Skip to main content

A Comparison of Apache Spark Supervised Machine Learning Algorithms for DNA Splicing Site Prediction

  • Chapter
  • First Online:
Neural Approaches to Dynamics of Signal Exchanges

Abstract

Thanks to next-generation sequencing techniques, a very big amount of genomic data are available. Therefore, in the last years, biomedical databases are growing more and more. Analyzing this big amount of data with bioinformatics and big data techniques could lead to the discovery of new knowledge for the treatment of serious diseases. In this work, we deal with the splicing site prediction problem in DNA sequences by using supervised machine learning algorithms included in the MLlib library of Apache Spark, a fast and general engine for big data processing. We show the implementation details and the performance of those algorithms on two public available datasets adopting both local and cloud environments, emphasizing the importance of this last environment for its scalability and elasticity of use. We compare the performance of the algorithms with U-BRAIN, a general-purpose learning algorithm originally designed for the prediction of DNA splicing sites. Results show that, among the Spark algorithms, all have good prediction accuracy (>0.9)—that is comparable with the one of U-BRAIN—and much lower execution time. Therefore, we can state that Apache Spark machine learning algorithms are promising candidates for dealing with the DNA splicing site prediction problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maxwell, W.L., Noble, W.S.: Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16(6), 321 (2015)

    Article  Google Scholar 

  2. Weitschek, E., Fiscon, G., Fustaino, V., Felici, G., Bertolazzi, P.: Clustering and classification techniques for gene expression profile pattern analysis. In: Pattern Recognition in Computational Molecular Biology: Techniques and Approaches, p. 347 (2015)

    Chapter  Google Scholar 

  3. Apache Spark Home page. http://spark.apache.org/. Last accessed 10 April 2018

  4. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Commun. ACM 59(11), 56–65 (2016)

    Article  Google Scholar 

  5. Rampone, S.: Recognition of splice junctions on DNA sequences by BRAIN learning algorithm. Bioinformatics (Oxford, England) 14(8), 676–684 (1998)

    Article  Google Scholar 

  6. Morfino, V. Rampone, S.: Metodi ed architetture per la creazione di applicazioni multicanale per la bioinformatica. In: Ceccarell, M., Colantuoni, V., Graziano, G., Rampone, S. (eds.) Bioinformatica. Sfide e prospettive. Edizioni Franco Angeli (2007)

    Google Scholar 

  7. Rampone, S., Russo, C.: A fuzzified brain algorithm for learning DNF from incomplete data. Electron. J. Appl. Statistical Anal. (EJASA) 5(2), 256–270 (2012)

    MathSciNet  Google Scholar 

  8. Rampone, S.: An error tolerant software equipment for human DNA characterization. IEEE Trans. Nucl. Sci. 51(5), 2018–2026 (2004)

    Article  Google Scholar 

  9. D’Angelo, G., Rampone, S.: Towards a HPC-oriented parallel implementation of a learning algorithm for bioinformatics applications. BMC Bioinform. 15(5), S2 (2014)

    Article  Google Scholar 

  10. Aloisio, A., Izzo, V., Rampone, S.: FPGA implementation of a greedy algorithm for set covering, In: 14TH IEEE-NPSS Real Time Conference, IEEE (2005)

    Google Scholar 

  11. D’Angelo, G., Palmieri, F., Ficco, M., Rampone, S.: An uncertainty-managing batch relevance-based approach to network anomaly detection. Appl. Soft Comput. J. 35, 408–418 (2015)

    Article  Google Scholar 

  12. D’Angelo, G., Rampone, S.: Diagnosis of aerospace structure defects by a HPC implemented soft computing algorithm. In: IEEE Metrology for Aerospace (MetroAeroSpace), pp. 408–412. IEEE (2014)

    Google Scholar 

  13. D’Angelo, G., Rampone, S.: Feature extraction and soft computing methods for aerospace structure defect classification. Meas. J. Int. Meas. Confederation 85, 192–209 (2016)

    Article  Google Scholar 

  14. Kimmel, G., Farkash, A.: Lecturer Ron Shamir, “Algorithms for Molecular Biology”, Lecture 1: 25 Oct 2001, Fall Semester, Tel Aviv University (2001)

    Google Scholar 

  15. Jo, Bong-Seok, Choi, Sun Shim: Introns: the functional benefits of introns in genomes. Genomics Informatics 13(4), 112–118 (2015)

    Article  Google Scholar 

  16. Karau, H., Warren, R.: High Performance Spark: Best Practices for Scaling and Optimizing Apache Spark. O’Reilly Media, Inc. (2017)

    Google Scholar 

  17. Bache, K., Lichman, M: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2013). http://archive.ics.uci.edu/ml. Last accessed 10 April 2018

  18. Pollastro, P., Rampone, S.: HS3D, a dataset of Homo sapiens splice regions, and its extraction procedure from a major public database. Int. J. Mod. Phys. C 13(8), 1105–1117 (2003)

    Article  Google Scholar 

  19. Forbes, S.A.: COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 39(suppl 1), D945–D950 (2011)

    Article  Google Scholar 

  20. Databricks Home page. https://databricks.com/. Last accessed 10 April 2018

  21. Kennedy, J.: Encyclopedia of Machine Learning. Springer, US (2011)

    Google Scholar 

  22. Cestarelli, V., Fiscon, G., Felici, G., Bertolazzi, P., Weitschek, E.: CAMUR: Knowledge extraction from RNA-seq cancer data through equivalent classification rules. Bioinformatics 32(5), 697–704 (2016)

    Article  Google Scholar 

  23. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  24. Celli, F., Cumbo, F., Weitschek, E.: Classification of large DNA methylation datasets for identifying cancer drivers. Big Data Res. 13, 21–28 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Morfino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morfino, V., Rampone, S., Weitschek, E. (2020). A Comparison of Apache Spark Supervised Machine Learning Algorithms for DNA Splicing Site Prediction. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Neural Approaches to Dynamics of Signal Exchanges. Smart Innovation, Systems and Technologies, vol 151. Springer, Singapore. https://doi.org/10.1007/978-981-13-8950-4_13

Download citation

Publish with us

Policies and ethics