Skip to main content

2019 | OriginalPaper | Buchkapitel

7. Competition over Communications: Long-Wavelength Laser Diode

verfasst von : Hiroshi Shimizu

Erschienen in: General Purpose Technology, Spin-Out, and Innovation

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As we have discussed, the year 1970 was an important year for the laser diode. That was the year Bell Laboratories achieved the continuous wave operation of laser diode in room temperature and Corning developed the low-loss optical fiber. By chance, the wavelength at which the low transmission loss was achieved, 800 nm band, matched the wavelength of the GaAs substrate laser diode that achieved the continuous wave operation in room temperature. As the previous chapter described, these innovations facilitated the advancement of laser diode R&D into the 1970s and focused R&D attention on optical communication.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Regarding R&D of laser diode for optical communication, see Ohashi, H. (2011): “Semiconductor Laser Diode, the History and Future of Semiconductor Laser Diode,” Optronics, 30, 137–144, Shibuya, H. (2003): Story of Optical Telecommunication (Hikari Tsushin Monogatari: Yume o Jitsugenshita Otokotachi no Kiseki). Tokyo: Oputoronikusu.
 
2
Ito, R. (1980): “Semiconductor Lasers,” Journal of the Institute of Television Engineers of Japan, 34, 121–128.
 
3
From the paper published in a special issue of optical fiber in the The Journal of the Institute of Electrical Engineers of Japan, it is apparent that optical transmission of information was also being considered in the fields of iron making, construction, etc. on top of electric utility firms. Nakamura, H., S. Takeshita, Y. Yoshitani, and K. Kikutake (1977): “Information Transmission by Optics (Hikari Ni Yoru Jyoho Denso),” Journal of the Institute of Electrical Engineers of Japan, 97, 980–987.
 
4
Aoki, F., H. Ando, and K. Fukatsu (1976): “Optical Fiber Communication System for Electric Power (Denryokuyo Hikari Faiba Tsushin Hoshiki),” ibid., 96, 1079–1083, Ministry of International Trade and Technology (Tsusho-Sangyo-Sho) (1983): “Annual Report on the Electronics Industry (Denshi Kogyo Nenkan),” Tokyo: Denpa Shimbunsha.
 
5
Regarding the history of optical fiber development, see Murata, H., K. Koizumi, and N. Niizeki (2003): History of Optical Fiber (Hikari Faiba no Rekishi). Tokyo: Kogyo Tsushin.
 
6
MacChesney, J. B., P. B. O’Connor, and H. M. Presby (1974): “A New Technique for the Preparation of Low-Loss and Graded-Index Optical Fibers,” Proceedings of the IEEE, 62, 1280–1281.
 
7
Horiguchi, M., and H. Osanai (1976): “Spectral Losses of Low-Oh-Content Optical Fibres,” Electronics Letters, 12, 310–312.
 
8
Horiguchi, M., and H. Takata (1979): “Transmission-Loss Characteristics of Low-Oh-Content Optical Fibers,” Electrical Communication Laboratories Review, 27, 226–235.
 
9
“Bell Developing a Pocket Laser: Wide Communications Uses Seen for Low-Cost Device” The New York Times, September 1, 1970.
 
10
Miya, T., Y. Terunuma, T. Hosaka, and T. Miyashita (1979): “Ultimate Low-Loss Single-Mode Fibre at 1.55 μm” Electronics Letters, 15, 106–108.
 
11
Regarding laser diodes for optical communication, see Yariv, A., and A. Yariv (1997): Optical Electronics in Modern Communications. New York: Oxford University Press, Yariv, A., and P. Yeh (2007): Photonics: Optical Electronics in Modern Communications. Ibid.
 
12
Hsieh, J. J., J. A. Rossi, and J. P. Donnelly (1976): “Room-Temperature CW Operation of GaInAsP/InP Double-Heterostructure Diode Lasers Emitting at 1.1 μm,” Applied Physics Letter, 28, 709–711.
 
13
Nahory, R. E., and M. A. Pollack (1975): “Low-Threshold Room-Temperature Double-Heterostructure GaAs1-Xsbx/Alyga1-YAs1-Xsbx Injection Lasers at 1-μm Wavelengths,” Applied Physics Letters, 27, 562–564.
 
14
Interview [159].
 
15
For detailed technical content, see Suematsu, Y., and K. Kobayashi (2007): Photonics: Optoelectronics and Its Progress (Fotonikusu: Hikari Electronikusu to Sono Shinten). Tokyo: Ohmusha.
 
16
Doi, A., and M. Nakamura (1979): “InGaAsP/InP Burried Heterostructure Semiconductor Lasers,” Hitachi Review (Hitachi Hyoron), 61, 799–802, Hirao, M., M. Ichiki, H. Sato, and M. Nakamura (1983): “Semiconductor Lasers for Optical Communications,” ibid., 65, 707–712.
 
17
Nakano, Y., H. Sudo, G. Iwane, T. Matsumoto, and T. Ikegami (1984): “Reliability of Semiconductor Lasers and Detectors for Undersea Transmission Systems,” Journal of Lightwave Technology, 2, 945–951, Takahei, K., K. Kuroiwa, and T. Ikegami (1983): “Reliability of 1.3 Mu-M Semiconductor-Lasers and Ge-Detectors,” Review of The Electrical Communications Laboratories, 31, 321–320.
 
18
Kurumada, K., and T. Ikegami (1985): “Application in Laser Telecommunication (Reza Tsushinbunnya deno Oyo9,” Journal of the Institute of Electronics, Information and Communication Engineers, 68, 361–371.
 
19
Akiba, S., K. Sakai, Y. Matushima, and T. Yamamoto (1979): “Room Temperature C.W. Operation of InGaAsP/InP Heterostructure Lasers Emitting at 1.56 Μm,” Electronics Letters, 18, 606–607, Arai, S., M. Asada, Y. Suematsu, and Y. Itaya (1979): “Room Temperature CW Operation of GaInAsP/InP DH Laser Emitting at 1.51 μm,” Japanese Journal of Applied Physics, 18, 2333–2334, Kaminow, I. P., R. E. Nahory, M. A. Pollack, L. W. Stulz, and J. C. DeWinter (1979): “Single-Mode C.W. Ridge-Waveguide Laser Emitting at 1.55 μm,” Electronics Letters, 15, 763–765, Kawaguchi, H., K. Takahei, Y. Toyoshima, H. Nagai, and G. Iwane (ibid. “Room-Temperature C.W. Operation of InP/InGaAsP/InP Double Heterostructure Diode Lasers Emitting at 1.55 μm,” 669–670.
 
20
Suematsu, Y. (1980): “Optical Transmitting Technology: Its Future Prospects (Hikari Denso Gijyutsu Tokushu: Shorai Tenbo),” Journal of the Institute of Electronics, Information and Communication Engineers, 63, 1207–1213.
 
21
Direct modulation is a method of using a laser element to directly add a modulated electrical signal to a laser diode to cause laser light to oscillate. Direct modulation does not deal with modulation using an external modulator, but with converting an electric signal directly into an optical signal.
 
22
Tsang, W. T., N. A. Olsson, and R. A. Logan (1983): “Stable Single-Longitudinal-Mode Operation under High-Speed Direct Modulation in Cleaved-Coupled-Cavity GaInAsP Semiconductor Lasers,” Electronics Letters, 19, 488–490.
 
23
Kogelnik, H., and C. V. Shank (1972): “Coupled-Wave Theory of Distributed Feedback Lasers,” Journal of Applied Physics, 43, 2327–2334.
 
24
Regarding the GaAs DFB lasers of Nakamura’s team, see Nakamura, M., K. Aiki, and J. Umeda (1975): “Distributed Feedback GaAs Laser (Bunpu Kikangata GaAs Reza),” Electronics (Erekutoronikusu), 20, 265–269, — (1976): “Distributed Feedback Semiconductor Lasers,” Journal of Physics Society of Japan (Nihon Butsuri Gakkaishi), 31, 265–269.
And in 1976, Hitachi’s research group believed that optical integrated circuits held a great potential in the application of this DFB laser. Aiki, K., M. Nakamura, and J. Umeda (1976): “Distributed Feedback Laser Diodes: Optical IC and Its Integration (Bunpu Kikangata Handotai Reza: Hikari IC Heno Shusekika o Kano nisuru),” Electronic Engineering (Denshi Gijutsu), 18, 92–97. Regarding the joint R&D by Yariv’s team and Nakamura, see Nakamura, M. (2009): “Development of High Reliable Laser Diode Light Source (Koshinrai Handotai Reza Kogen no Jitsuyoka no Nakade),” IEICE Communications Society Magazine, 8, 4–9. Interview [168].
 
25
Nakamura, M., K. Aiki, J. Umeda, and A. Yariv (1975): “Cw Operation of Distributed-Feedback GaAs-GaAlAs Diode Lasers at Temperature up to 300 k,” Applied Physics Letter, 27, 403–405.
 
26
Anderson, D. B., R. R. August, and J. E. Coker (1974): “Distributed-Feedback Double-Heterostructure GaAs Injection Laser with Fundamental Grating,” Applied Optics, 13, 2742–2744, Scifres, D. R., R. D. Burnham, and W. Streifer (1974): “Distributed-Feedback Single Heterojunction GaAs Diode Laser,” Applied Physics Letter, 25, 203–206.
 
27
Ikegami, T., and K. Matsukura (2000): Optoelectronics and Its Industry (Hikari Electronics to Sangyo). Tokyo: Kyoritsu Shuppan, p. 6.
 
28
Regarding the achievement of the dynamic single mode laser, see Suematsu, Y., and T. Kawajiri (2014): “Special Interview: Development of Dynamic Single Mode Laser (Tokubetsu Intabhyu: Doteki Tanitsu Modo Reza Jitsugen Madeno Michinori),” Optronics, 33, 103.
 
29
Suematsu, Y., and K. Kobayashi (2007): Photonics: Optoelectronics and Its Progress (Fotonikusu: Hikari Electronikusu to Sono Shinten). Tokyo: Ohmusha, p. 205.
 
30
“NEC Launches 1.5 Micron Band Light Emitting/Receiving Element for Optical Communication”, ‘Nikkei Sangyo Shimbun’, February 14, 1986.
 
31
“Mitsubishi Electric Develops “1.55 Micron Band Laser Diode – Optical Communication of 100 km Became a Reality”, ‘Nikkei Sangyo Shimbun’, March 27, 1986.
 
32
Ichiki, M., M. Hirao, K. Ito, and T. Kumazawa (1987): “Opto-Semiconductor Devices for Optical Communications,” Hitachi Review (Hitachi Hyoron), 69, 1077–1081. “Distributed Feedback Laser Diode – Hitachi is the First to Mass Produce – Starts Next Month”, ‘Nikkei Sangyo Shimbun’, June 25, 1986.
 
33
“Distributed Feedback Laser Diode – NEC also Starts Mass Production in September – Initial Monthly Volume of 500 to 1000 Units”, ‘Nikkei Sangyo Shimbun’, July 30, 1986.
 
34
“Added a Wavelength of 1.55 Micron for Distributed Feedback Laser Diode – Fujitsu Broadens Options”, ‘Nikkei Sangyo Shimbun’, July 24, 1987. “Mitsubishi Electric Also Participates in the Distributed Feedback Laser Diode Race”, ‘Nikkei Sangyo Shimbun’, August 27, 1987.
 
35
Esaki, L., and R. Tsu (1970): “Superlattice and Negative Differential Conductivity in Semiconductors,” IBM Journal of Research and Development, 14, 61–65.
 
36
Dupuis, R. D., D. P. Dapkus, N. Holonyak, E. A. Rezek, and R. Chin (1978): “Room-Temperature Laser Operation of Quantum-Well Ga(1-X)AlxAs-GaAs Laser Diodes Grown by Metalorganic Chemical Capor Deposition,” Applied Physics Letters, 32, 295–297.
 
37
Dingle, R., W. Wiegmann, and C. H. Henry (1974): “Quantum States of Confined Carriers in Very Thin AlxGa1-XAs-GaAs-AlxGa1-XAs Heterostructures,” Physical Review Letters, 33, 827.. Regarding the development of quantum well lasers by Charles Henry’s team, see Zory, P. S. (1993): Quantum Well Lasers. Boston: Academic Press.
 
38
For brief summary on the quantum effect structures, see Japan Society for the Promotion of Science Optoelectronics No130 Committee (2011): Optoelectronics and Its Application (Hikari Elekutoronikusu to Sono Oyo). Tokyo: Ohmusha, Suematsu, Y., and K. Kobayashi (2007): Photonics: Optoelectronics and Its Progress (Fotonikusu: Hikari Electronikusu to Sono Shinten). Tokyo: Ohmusha, pp. 225–241.
 
39
Arakawa, y., K. Vahala, and A. Yariv (1984): “Quantum Noise and Dynamics in Quantum Well and Quantum Wire Lasers,” Applied Physics Letter, 45, 950.
 
40
Arakawa, Y., and H. Sakaki (1982): “Multidimensional Quantum Well Laser and Temperature Dependence of Its Threshold Current,” ibid., 40, 939, Arakawa, Y., and A. Yariv (1986): “Quantum Well Lasers- Gain, Spectra, Dynamics,” Quantum Electronics, 22, 1887–1899.
 
41
Mears, R. J., L. Reekie, I. M. Jauncey, and D. N. Payne (1987): “Low-Noise Erbium-Doped Fibre Amplifier Operating at 1.54 μm,” Electronics Letters, 23, 1026–1028.
 
42
Nakazawa, M. (2010): “Advances in Information Communication Technology Based on Lasers,” Oyo Butsuri, 79, 508–516.
 
43
Nakazawa, M., Y. Kumura, and K. Suzuki (1989): “Soliton Amplification and Transmission with Er3+-Doped Fibre Repeater Pumped by GaInAsP Laser Diode,” Electronics Letters, 25, 199–200, Interview [171].
 
44
Horikawa, H., and A. Ishii (1993): “Semiconductor Pump Laser Technology,” Journal of Lightwave Technology, 11, 167–175.
 
45
Horikawa, H., T. Nakajima, K. Nakamura, and H. Yaegashi (1995): “0.98 μm High Power Laser Diode for Optical Fiber Amplification (Hikari Faiba Zofukukiyo 0.98 μm Koshutsuryoku Handotai Reza),” Oki Review, 62, 75–80, ibid., Yaegashi, H., T. Nakajima, K. Nakamura, T. Nonaka, and H. Horikawa (1998): “High Power High Reliability 0.98 μm Laser Diode for Optical Fiber Amplification (Hikari Faiba Zofukukiyo Koshuturyoku Koshinraisei 0.98 μm Handotai Reza),” ibid., 65, 71–74.
 
46
Komura, Y., T. Mikami, A. Kasukawa, and J. Shirokawa (1999): “Furukawa Electric’s Technologies in History: An Optical Fiber and Pumping Lasers,” Journal of the Institute of Electronics, Information and Communication Engineers, 82, 1170–1173.
 
47
Optocom Editors (1999): “Fierce Competition in 980 nm Pumping Laser Market (Kyoso Gekika Suru 980 nm Ponpu Reza Shijo),” Optocom, 122, 40–47.
 
48
Suematsu, Y., and K. Kobayashi (2007): Photonics: Optoelectronics and Its Progress (Fotonikusu: Hikari Electronikusu to Sono Shinten). Tokyo: Ohmusha, p. 514.
 
49
Chraplyvy, A. R., A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McCormick (1996): “1-Tb/S Transmission Experiment,” Photonics Technology Letters, 8, 1264–1266, Morioka, T., H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono (1996): “1 Tbit/S (100 Gbit/S × 10 Channel) Otdm/Wdm Transmission Using a Single Supercontinuum Wdm Source,” Electronics Letters, 32, 906–907, Onaka, H., H. Miyata, G. Ishikawa, K. Otsuka, H. Ooi, Y. Kai, S. Kinoshita, M. Seino, H. Nishimoto, and T. Chikama (1996): “1.1 Tb/S Wdm Transmission over a 150 km 1.3 μm Zero-Dispersion Single-Mode Fiber,” Optical Fiber Communication Conference Papers, Post Deadline Paper (PD20).
 
50
Suematsu, Y., and K. Kobayashi (2007): Photonics: Optoelectronics and Its Progress (Fotonikusu: Hikari Electronikusu to Sono Shinten). Tokyo: Ohmusha, p. 514.
 
51
Regarding technology of tunable lasers, see Amann, M.-C., and J. Buus (1998): Tunable Laser Diodes. Boston: Artech House. For the R&D of tunable lasers of each firm, see Buus, J., and E. J. Murphy (2006): “Tunable Lasers in Optical Networks,” Journal of Lightwave Technology, 24, 5–11.
 
52
Tohmori, Y., Y. Suematsu, H. Tsushima, and S. Arai (1983): “Wavelength Tuning of GaInAsP/InP Integrated Laser with Butt-Jointed Built-in Distributed Bragg Reflector,” Electronics Letters, 19, 656–657.
 
53
If a journal/book does not provide a title in English, the title is translated into English and the original title in Japanese is in the bracket.
 
Literatur
Zurück zum Zitat Japan Society for the Promotion of Science Optoelectronics No130 Committee. (2011). Optoelectronics and its application (Hikari Elekutoronikusu to Sono Oyo). Tokyo: Ohmusha. Japan Society for the Promotion of Science Optoelectronics No130 Committee. (2011). Optoelectronics and its application (Hikari Elekutoronikusu to Sono Oyo). Tokyo: Ohmusha.
Zurück zum Zitat Suematsu, Y., & Kobayashi, K. (2007). Photonics: Optoelectronics and its Progress (Fotonikusu: Hikari Electronikusu to Sono Shinten). Tokyo: Ohmusha. Suematsu, Y., & Kobayashi, K. (2007). Photonics: Optoelectronics and its Progress (Fotonikusu: Hikari Electronikusu to Sono Shinten). Tokyo: Ohmusha.
Metadaten
Titel
Competition over Communications: Long-Wavelength Laser Diode
verfasst von
Hiroshi Shimizu
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3714-7_7