2O5 cathodes for lithium-ion batteries. J. Electrochem. Soc. 159, A273–A280 (2012)CrossRef Y.L. Cheah, V. Aravindan, S. Madhavi, Electrochemical lithium insertion behavior of combustion synthesized V2O5 cathodes for lithium-ion batteries. J. Electrochem. Soc. 159, A273–A280 (2012)CrossRef
78.
Zurück zum Zitat K.-I. Park, H.-M. Song, Y. Kim, S.-I. Mho, W.I. Cho, I.-H. Yeo, Electrochemical preparation and characterization of V2O5/polyaniline composite film cathodes for Li battery. Electrochim. Acta 55, 8023–8029 (2010)CrossRef K.-I. Park, H.-M. Song, Y. Kim, S.-I. Mho, W.I. Cho, I.-H. Yeo, Electrochemical preparation and characterization of V2O5/polyaniline composite film cathodes for Li battery. Electrochim. Acta 55, 8023–8029 (2010)CrossRef
79.
Zurück zum Zitat C. Ban, N.A. Chernova, M.S. Whittingham, Electrospun nano-vanadium pentoxide cathode. Electrochem. Commun. 11, 522–525 (2009)CrossRef C. Ban, N.A. Chernova, M.S. Whittingham, Electrospun nano-vanadium pentoxide cathode. Electrochem. Commun. 11, 522–525 (2009)CrossRef
80.
Zurück zum Zitat Q. An, Q. Wei, L. Mai, J. Fei, X. Xu, Y. Zhao, M. Yan, P. Zhang, S. Huang, Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. PCCP 15, 16828–16833 (2013)CrossRef Q. An, Q. Wei, L. Mai, J. Fei, X. Xu, Y. Zhao, M. Yan, P. Zhang, S. Huang, Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. PCCP 15, 16828–16833 (2013)CrossRef
81.
Zurück zum Zitat Z.-L. Wang, D. Xu, L.-M. Wang, X.-B. Zhang, Facile and low-cost synthesis of large-area pure V2O5 nanosheets for high-capacity and high-rate lithium storage over a wide temperature range. Chem. Plus Chem. 77, 124–128 (2012) Z.-L. Wang, D. Xu, L.-M. Wang, X.-B. Zhang, Facile and low-cost synthesis of large-area pure V2O5 nanosheets for high-capacity and high-rate lithium storage over a wide temperature range. Chem. Plus Chem. 77, 124–128 (2012)
82.
Zurück zum Zitat X. Rui, J. Zhu, W. Liu, H. Tan, D. Sim, C. Xu, H. Zhang, J. Ma, H.H. Hng, T.M. Lim, Facile preparation of hydrated vanadium pentoxide nanobelts based bulky paper as flexible binder-free cathodes for high-performance lithium ion batteries. RSC Adv. 1, 117–122 (2011)CrossRef X. Rui, J. Zhu, W. Liu, H. Tan, D. Sim, C. Xu, H. Zhang, J. Ma, H.H. Hng, T.M. Lim, Facile preparation of hydrated vanadium pentoxide nanobelts based bulky paper as flexible binder-free cathodes for high-performance lithium ion batteries. RSC Adv. 1, 117–122 (2011)CrossRef
83.
Zurück zum Zitat A. Pan, J.-G. Zhang, Z. Nie, G. Cao, B.W. Arey, G. Li, S.-Q. Liang, J. Liu, Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J. Mater. Chem. 20, 9193–9199 (2010)CrossRef A. Pan, J.-G. Zhang, Z. Nie, G. Cao, B.W. Arey, G. Li, S.-Q. Liang, J. Liu, Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J. Mater. Chem. 20, 9193–9199 (2010)CrossRef
84.
Zurück zum Zitat Y.L. Cheah, V. Aravindan, S. Madhavi, Improved elevated temperature performance of Al-intercalated V2O5 electrospun nanofibers for lithium-ion batteries. ACS Appl. Mater. Interfaces. 4, 3270–3277 (2012)CrossRef Y.L. Cheah, V. Aravindan, S. Madhavi, Improved elevated temperature performance of Al-intercalated V2O5 electrospun nanofibers for lithium-ion batteries. ACS Appl. Mater. Interfaces. 4, 3270–3277 (2012)CrossRef
85.
Zurück zum Zitat I. Boyano, M. Bengoechea, I. de Meatza, O. Miguel, I. Cantero, E. Ochoteco, J. Rodríguez, M. Lira-Cantú, P. Gómez-Romero, Improvement in the Ppy/V2O5 hybrid as a cathode material for Li ion batteries using PSA as an organic additive. J. Power Sources 166, 471–477 (2007)CrossRef I. Boyano, M. Bengoechea, I. de Meatza, O. Miguel, I. Cantero, E. Ochoteco, J. Rodríguez, M. Lira-Cantú, P. Gómez-Romero, Improvement in the Ppy/V2O5 hybrid as a cathode material for Li ion batteries using PSA as an organic additive. J. Power Sources 166, 471–477 (2007)CrossRef
86.
Zurück zum Zitat F. Carn, M. Morcrette, B. Desport, R. Backov, Lithium-ion battery electrode prepared by confining carbon nanotubes/V2O5 nanoribbons suspension in model air–liquid foams. Solid State Sci. 17, 134–139 (2013)CrossRef F. Carn, M. Morcrette, B. Desport, R. Backov, Lithium-ion battery electrode prepared by confining carbon nanotubes/V2O5 nanoribbons suspension in model air–liquid foams. Solid State Sci. 17, 134–139 (2013)CrossRef
87.
Zurück zum Zitat J. Shao, X. Li, Z. Wan, L. Zhang, Y. Ding, L. Zhang, Q. Qu, H. Zheng, Low-cost synthesis of hierarchical V2O5 microspheres as high-performance cathode for lithium-ion batteries. ACS Appl. Mater. Interfaces. 5, 7671–7675 (2013)CrossRef J. Shao, X. Li, Z. Wan, L. Zhang, Y. Ding, L. Zhang, Q. Qu, H. Zheng, Low-cost synthesis of hierarchical V2O5 microspheres as high-performance cathode for lithium-ion batteries. ACS Appl. Mater. Interfaces. 5, 7671–7675 (2013)CrossRef
88.
Zurück zum Zitat Y.L. Cheah, N. Gupta, S.S. Pramana, V. Aravindan, G. Wee, M. Srinivasan, Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. J. Power Sources 196, 6465–6472 (2011)CrossRef Y.L. Cheah, N. Gupta, S.S. Pramana, V. Aravindan, G. Wee, M. Srinivasan, Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. J. Power Sources 196, 6465–6472 (2011)CrossRef
89.
Zurück zum Zitat T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li, H. Zhou, Y. Koide, Y. Bando, D. Golberg, Centimeter-long V2O5 nanowires: From synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 22, 2547–2552 (2010)CrossRef T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li, H. Zhou, Y. Koide, Y. Bando, D. Golberg, Centimeter-long V2O5 nanowires: From synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 22, 2547–2552 (2010)CrossRef
90.
Zurück zum Zitat A.M. Glushenkov, V.I. Stukachev, M.F. Hassan, G.G. Kuvshinov, H.K. Liu, Y. Chen, A novel approach for real mass transformation from V2O5 particles to nanorods. Cryst. Growth Des. 8, 3661–3665 (2008)CrossRef A.M. Glushenkov, V.I. Stukachev, M.F. Hassan, G.G. Kuvshinov, H.K. Liu, Y. Chen, A novel approach for real mass transformation from V2O5 particles to nanorods. Cryst. Growth Des. 8, 3661–3665 (2008)CrossRef
91.
Zurück zum Zitat Y. Wang, H.J. Zhang, K.W. Siah, C.C. Wong, J. Lin, A. Borgna, One pot synthesis of self-assembled V2O5 nanobelt membrane via capsule-like hydrated precursor as improved cathode for Li-ion battery. J. Mater. Chem. 21, 10336–10341 (2011)CrossRef Y. Wang, H.J. Zhang, K.W. Siah, C.C. Wong, J. Lin, A. Borgna, One pot synthesis of self-assembled V2O5 nanobelt membrane via capsule-like hydrated precursor as improved cathode for Li-ion battery. J. Mater. Chem. 21, 10336–10341 (2011)CrossRef
92.
Zurück zum Zitat S. Wang, Z. Lu, D. Wang, C. Li, C. Chen, Y. Yin, Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J. Mater. Chem. 21, 6365–6369 (2011)CrossRef S. Wang, Z. Lu, D. Wang, C. Li, C. Chen, Y. Yin, Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J. Mater. Chem. 21, 6365–6369 (2011)CrossRef
93.
Zurück zum Zitat P. Liu, S.-H. Lee, C.E. Tracy, Y. Yan, J.A. Turner, Preparation and lithium insertion properties of mesoporous vanadium oxide. Adv. Mater. 14, 27 (2002)CrossRef P. Liu, S.-H. Lee, C.E. Tracy, Y. Yan, J.A. Turner, Preparation and lithium insertion properties of mesoporous vanadium oxide. Adv. Mater. 14, 27 (2002)CrossRef
94.
Zurück zum Zitat X. Rui, J. Zhu, D. Sim, C. Xu, Y. Zeng, H.H. Hng, T.M. Lim, Q. Yan, Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries. Nanoscale 3, 4752–4758 (2011)CrossRef X. Rui, J. Zhu, D. Sim, C. Xu, Y. Zeng, H.H. Hng, T.M. Lim, Q. Yan, Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries. Nanoscale 3, 4752–4758 (2011)CrossRef
95.
Zurück zum Zitat A.M. Cao, J.S. Hu, H.P. Liang, L.J. Wan, Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem. Int. Ed. 44, 4391–4395 (2005)CrossRef A.M. Cao, J.S. Hu, H.P. Liang, L.J. Wan, Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem. Int. Ed. 44, 4391–4395 (2005)CrossRef
96.
Zurück zum Zitat W. Wu, Y. Wang, X. Wang, Q. Chen, X. Wang, S. Yang, X. Liu, J. Guo, Z. Yang, Structure and electrochemical performance of FeF3/V2O5 composite cathode material for lithium-ion battery. J. Alloys Compd. 486, 93–96 (2009)CrossRef W. Wu, Y. Wang, X. Wang, Q. Chen, X. Wang, S. Yang, X. Liu, J. Guo, Z. Yang, Structure and electrochemical performance of FeF3/V2O5 composite cathode material for lithium-ion battery. J. Alloys Compd. 486, 93–96 (2009)CrossRef
97.
Zurück zum Zitat S.H. Ng, S.Y. Chew, J. Wang, D. Wexler, Y. Tournayre, K. Konstantinov, H.K. Liu, Synthesis and electrochemical properties of V2O5 nanostructures prepared via a precipitation process for lithium-ion battery cathodes. J. Power Sources 174, 1032–1035 (2007)CrossRef S.H. Ng, S.Y. Chew, J. Wang, D. Wexler, Y. Tournayre, K. Konstantinov, H.K. Liu, Synthesis and electrochemical properties of V2O5 nanostructures prepared via a precipitation process for lithium-ion battery cathodes. J. Power Sources 174, 1032–1035 (2007)CrossRef
98.
Zurück zum Zitat A. Pan, H.B. Wu, L. Yu, T. Zhu, X.W. Lou, Synthesis of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces. 4, 3874–3879 (2012)CrossRef A. Pan, H.B. Wu, L. Yu, T. Zhu, X.W. Lou, Synthesis of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces. 4, 3874–3879 (2012)CrossRef
99.
Zurück zum Zitat J. Liu, Y. Zhou, J. Wang, Y. Pan, D. Xue, Template-free solvothermal synthesis of yolk–shell V2O5 microspheres as cathode materials for Li-ion batteries. Chem. Commun. 47, 10380–10382 (2011)CrossRef J. Liu, Y. Zhou, J. Wang, Y. Pan, D. Xue, Template-free solvothermal synthesis of yolk–shell V2O5 microspheres as cathode materials for Li-ion batteries. Chem. Commun. 47, 10380–10382 (2011)CrossRef
100.
Zurück zum Zitat A. Pan, H.B. Wu, L. Yu, X.W.D. Lou, Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chem. 125, 2282–2286 (2013)CrossRef A. Pan, H.B. Wu, L. Yu, X.W.D. Lou, Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chem. 125, 2282–2286 (2013)CrossRef
101.
Zurück zum Zitat X. Rui, Z. Lu, H. Yu, D. Yang, H.H. Hng, T.M. Lim, Q. Yan, Ultrathin V2O5 nanosheet cathodes: realizing ultrafast reversible lithium storage. Nanoscale 5, 556–560 (2013)CrossRef X. Rui, Z. Lu, H. Yu, D. Yang, H.H. Hng, T.M. Lim, Q. Yan, Ultrathin V2O5 nanosheet cathodes: realizing ultrafast reversible lithium storage. Nanoscale 5, 556–560 (2013)CrossRef
102.
Zurück zum Zitat A.Q. Pan, H.B. Wu, L. Zhang, X.W. Lou, Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ. Sci. 6, 1476–1479 (2013)CrossRef A.Q. Pan, H.B. Wu, L. Zhang, X.W. Lou, Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ. Sci. 6, 1476–1479 (2013)CrossRef
103.
Zurück zum Zitat Y. Tang, X. Rui, Y. Zhang, T.M. Lim, Z. Dong, H.H. Hng, X. Chen, Q. Yan, Z. Chen, Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process. J. Mater. Chem. A 1, 82–88 (2013)CrossRef Y. Tang, X. Rui, Y. Zhang, T.M. Lim, Z. Dong, H.H. Hng, X. Chen, Q. Yan, Z. Chen, Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process. J. Mater. Chem. A 1, 82–88 (2013)CrossRef
104.
Zurück zum Zitat M. Yan, F. Wang, C. Han, X. Ma, X. Xu, Q. An, L. Xu, C. Niu, Y. Zhao, X. Tian, P. Hu, H. Wu, L. Mai, Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance. J. Am. Chem. Soc. 135, 18176–18182 (2013)CrossRef M. Yan, F. Wang, C. Han, X. Ma, X. Xu, Q. An, L. Xu, C. Niu, Y. Zhao, X. Tian, P. Hu, H. Wu, L. Mai, Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance. J. Am. Chem. Soc. 135, 18176–18182 (2013)CrossRef
105.
Zurück zum Zitat W. Zhang, Y. Zeng, N. Xiao, H.H. Hng, Q. Yan, One-step electrochemical preparation of graphene-based heterostructures for Li storage. J. Mater. Chem. 22, 8455–8461 (2012)CrossRef W. Zhang, Y. Zeng, N. Xiao, H.H. Hng, Q. Yan, One-step electrochemical preparation of graphene-based heterostructures for Li storage. J. Mater. Chem. 22, 8455–8461 (2012)CrossRef
106.
Zurück zum Zitat A. Pan, T. Zhu, H.B. Wu, X.W.D. Lou, Template-free synthesis of hierarchical vanadium-glycolate hollow microspheres and their conversion to V2O5 with improved lithium storage capability. Chem.-A Euro. J. 19, 494–500 (2013)CrossRef A. Pan, T. Zhu, H.B. Wu, X.W.D. Lou, Template-free synthesis of hierarchical vanadium-glycolate hollow microspheres and their conversion to V2O5 with improved lithium storage capability. Chem.-A Euro. J. 19, 494–500 (2013)CrossRef
107.
Zurück zum Zitat Y. Sun, S.-B. Yang, L.-P. Lv, I. Lieberwirth, L.-C. Zhang, C.-X. Ding, C.-H. Chen, A composite film of reduced graphene oxide modified vanadium oxide nanoribbons as a free standing cathode material for rechargeable lithium batteries. J. Power Sources 241, 168–172 (2013)CrossRef Y. Sun, S.-B. Yang, L.-P. Lv, I. Lieberwirth, L.-C. Zhang, C.-X. Ding, C.-H. Chen, A composite film of reduced graphene oxide modified vanadium oxide nanoribbons as a free standing cathode material for rechargeable lithium batteries. J. Power Sources 241, 168–172 (2013)CrossRef
108.
Zurück zum Zitat H.B. Wu, A. Pan, H.H. Hng, X.W. Lou, Template-assisted formation of rattle-type V2O5 hollow microspheres with enhanced lithium storage properties. Adv. Funct. Mater. 23, 5669–5674 (2013)CrossRef H.B. Wu, A. Pan, H.H. Hng, X.W. Lou, Template-assisted formation of rattle-type V2O5 hollow microspheres with enhanced lithium storage properties. Adv. Funct. Mater. 23, 5669–5674 (2013)CrossRef
109.
Zurück zum Zitat E. Uchaker, N. Zhou, Y. Li, G. Cao, Polyol-mediated solvothermal synthesis and electrochemical performance of nanostructured V2O5 hollow microspheres. J. Phys. Chem. C 117, 1621–1626 (2013)CrossRef E. Uchaker, N. Zhou, Y. Li, G. Cao, Polyol-mediated solvothermal synthesis and electrochemical performance of nanostructured V2O5 hollow microspheres. J. Phys. Chem. C 117, 1621–1626 (2013)CrossRef
110.
Zurück zum Zitat Y. Li, J. Yao, E. Uchaker, J. Yang, Y. Huang, M. Zhang, G. Cao, Leaf-like V2O5 nanosheets fabricated by a facile green approach as high energy cathode material for lithium-ion batteries. Adv. Energy Mater. 3, 1171–1175 (2013)CrossRef Y. Li, J. Yao, E. Uchaker, J. Yang, Y. Huang, M. Zhang, G. Cao, Leaf-like V2O5 nanosheets fabricated by a facile green approach as high energy cathode material for lithium-ion batteries. Adv. Energy Mater. 3, 1171–1175 (2013)CrossRef
111.
Zurück zum Zitat H. Pang, P. Cheng, H. Yang, J. Lu, C.X. Guo, G. Ning, C.M. Li, Template-free bottom-up synthesis of yolk-shell vanadium oxide as high performance cathode for lithium ion batteries. Chem. Commun. 49, 1536–1538 (2013)CrossRef H. Pang, P. Cheng, H. Yang, J. Lu, C.X. Guo, G. Ning, C.M. Li, Template-free bottom-up synthesis of yolk-shell vanadium oxide as high performance cathode for lithium ion batteries. Chem. Commun. 49, 1536–1538 (2013)CrossRef
112.
Zurück zum Zitat N. Zhang, X. Han, Y. Liu, X. Hu, Q. Zhao, J. Chen, 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of na-ion batteries. Adv. Energy Mater. 5, 201401123 (2015) N. Zhang, X. Han, Y. Liu, X. Hu, Q. Zhao, J. Chen, 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of na-ion batteries. Adv. Energy Mater. 5, 201401123 (2015)
113.
Zurück zum Zitat Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L.V. Saraf, Z. Yang, J. Liu, Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783–3787 (2012)CrossRef Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L.V. Saraf, Z. Yang, J. Liu, Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783–3787 (2012)CrossRef
114.
Zurück zum Zitat C. Luo, Y.H. Xu, Y.J. Zhu, Y.H. Liu, S.Y. Zheng, Y. Liu, A. Langrock, C.S. Wang, Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 7, 8003–8010 (2013)CrossRef C. Luo, Y.H. Xu, Y.J. Zhu, Y.H. Liu, S.Y. Zheng, Y. Liu, A. Langrock, C.S. Wang, Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 7, 8003–8010 (2013)CrossRef
115.
Zurück zum Zitat A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J. Am. Chem. Soc. 134, 20805–20811 (2012)CrossRef A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J. Am. Chem. Soc. 134, 20805–20811 (2012)CrossRef
116.
Zurück zum Zitat C. Deng, S. Zhang, Y. Wu, Hydrothermal-assisted synthesis of the Na7V4(P2O7)4(PO4)/C nanorod and its fast sodium intercalation chemistry in aqueous rechargeable sodium batteries. Nanoscale 7, 487–491 (2014)CrossRef C. Deng, S. Zhang, Y. Wu, Hydrothermal-assisted synthesis of the Na7V4(P2O7)4(PO4)/C nanorod and its fast sodium intercalation chemistry in aqueous rechargeable sodium batteries. Nanoscale 7, 487–491 (2014)CrossRef
117.
Zurück zum Zitat X. Han, Y. Liu, Z. Jia, Y.C. Chen, J. Wan, N. Weadock, K.J. Gaskell, T. Li, L. Hu, Atomic-layer-deposition oxide nanoglue for sodium ion batteries. Nano Lett. 14, 139–147 (2014)CrossRef X. Han, Y. Liu, Z. Jia, Y.C. Chen, J. Wan, N. Weadock, K.J. Gaskell, T. Li, L. Hu, Atomic-layer-deposition oxide nanoglue for sodium ion batteries. Nano Lett. 14, 139–147 (2014)CrossRef
118.
Zurück zum Zitat Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao, J. Chen, MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. 126, 13008–13012 (2014)CrossRef Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao, J. Chen, MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. 126, 13008–13012 (2014)CrossRef
119.
Zurück zum Zitat Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, J. Chen, Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 8, 1309–1316 (2015)CrossRef Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, J. Chen, Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 8, 1309–1316 (2015)CrossRef
120.
Zurück zum Zitat K.T. Kim, G. Ali, K.Y. Chung, C.S. Yoon, H. Yashiro, Y.K. Sun, J. Lu, K. Amine, S.T. Myung, Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 14, 416–422 (2014)CrossRef K.T. Kim, G. Ali, K.Y. Chung, C.S. Yoon, H. Yashiro, Y.K. Sun, J. Lu, K. Amine, S.T. Myung, Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 14, 416–422 (2014)CrossRef
121.
Zurück zum Zitat K.-T. Kim, C.-Y. Yu, C.S. Yoon, S.-J. Kim, Y.-K. Sun, S.-T. Myung, Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries. Nano Energy 12, 725–734 (2015)CrossRef K.-T. Kim, C.-Y. Yu, C.S. Yoon, S.-J. Kim, Y.-K. Sun, S.-T. Myung, Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries. Nano Energy 12, 725–734 (2015)CrossRef
122.
Zurück zum Zitat A. Kohandehghan, K. Cui, M. Kupsta, J. Ding, E. Memarzadeh Lotfabad, W.P. Kalisvaart, D. Mitlin, Activation with Li enables facile sodium storage in germanium. Nano Lett. 14, 5873–5882 (2014)CrossRef A. Kohandehghan, K. Cui, M. Kupsta, J. Ding, E. Memarzadeh Lotfabad, W.P. Kalisvaart, D. Mitlin, Activation with Li enables facile sodium storage in germanium. Nano Lett. 14, 5873–5882 (2014)CrossRef
123.
Zurück zum Zitat L. David, R. Bhandavat, G. Singh, MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8, 1759–1770 (2014)CrossRef L. David, R. Bhandavat, G. Singh, MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8, 1759–1770 (2014)CrossRef
124.
Zurück zum Zitat Y. Liu, H. Kang, L. Jiao, C. Chen, K. Cao, Y. Wang, H. Yuan, Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 7, 1325–1332 (2015)CrossRef Y. Liu, H. Kang, L. Jiao, C. Chen, K. Cao, Y. Wang, H. Yuan, Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 7, 1325–1332 (2015)CrossRef
125.
Zurück zum Zitat P.V. Prikhodchenko, D.Y.W. Yu, S.K. Batabyal, V. Uvarov, J. Gun, S. Sladkevich, A.A. Mikhaylov, A.G. Medvedev, O. Lev, Nanocrystalline Tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes. J. Mater. Chem. A 2, 8431–8437 (2014)CrossRef P.V. Prikhodchenko, D.Y.W. Yu, S.K. Batabyal, V. Uvarov, J. Gun, S. Sladkevich, A.A. Mikhaylov, A.G. Medvedev, O. Lev, Nanocrystalline Tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes. J. Mater. Chem. A 2, 8431–8437 (2014)CrossRef
126.
Zurück zum Zitat J. Qian, Y. Chen, L. Wu, Y. Cao, X. Ai, H. Yang, High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. (Camb.) 48, 7070–7072 (2012)CrossRef J. Qian, Y. Chen, L. Wu, Y. Cao, X. Ai, H. Yang, High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. (Camb.) 48, 7070–7072 (2012)CrossRef
127.
Zurück zum Zitat S.H. Choi, Y.C. Kang, Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Research 8, 1595–1603 (2015)CrossRef S.H. Choi, Y.C. Kang, Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Research 8, 1595–1603 (2015)CrossRef
128.
Zurück zum Zitat Z. Shadike, M.H. Cao, F. Ding, L. Sang, Z.W. Fu, Improved electrochemical performance of CoS2-MWCNT nanocomposites for sodium-ion batteries. Chem. Commun. (Camb.) 51, 10486–10489 (2015)CrossRef Z. Shadike, M.H. Cao, F. Ding, L. Sang, Z.W. Fu, Improved electrochemical performance of CoS2-MWCNT nanocomposites for sodium-ion batteries. Chem. Commun. (Camb.) 51, 10486–10489 (2015)CrossRef
129.
Zurück zum Zitat C. Shang, S. Dong, S. Zhang, P. Hu, C. Zhang, G. Cui, A Ni3S2-PEDOT monolithic electrode for sodium batteries. Electrochem. Commun. 50, 24–27 (2015)CrossRef C. Shang, S. Dong, S. Zhang, P. Hu, C. Zhang, G. Cui, A Ni3S2-PEDOT monolithic electrode for sodium batteries. Electrochem. Commun. 50, 24–27 (2015)CrossRef
130.
Zurück zum Zitat D. Su, H.J. Ahn, G. Wang, SnO2 @ graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. (Camb.) 49, 3131–3133 (2013)CrossRef D. Su, H.J. Ahn, G. Wang, SnO2 @ graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. (Camb.) 49, 3131–3133 (2013)CrossRef
131.
Zurück zum Zitat D. Su, S. Dou, G. Wang, Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv. Energy Mater. 5, 201401205 (2015) D. Su, S. Dou, G. Wang, Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv. Energy Mater. 5, 201401205 (2015)
132.
Zurück zum Zitat J. Wang, C. Luo, T. Gao, A. Langrock, A.C. Mignerey, C. Wang, An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11, 473–481 (2015)CrossRef J. Wang, C. Luo, T. Gao, A. Langrock, A.C. Mignerey, C. Wang, An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11, 473–481 (2015)CrossRef
133.
Zurück zum Zitat L. Wu, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang, Y. Cao, A Sn–SnS–C nanocomposite as anode host materials for Na-ion batteries. J. Mater. Chem. A 1, 7181 (2013)CrossRef L. Wu, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang, Y. Cao, A Sn–SnS–C nanocomposite as anode host materials for Na-ion batteries. J. Mater. Chem. A 1, 7181 (2013)CrossRef
134.
Zurück zum Zitat L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang, Y. Cao, Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. J. Mater. Chem. A 3, 5708–5713 (2015)CrossRef L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang, Y. Cao, Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. J. Mater. Chem. A 3, 5708–5713 (2015)CrossRef
135.
Zurück zum Zitat L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang, Y. Cao, Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries. J. Power Sources 293, 784–789 (2015)CrossRef L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang, Y. Cao, Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries. J. Power Sources 293, 784–789 (2015)CrossRef
136.
Zurück zum Zitat L. Wu, H. Lu, L. Xiao, J. Qian, X. Ai, H. Yang, Y. Cao, A tin(ii) sulfide–carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. J. Mater. Chem. A 2, 16424–16428 (2014)CrossRef L. Wu, H. Lu, L. Xiao, J. Qian, X. Ai, H. Yang, Y. Cao, A tin(ii) sulfide–carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. J. Mater. Chem. A 2, 16424–16428 (2014)CrossRef
137.
Zurück zum Zitat L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie, J. Liu, High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. (Camb.) 48, 3321–3323 (2012)CrossRef L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie, J. Liu, High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. (Camb.) 48, 3321–3323 (2012)CrossRef
138.
Zurück zum Zitat X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv. Funct. Mater. 25, 1393–1403 (2015)CrossRef X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv. Funct. Mater. 25, 1393–1403 (2015)CrossRef
139.
Zurück zum Zitat X. Xie, K. Kretschmer, J. Zhang, B. Sun, D. Su, G. Wang, Sn@CNT nanopillars grown perpendicularly on carbon paper: a novel free-standing anode for sodium ion batteries. Nano Energy 13, 208–217 (2015)CrossRef X. Xie, K. Kretschmer, J. Zhang, B. Sun, D. Su, G. Wang, Sn@CNT nanopillars grown perpendicularly on carbon paper: a novel free-standing anode for sodium ion batteries. Nano Energy 13, 208–217 (2015)CrossRef
140.
Zurück zum Zitat Y. Xu, Y. Zhu, Y. Liu, C. Wang, Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv. Energy Mater. 3, 128–133 (2013)CrossRef Y. Xu, Y. Zhu, Y. Liu, C. Wang, Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv. Energy Mater. 3, 128–133 (2013)CrossRef
141.
Zurück zum Zitat D.Y. Yu, P.V. Prikhodchenko, C.W. Mason, S.K. Batabyal, J. Gun, S. Sladkevich, A.G. Medvedev, O. Lev, High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 4, 2922 (2013)CrossRef D.Y. Yu, P.V. Prikhodchenko, C.W. Mason, S.K. Batabyal, J. Gun, S. Sladkevich, A.G. Medvedev, O. Lev, High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 4, 2922 (2013)CrossRef
142.
Zurück zum Zitat S. Zhang, X. Yu, H. Yu, Y. Chen, P. Gao, C. Li, C. Zhu, Growth of ultrathin MoS(2) nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. ACS Appl. Mater. Interfaces. 6, 21880–21885 (2014)CrossRef S. Zhang, X. Yu, H. Yu, Y. Chen, P. Gao, C. Li, C. Zhu, Growth of ultrathin MoS(2) nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. ACS Appl. Mater. Interfaces. 6, 21880–21885 (2014)CrossRef
143.
Zurück zum Zitat Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, X. Zhao, Few-layered SnS2 on few-layered reduced graphene oxide as na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 25, 481–489 (2015)CrossRef Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, X. Zhao, Few-layered SnS2 on few-layered reduced graphene oxide as na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 25, 481–489 (2015)CrossRef
144.
Zurück zum Zitat Y. Zhu, P. Nie, L. Shen, S. Dong, Q. Sheng, H. Li, H. Luo, X. Zhang, High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries. Nanoscale 7, 3309–3315 (2014)CrossRef Y. Zhu, P. Nie, L. Shen, S. Dong, Q. Sheng, H. Li, H. Luo, X. Zhang, High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries. Nanoscale 7, 3309–3315 (2014)CrossRef
Metadaten
Titel
General Introduction
verfasst von
Dr. Dongliang Chao
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3080-3_1