Skip to main content

Biocrude Oil Production via Hydrothermal Liquefaction of Algae and Upgradation Techniques to Liquid Transportation Fuels

  • Chapter
  • First Online:
Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals

Abstract

Hydrothermal liquefaction of algae is regarded as a favorable thermochemical process to produce biocrude oil from biomass with potential to complement conventional crude oil. This chapter discusses the production of biocrude oil via hydrothermal liquefaction of microalgae. Due to the presence of high protein content in algal species, the catalytic removal of heteroatoms is required to make liquid transportation fuels (biodiesel and biogasoline) from algal biocrude oil. Therefore, different upgradation techniques are explored to remove the heteroatoms using various heterogeneous acid catalysts. Special focus is given to the effects of process parameters on hydrothermal liquefaction and upgradation techniques to escalate biocrude oil yield and liquid transportation fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akia M, Yazdani F, Motaee E, Han D, Arandiyan H (2014) A review on conversion of biomass to biofuel by nanocatalysts. Biofuel Res J 1:16–25

    Article  CAS  Google Scholar 

  • Al-Sabagh AM, Emara MM, El-Din MN, Aly WR (2011) Formation of water-in-diesel oil nano-emulsions using high energy method and studying some of their surface active properties. Egypt J Pet 20:17–23

    Article  CAS  Google Scholar 

  • Anastasakis K, Ross AB (2011) Hydrothermal liquefaction of the brown macro-alga Laminaria saccharina: effect of reaction conditions on product distribution and composition. Bioresour Technol 102:4876–4883

    Article  CAS  PubMed  Google Scholar 

  • Azad AK, Rasul MG, Khan MMK, Sharma SC, Hazrat MA (2015) Prospect of biofuels as an alternative transport fuel in Australia. Renew Sust Energ Rev 43:331–351

    Article  Google Scholar 

  • Azargohar R, Nanda S, Rao BVSK, Dalai AK (2013) Slow pyrolysis of deoiled canola meal: product yields and characterization. Energy Fuel 27:5268–5279

    Article  CAS  Google Scholar 

  • Azargohar R, Nanda S, Kozinski JA, Dalai AK, Sutarto R (2014) Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel 125:90–100

    Article  CAS  Google Scholar 

  • Barreiro DL, Prins W, Ronsse F, Brilman W (2013) Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenergy 53:113–127

    Article  CAS  Google Scholar 

  • Barreiro DL, Gómez BR, Ronsse F, Hornung U, Kruse A, Prins W (2016) Heterogeneous catalytic upgrading of biocrude oil produced by hydrothermal liquefaction of microalgae: state of the art and own experiments. Fuel Process Technol 148:117–127

    Article  CAS  Google Scholar 

  • Baskar G, Aiswarya R (2016) Trends in catalytic production of biodiesel from various feedstocks. Renew Sust Energ Rev 57:496–504

    Article  CAS  Google Scholar 

  • Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225

    Article  CAS  PubMed  Google Scholar 

  • Biswas B, Kumar AA, Bisht Y, Singh R, Kumar J, Bhaskar T (2017) Effects of temperature and solvent on hydrothermal liquefaction of Sargassum tenerrimum algae. Bioresour Technol 242:344–350

    Article  CAS  PubMed  Google Scholar 

  • Boucher ME, Chaala A, Roy C (2000) Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Bioresour Technol 19:337–350

    CAS  Google Scholar 

  • DemirbaÅŸ A (2008) Production of biodiesel from algae oils. Energ Sourc A 31:163–168

    Article  CAS  Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170

    Article  Google Scholar 

  • Diebold JP, Czernik S (1997) Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energ Fuels 11:1081–1091

    Article  CAS  Google Scholar 

  • Dimitriadis A, Bezergianni S (2017) Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review. Renew Sust Energ Rev 68:113–125

    Article  CAS  Google Scholar 

  • Duan P, Savage PE (2011) Upgrading of crude algal bio-oil in supercritical water. Bioresour Technol 102:1899–1906

    Article  CAS  PubMed  Google Scholar 

  • Duan P, Xu Y, Wang F, Wang B, Yan W (2016) Catalytic upgrading of pretreated algal bio-oil over zeolite catalysts in supercritical water. Biochem Eng J 116:105–112

    Article  CAS  Google Scholar 

  • Elliott DC, Hart TR, Schmidt AJ, Neuenschwander GG, Rotness LJ, Olarte MV, Holladay JE (2013) Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Res 2:445–454

    Article  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    Article  CAS  PubMed  Google Scholar 

  • Galadima A, Muraza O (2018) Hydrothermal liquefaction of algae and bio-oil upgrading into liquid fuels: role of heterogeneous catalysts. Renew Sust Energ Rev 81:1037–1048

    Article  CAS  Google Scholar 

  • Garcia Alba L, Torri C, Samorì C, van der Spek J, Fabbri D, Kersten SR, Brilman DW (2011) Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuel 26:642–657

    Article  CAS  Google Scholar 

  • Gollakota ARK, Kishore N, Gu S (2018) A review on hydrothermal liquefaction of biomass. Renew Sust Energ Rev 81:1378–1392

    Article  Google Scholar 

  • Gong M, Nanda S, Hunter HN, Zhu W, Dalai AK, Kozinski JA (2017a) Lewis acid catalyzed gasification of humic acid in supercritical water. Catal Today 291:13–23

    Article  CAS  Google Scholar 

  • Gong M, Nanda S, Romero MJ, Zhu W, Kozinski JA (2017b) Subcritical and supercritical water gasification of humic acid as a model compound of humic substances in sewage sludge. J Supercrit Fluids 119:130–138

    Article  CAS  Google Scholar 

  • Guo Q, Wu M, Wang K, Zhang XX (2015) Catalytic hydrodeoxygenation of algae bio-oil over bimetallic Ni–Cu/ZrO2 catalysts. Ind Eng Chem Res 54:890–899

    Article  CAS  Google Scholar 

  • Hu X, Gunawan R, Mourant D, Lievens C, Li X, Zhang S, Li CZ (2012) Acid-catalysed reactions between methanol and the bio-oil from the fast pyrolysis of mallee bark. Fuel 97:512–522

    Article  CAS  Google Scholar 

  • Jena U, Das KC, Kastner JR (2012) Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis. Appl Energy 98:368–375

    Article  CAS  Google Scholar 

  • Jiang X, Ellis N (2009) Upgrading bio-oil through emulsification with biodiesel: mixture production. Energy Fuel 24:1358–1364

    Article  CAS  Google Scholar 

  • Konwar LJ, Boro J, Deka D (2014) Review on latest developments in biodiesel production using carbon-based catalysts. Renew Sust Energ Rev 29:546–564

    Article  CAS  Google Scholar 

  • Leng L, Li H, Yuan X, Zhou W, Huang H (2018) Bio-oil upgrading by emulsification/microemulsification: a review. Energy 161:214–232

    Article  CAS  Google Scholar 

  • Li Y, Wang T, Liang W, Wu C, Ma L, Zhang Q, Jiang T (2010) Ultrasonic preparation of emulsions derived from aqueous bio-oil fraction and 0# diesel and combustion characteristics in diesel generator. Energy Fuel 24:1987–1995

    Article  CAS  Google Scholar 

  • Liu R, Fei W, Shen C (2014) Influence of acetone addition on the physicochemical properties of bio-oils. J Energy Inst 87:127–133

    Article  CAS  Google Scholar 

  • Manayil JC, Inocencio CV, Lee AF, Wilson K (2016) Mesoporous sulfonic acid silicas for pyrolysis bio-oil upgrading via acetic acid esterification. Green Chem 18:1387–1394

    Article  CAS  Google Scholar 

  • Mohanty P, Nanda S, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J Anal Appl Pyrolysis 104:485–493

    Article  CAS  Google Scholar 

  • Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407:1–19

    Article  CAS  Google Scholar 

  • Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res 6:663–677

    Article  CAS  Google Scholar 

  • Nanda S, Dalai AK, Kozinski JA (2014a) Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion. Energ Sci Eng 2:138–148

    Article  CAS  Google Scholar 

  • Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK (2014b) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conv Biorefin 4:157–191

    Article  CAS  Google Scholar 

  • Nanda S, Azargohar R, Dalai AK, Kozinski JA (2015) An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew Sust Energ Rev 50:925–941

    Article  CAS  Google Scholar 

  • Nanda S, Dalai AK, Berruti F, Kozinski JA (2016a) Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valor 7:201–235

    Article  CAS  Google Scholar 

  • Nanda S, Dalai AK, Gökalp I, Kozinski JA (2016b) Valorization of horse manure through catalytic supercritical water gasification. Waste Manag 52:147–158

    Article  CAS  PubMed  Google Scholar 

  • Nanda S, Isen J, Dalai AK, Kozinski JA (2016c) Gasification of fruit wastes and agro-food residues in supercritical water. Energ Convers Manage 110:296–306

    Article  CAS  Google Scholar 

  • Nanda S, Kozinski JA, Dalai AK (2016d) Lignocellulosic biomass: a review of conversion technologies and fuel products. Curr Biochem Eng 3:24–36

    Article  CAS  Google Scholar 

  • Nanda S, Reddy SN, Dalai AK, Kozinski JA (2016e) Subcritical and supercritical water gasification of lignocellulosic biomass impregnated with nickel nanocatalyst for hydrogen production. Int J Hydrogen Energ 41:4907–4921

    Article  CAS  Google Scholar 

  • Nanda S, Reddy SN, Mitra SK, Kozinski JA (2016f) The progressive routes for carbon capture and sequestration. Energ Sci Eng 4:99–122

    Article  CAS  Google Scholar 

  • Nanda S, Golemi-Kotra D, McDermott JC, Dalai AK, Gökalp I, Kozinski JA (2017a) Fermentative production of butanol: perspectives on synthetic biology. New Biotechnol 37:210–221

    Article  CAS  Google Scholar 

  • Nanda S, Gong M, Hunter HN, Dalai AK, Gökalp I, Kozinski JA (2017b) An assessment of pinecone gasification in subcritical, near-critical and supercritical water. Fuel Process Technol 168:84–96

    Article  CAS  Google Scholar 

  • Nanda S, Rana R, Zheng Y, Kozinski JA, Dalai AK (2017c) Insights on pathways for hydrogen generation from ethanol. Sustain Energ Fuel 1:1232–1245

    Article  CAS  Google Scholar 

  • Nanda S, Rana R, Hunter HN, Fang Z, Dalai AK, Kozinski JA (2019) Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production. Chem Eng Sci 195:935–945

    Article  CAS  Google Scholar 

  • Oasmaa A, Kuoppala E, Selin JF, Gust S, Solantausta Y (2004) Fast pyrolysis of forestry residue and pine. 4. Improvement of the product quality by solvent addition. Energy Fuel 18:1578–1583

    Article  CAS  Google Scholar 

  • Okolie JA, Nanda S, Dalai AK, Kozinski JA (2019a) Optimization and modeling of process parameters during hydrothermal gasification of biomass model compounds to generate hydrogen-rich gas products. Int J Hydrogen Energ. https://doi.org/10.1016/j.ijhydene.2019.05.132

  • Okolie JA, Rana R, Nanda S, Dalai AK, Kozinski JA (2019b) Supercritical water gasification of biomass: a state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustain Energ Fuel 3:578–598

    Article  CAS  Google Scholar 

  • Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ Jr, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy Environ Sci 1:32–65

    Article  CAS  Google Scholar 

  • Pidtasang B, Udomsap P, Sukkasi S, Chollacoop N, Pattiya A (2013) Influence of alcohol addition on properties of bio-oil produced from fast pyrolysis of eucalyptus bark in a free-fall reactor. J Ind Eng Chem 19:1851–1857

    Article  CAS  Google Scholar 

  • Ramirez JA, Brown RJ, Rainey TJ (2015) A review of hydrothermal liquefaction bio-crude properties and prospects for upgrading to transportation fuels. Energies 8:6765–6794

    Article  CAS  Google Scholar 

  • Rana R, Nanda S, Kozinski JA, Dalai AK (2018) Investigating the applicability of Athabasca bitumen as a feedstock for hydrogen production through catalytic supercritical water gasification. J Environ Chem Eng 6:182–189

    Article  CAS  Google Scholar 

  • Reddy SN, Ding N, Nanda S, Dalai AK, Kozinski JA (2014a) Supercritical water gasification of biomass in diamond anvil cells and fluidized beds. Biofuels Bioprod Biorefin 8:728–737

    Article  CAS  Google Scholar 

  • Reddy SN, Nanda S, Dalai AK, Kozinski JA (2014b) Supercritical water gasification of biomass for hydrogen production. Int J Hydrogen Energ 39:6912–6926

    Article  CAS  Google Scholar 

  • Reddy SN, Nanda S, Hegde UG, Hicks MC, Kozinski JA (2015) Ignition of hydrothermal flames. RSC Adv 5:36404–36422

    Article  CAS  Google Scholar 

  • Reddy SN, Nanda S, Kozinski JA (2016) Supercritical water gasification of glycerol and methanol mixtures as model waste residues from biodiesel refinery. Chem Eng Res Des 113:17–27

    Article  CAS  Google Scholar 

  • Reddy SN, Nanda S, Hegde UG, Hicks MC, Kozinski JA (2017) Ignition of n-propanol–air hydrothermal flames during supercritical water oxidation. Proc Combust Inst 36:2503–2511

    Article  CAS  Google Scholar 

  • Reddy SN, Nanda S, Sarangi PK (2018) Applications of supercritical fluids for biodiesel production. In: Sarangi PK, Nanda S, Mohanty P (eds) Recent advancements in biofuels and bioenergy utilization. Springer Nature, Singapore, pp 261–284

    Chapter  Google Scholar 

  • Reddy SN, Nanda S, Kumar P, Hicks MC, Hegde UG, Kozinski JA (2019) Impacts of oxidant characteristics on the ignition of n-propanol-air hydrothermal flames in supercritical water. Combust Flame 203:46–55

    Article  CAS  Google Scholar 

  • Roussis SG, Cranford R, Sytkovetskiy N (2012) Thermal treatment of crude algae oils prepared under hydrothermal extraction conditions. Energy Fuel 26:5294–5299

    Article  CAS  Google Scholar 

  • Saber M, Nakhshiniev B, Yoshikawa K (2016) A review of production and upgrading of algal bio-oil. Renew Sust Energ Rev 58:918–930

    Article  CAS  Google Scholar 

  • Shuba ES, Kifle D (2018) Microalgae to biofuels: ‘promising’ alternative and renewable energy, review. Renew Sust Energ Rev 81:743–755

    Article  CAS  Google Scholar 

  • Singh R, Bhaskar T, Balagurumurthy B (2015) Effect of solvent on the hydrothermal liquefaction of macro algae Ulva fasciata. Process Saf Environ Prot 93:154–160

    Article  CAS  Google Scholar 

  • Tian C, Li B, Liu Z, Zhang Y, Lu H (2014) Hydrothermal liquefaction for algal biorefinery: a critical review. Renew Sust Energ Rev 38:933–950

    Article  CAS  Google Scholar 

  • Toor SS, Reddy H, Deng S, Hoffmann J, Spangsmark D, Madsen LB, Rosendahl LA (2013) Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions. Bioresour Technol 131:413–419

    Article  CAS  PubMed  Google Scholar 

  • Tran DT, Chang JS, Lee DJ (2017) Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes. Appl Energy 185:376–409

    Article  CAS  Google Scholar 

  • Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Jpn Pet Inst 48:251–259

    Article  CAS  Google Scholar 

  • Van HJW, Huijgen WJJ, López-Contreras AM (2014) Opportunities and challenges for seaweed in the biobased economy. Trends Biotechnol 32:231–233

    Article  CAS  Google Scholar 

  • Verma P, Sharma MP, Dwivedi G (2016) Impact of alcohol on biodiesel production and properties. Renew Sust Energ Rev 56:319–333

    Article  CAS  Google Scholar 

  • Wang XY, Guo ZG, Wang SR (2012) Emulsion fuels production between diesel and bio-oil middle fraction from molecular distillation. Adv Mater Res 534:151–155

    Article  CAS  Google Scholar 

  • Wildschut J, Mahfud FH, Venderbosch RH, Heeres HJ (2009) Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind Eng Chem Res 48:10324–10334

    Article  CAS  Google Scholar 

  • Xu Y, Wang Q, Hu X, Li C, Zhu X (2010) Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig. Energy 35:283–287

    Article  CAS  Google Scholar 

  • Xu D, Lin G, Guo S, Wang S, Guo Y, Jing Z (2018) Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: a critical review. Renew Sust Energ Rev 97:103–118

    Article  CAS  Google Scholar 

  • Yang L, Nazari L, Yuan Z, Corscadden K, Xu CC (2016) Hydrothermal liquefaction of spent coffee grounds in water medium for bio-oil production. Biomass Bioenergy 86:191–198

    Article  CAS  Google Scholar 

  • Yang W, Li X, Zhang D, Feng L (2017) Catalytic upgrading of bio-oil in hydrothermal liquefaction of algae major model components over liquid acids. Energ Convers Manage 154:336–343

    Article  CAS  Google Scholar 

  • Zhang L, Liu R, Yin R, Mei Y (2013) Upgrading of bio-oil from biomass fast pyrolysis in China: a review. Renew Sust Energ Rev 24:66–72

    Article  CAS  Google Scholar 

  • Zhang C, Duan P, Xu Y, Wang B, Wang F, Zhang L (2014) Catalytic upgrading of duckweed biocrude in subcritical water. Bioresour Technol 166:37–44

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Zhang L, Zhang S, Fu H, Chen J (2010) Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to bio-oil. Energy Fuel 24:4054–4061

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Dalai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masoumi, S., Borugadda, V.B., Dalai, A.K. (2020). Biocrude Oil Production via Hydrothermal Liquefaction of Algae and Upgradation Techniques to Liquid Transportation Fuels. In: Nanda, S., N. Vo, DV., Sarangi, P. (eds) Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals. Springer, Singapore. https://doi.org/10.1007/978-981-15-1804-1_11

Download citation

Publish with us

Policies and ethics