Skip to main content

Analytics and Big Data in the Health Domain

  • Chapter
  • First Online:
Artificial Intelligence in Healthcare

Part of the book series: Advanced Technologies and Societal Change ((ATSC))

Abstract

Image processing, speech recognition, object detection etc. are the huge number of areas that have big data and the powerful tool used for the analysis of big data can be deep learning technology. The recent area where this technology is introduced is healthcare management. We presented here deep learning for solving the problems and to overcome the challenges in the healthcare field. The encouraging results from surveys generated using deep learning will drag many researchers to use deep learning into the area of healthcare in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A review on the application of deep learning in system health management by Samir Khan, Takehisa Yairi, Department of Aeronautics and Astronautics, School of Engineering, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–8656, Japan

    Google Scholar 

  2. Ash, D., Gold, G., Seiver, A., Hayes-Roth, B.: Guaranteeing real-time response with limited resources. Artif. Intell. Med. 5(1), 49–66 (1993)

    Article  Google Scholar 

  3. Rao, P.S., Mohan, S., Chindam, V.: AI based on-board diagnostic and prognostic health management system. In Annual Conference of the Prognostics and Health Management Society (2015)

    Google Scholar 

  4. Spina, P.R., Torella, G., Venturini, M.: The use of expert systems for gas turbine diagnostics and maintenance. In Proceedings of ASME Turbo Expo 2002, Amsterdam, The Netherlands (2002)

    Google Scholar 

  5. Bajwa, A.R., Kulkarni, D.: “Engine data analysis using decision trees;” paper presented at the 36th Joint Propulsion Conference, 2000. AIAA 2000–3627, 64 (2000)

    Google Scholar 

  6. Yan, W.: Application of random forest to aircraft engine fault diagnosis. In Computational Engineering in Systems Applications, IMACS Multiconference on, IEEE, vol. 1, pp. 468–475 (2006)

    Google Scholar 

  7. Yang, B.S., Di, X., Han, T.: Random forests classifier for machine fault diagnosis. J. Mech. Sci. Technol. 22(9), 1716–1725 (2008)

    Article  Google Scholar 

  8. Muralidharan, V., Sugumaran, V.: A comparative study of Naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis. Appl. Soft Comput. 12(8), 2023–2029 (2012)

    Article  Google Scholar 

  9. Elangovan, M., Ramachandran, K.I., Sugumaran, V.: Studies on Bayes classifier for condition monitoring of single point carbide tipped tool based on statistical and histogram features. Expert Syst. Appl. 37(3), 2059–2065 (2010)

    Article  Google Scholar 

  10. Zhang, M.L., Peña, J.M., Robles, V.: Feature selection for multi-label naive Bayes classification. Inf. Sci. 179(19), 3218–3229 (2009)

    Article  MATH  Google Scholar 

  11. Kumar, H., Ranjit Kumar, T.A., Amarnath, M., Sugumaran, V.: Fault diagnosis of bearings through vibration signal using Bayes classifiers. Int. J. Comp. Aided Eng. Technol. 6(1), 14–28 (2014)

    Google Scholar 

  12. Ng, S.S., Xing, Y., Tsui, K.L.: A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Appl. Energy 118, 114–123 (2014)

    Article  Google Scholar 

  13. Hu, F., Hao, Q. (eds.): Intelligent sensor networks: the integration of sensor networks, signal processing and machine learning. CRC Press (2012)

    Google Scholar 

  14. Weber, P., Theilliol, D., Aubrun, C.: Component reliability in fault-diagnosis decision making based on dynamic Bayesian networks. Proc. Inst. Mech.Eng., Part O: J. Risk Reliab. 222(2), 161–172 (2008)

    Google Scholar 

  15. Zaidan, M.A., Harrison, R.F., Mills, A.R., Fleming, P.J.: Bayesian hierarchical models for aerospace gas turbine engine prognostics. Expert Syst. Appl. 42(1), 539–553 (2015)

    Article  Google Scholar 

  16. Fuertes, S., Picart, G., Tourneret, J.Y., Chaari, L., Ferrari, A., Richard, C.: Improving spacecraft health monitoring with automatic anomaly detection techniques. In 14th international conference on space operations, p. 2430 (2016)

    Google Scholar 

  17. O. Salem, A. Guerassimov, A. Mehaoua, A. Marcus, B. Furht, Anomaly detection in medical wireless sensor networks using SVM and linear regression models, in: E-Health and Telemedicine: Concepts, Methodologies, Tools, and Applications. Medical Information science reference (an imprint of IGI global), 2016.

    Google Scholar 

  18. Li, K., Zhang, Y.L., Li, Z.X.: Application research of Kalman filter and SVM applied to condition monitoring and fault diagnosis. Appl. Mechan. Mater. Trans. Tech. Public. 121, 268–272 (2012)

    Google Scholar 

  19. Jakubek, S., Strasser, T.: Fault-diagnosis using neural networks with ellipsoidal basis functions, pp. 3846–3851 (2012)

    Google Scholar 

  20. Kobayashi, T., Simon, D.L.: Hybrid neural-network genetic-algorithm technique for aircraft engine performance diagnostics. J. Propul. Power 21(4), 751–758 (2005)

    Article  Google Scholar 

  21. Marsland, S.: Novelty detection in learning systems. Neural Comput. Surveys 3(2), 157–195 (2003)

    Google Scholar 

  22. McDuff, R.J., Simpson, P.K., Gunning, D.: An investigation of neural networks for F-16 fault diagnosis. I. System description. In AUTOTESTCON’89. IEEE Automatic Testing Conference. The Systems Readiness Technology Conference. Automatic Testing in the Next Decade and the 21st Century. Conference Record, IEEE, pp. 351–357 (1989)

    Google Scholar 

  23. Zhang, S., Ganesan, R.: Multivariable trend analysis using neural networks for intelligent diagnostics of rotating machinery. J. Eng. Gas Turb. Power 119(2), 378–384 (1997)

    Article  Google Scholar 

  24. Soualhi, G., Clerc, H.: Razik, detection and diagnosis of faults in induction motor using an improved artificial ant clustering technique. IEEE Trans. Industr. Electron. 60(9), 4053–4062 (2013)

    Article  Google Scholar 

  25. Lei, Y., Han, D., Lin, J., He, Z.: Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mech. Syst. Signal Process. 38(1), 113–124 (2013)

    Article  Google Scholar 

  26. He, H., Caudell, T.P., Menicucci, D.F., Mammoli, A.A.: Application of adaptive resonance theory neural networks to monitor solar hot water systems and detect existing or developing faults. Sol. Energy 86(9), 2318–2333 (2012)

    Article  Google Scholar 

  27. Prabakaran, K., Kaushik, S., Mouleeshuwarapprabu, R., Singh, A.B.: Self-organizing map based fault detection and isolation scheme for pneumatic actuator. Int. J. Innov. Appl. Stud. 8(3), 1361 (2014)

    Google Scholar 

  28. Lacaille, J., Gouby, A., Bense, W., Rabenoro, T., Abdel-Sayed, M.: Turbofan engine monitoring with health state identification and remaining useful life anticipation. Int. J. Cond. Monitoring 5(2), 8–16 (2015)

    Article  Google Scholar 

  29. Tibaduiza, D.A., Mujica, L.E., Rodellar, J.: Damage classification in structural health monitoring using principal component analysis and self-organizing maps. Struct. Control Health Monit. 20(10), 1303–1316 (2013)

    Article  Google Scholar 

  30. Cho, J., Principe, J.C., Erdogmus, D., Motter, M.A.: Modeling and inverse controller design for an unmanned aerial vehicle based on the self-organizing map. IEEE Trans. Neural Netw. 17(2), 445–460 (2006)

    Article  Google Scholar 

  31. Yu, S.Z.: Hidden semi-Markov models. Artif. Intell. 174(2), 215–243 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhou, H., Chen, J., Dong, G., Wang, H., Yuan, H.: Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model. Mech. Syst. Signal Process. 66, 568–581 (2016)

    Article  Google Scholar 

  33. Frank Emmert-Streib, Zhen Yang, Han Feng, Shailesh Tripathi Matthias, Dehmer, An Introductory review of deep learning for prediction models with Big Data,Front. Artif. Intell. (28 February 2020)

    Google Scholar 

  34. S. Tao, T. Zhang, J. Yang, X. Wang, W. Lu, Bearing fault diagnosis method based on stacked autoencoder and softmax regression, in: Control Conference (CCC), 2015 34th Chinese, IEEE, 2015, pp. 6331 6335

    Google Scholar 

  35. Mao, W., He, J., Li, Y., Yan, Y.: Bearing fault diagnosis with autoencoder extreme learning machine: a comparative study. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 1–19 (2016)

    Google Scholar 

  36. Lu, W., Wang, X., Yang, C., Zhang, T.: A novel feature extraction method using deep neural networks for rolling bearing fault diagnosis. In Control and Decision Conference (CCDC), 2015 27th Chinese. IEEE, pp. 2427–2431 (2015)

    Google Scholar 

  37. Liu, H., Li, L., Ma, J.: Rolling bearing fault diagnosis based on stft-deep learning and sound signals, Shock Vib. vol. 2016 (2016)

    Google Scholar 

  38. Chen, Z., Li, W.: Multi-sensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network. In IEEE Transactions on IM, (2017)

    Google Scholar 

  39. Galloway, G., Catterson, V., Fay, T., Robb, A., Love, C.: Diagnosis of tidal turbine vibration data through deep neural networks. In Third European Conference of the Prognostics and Health Management Society (2016)

    Google Scholar 

  40. Thirukovalluru, R., Dixit, S., Sevakula, R., Verma, N., Salour, A.: Generating feature sets for fault diagnosis using denoising stacked auto-encoder. In Prognostics and Health Management (ICPHM), 2016 IEEE International Conference on. IEEE, pp. 1–7 (2016)

    Google Scholar 

  41. Lu, C., Wang, Z., Qin, W., Ma, J.: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification. Signal Process. 130, 377–388 (2017)

    Article  Google Scholar 

  42. Yan, W., Yu, L.: On accurate and reliable anomaly detection for gas turbine combustors: a deep learning approach, in: Proceedings of the Annual Conference of the Prognostics and Health Management Society (2015)

    Google Scholar 

  43. Yoon, A.S., Lee, T., Lim, Y., Jung, D., Kang, P., Kim, D., Choi, Y.: Semi-supervised Learning with Deep Generative Models for Asset Failure Prediction (2017). arXiv preprint arXiv:1709.00845

  44. Deutsch, J., He, D.: Using deep learning based approaches for bearing remaining useful life prediction. In Annual Conference of the Prognostics and Health Management Society (2016)

    Google Scholar 

  45. Liao, L., Jin, W., Pavel, R.: Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment. IEEE Trans. Industr. Electron. 63(11), 2016 (2016)

    Article  Google Scholar 

  46. Li, C., Sanchez, R., Zurita, G., Cerrada, M., Cabrera, D., Vasquez, R.: Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis. Neurocomputing 168, 119–127 (2015)

    Article  Google Scholar 

  47. Li, C., Sanchez, R., Zurita, G., Cerrada, M., Cabrera, D.: Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning. Sensors 16(6), 895 (2016)

    Google Scholar 

  48. Ma, M., Chen, X., Wang, S., Liu, Y., Li, W.: Bearing degradation assessment based on weibull distribution and deep belief network. In Proceedings of 2016 International Symposium of Flexible Automation (ISFA), pp. 1–4 (2016)

    Google Scholar 

  49. Shao, S., Sun, W., Wang, P., Gao, R., Yan, R.: Learning features from vibration signals for induction motor fault diagnosis. In Proceedings of 2016 International Symposium of Flexible Automation (ISFA), pp. 1–6 (2016)

    Google Scholar 

  50. Fu, Y., Zhang, Y., Qiao, H., Li, D., Zhou, H., Leopold, J.: Analysis of feature extracting ability for cutting state monitoring using deep belief networks. Proc. CIRP 31, 29–34 (2015)

    Article  Google Scholar 

  51. Lee, D., Siu, V., Cruz, R., Yetman, C.: Convolutional neural net and bearing fault analysis. In Proceedings of the International Conference on Data Mining (DMIN) (p. 194). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) (2016, January)

    Google Scholar 

  52. Ding, X., He, Q.: Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis. IEEE Transactions on IM (2017)

    Google Scholar 

  53. Guo, X., Chen, L., Shen, C.: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement 93, 490–502 (2016)

    Article  Google Scholar 

  54. Yuan, M., Wu, Y., Lin, L.: Fault diagnosis and remaining useful life estimation of aero engine using lstm neural network. In 2016 IEEE International Conference on Aircraft Utility Systems (AUS), pp. 135–140 (2016)

    Google Scholar 

  55. Gugulothu, N., TV, V., Malhotra, P., Vig, L., Agarwal, P., Shroff, G.: Predicting remaining useful life using time series embeddings based on recurrent neural networks (2017). arXiv preprint arXiv:1709.01073.

  56. Sun, W., Shao, S., Zhao, R., Yan, R., Zhang, X., Chen, X.: A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement 89, 171–178 (2016)

    Article  Google Scholar 

  57. Ahmed, H.O.A., Wong, M.L.D., Nandi, A.K.: Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features. Mech. Syst. Signal Process. 99, 459–477 (2018)

    Article  Google Scholar 

  58. https://www.frontiersin.org/articles/10.3389/frai.2020.00004/full#B137

  59. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160, 106–154 (1962). https://doi.org/10.1113/jphysiol.1962.sp006837

  60. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J Physiol (1959). https://doi.org/10.1113/jphysiol.1959.sp006308

  61. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J Physiol. 195, 215–243 (1968). doi: https://doi.org/10.1113/jphysiol.1968.sp008455. Ian Goodfellow, Bengio, Y., Courville, A.: Deep learning. Nat. Methods 13, 35 (2017). doi: https://doi.org/10.1038/nmeth.3707

  62. LeCun, Y., Boser, B., Denker, J.S., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput 1, 541–551 (1989)

    Article  Google Scholar 

  63. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In Advances in neural information processing systems, pp 2843–2851 (2012)

    Google Scholar 

  64. Deng, L., Yu, D., Delft, B.: Deep learning: methods and applications foundations and trends r in signal processing. Signal Proc. 7, 3–4 (2013). doi: https://doi.org/10.1561/2000000039

  65. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? BT - Computer Vision, 2009 IEEE 12th International Conference on. Comput Vision, pp. 2146–2153 (2009)

    Google Scholar 

  66. Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In Artificial Neural Networks--ICANN 2010. Springer, pp. 92–101 (2010)

    Google Scholar 

  67. Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., et al.: Deep learning applications and challenges in big data analytics. J Big Data 2, 1–21 (2015). https://doi.org/10.1186/s40537-014-0007-7

    Article  Google Scholar 

  68. Guo, Y., Liu, Y., Oerlemans, A., et al.: Deep learning for visual understanding: a review. Neurocomputing 187, 27–48 (2016). https://doi.org/10.1016/j.neucom.2015.09.116

    Article  Google Scholar 

  69. Laskar, M.N.U., Giraldo, L.G.S., Schwartz, O.: Correspondence of Deep Neural Networks and the Brain for Visual Textures, pp. 1–17 (2018)

    Google Scholar 

  70. Grill-Spector, K., Weiner, K.S., Gomez, J., et al.: The functional neuroanatomy of face perception: from brain measurements to deep neural networks. Interface Focus 8, 20180013 (2018). https://doi.org/10.1098/rsfs.2018.0013

    Article  Google Scholar 

  71. Bengio, Y.: Learning deep architectures for AI. Found Trends® Mach Learn 2, 1–127 (2009). doi: https://doi.org/10.1561/2200000006

  72. Ojala, T., PeitiKainen, M., Maenpã, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal ans Mach Intell (2002)

    Google Scholar 

  73. Yang, Q., Pan, S.J., Yang, Q., Fellow, Q.Y.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 1, 1–15 (2008). https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  74. Qureshi, A.S., Khan, A.: Adaptive transfer learning in deep neural networks: wind power prediction using knowledge transfer from region to region and between different task domains (2018). arXiv Prepr arXiv181012611

    Google Scholar 

  75. Qureshi, A.S., Khan, A., Zameer, A., Usman, A.: Wind power prediction using deep neural network based meta regression and transfer learning. Appl. Soft. Comput. J. 58, 742–755 (2017). https://doi.org/10.1016/j.asoc.2017.05.031

    Article  Google Scholar 

  76. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks (2013). arXiv Prepr arXiv13112901v3 30:225–231. doi: https://doi.org/10.1111/j.1475-4932.1954.tb03086.x

  77. Szegedy, C., Wei Liu, Yangqing Jia, et al.: Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 1–9 (2015)

    Google Scholar 

  78. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. Multimed Tools Appl 77, 10437–10453 (2015). https://doi.org/10.1007/s11042-017-4440-4

    Article  Google Scholar 

  79. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning (2016a). arXiv Prepr arXiv160207261v2 131:262–263. doi: https://doi.org/10.1007/s10236-015-0809-y

  80. Zagoruyko, S., Komodakis, N.: Wide residual networks. Proceedings Br Mach Vis Conf 2016 87.1–87.12 (2016). doi: https://doi.org/10.5244/C.30.87

  81. Wang, F., Jiang, M., Qian, C., et al. Residual attention network for image classification. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 6450–6458 (2017a)

    Google Scholar 

  82. Khan, A., Sohail, A., Ali, A.: A New Channel Boosted Convolutional Neural Network using Transfer Learning (2018a). arXiv Prepr arXiv180408528

    Google Scholar 

  83. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: Convolutional block attention module. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 11211 LNCS: 3–19 (2018). doi: https://doi.org/10.1007/978-3-030-01234-2_1

  84. Gu, J., Wang, Z., Kuen, J., et al.: Recent advances in convolutional neural networks. Pattern Recognit 77, 354–377 (2018). https://doi.org/10.1016/j.patcog.2017.10.013

    Article  Google Scholar 

  85. LeCun, Y., Kavukcuoglu, K., Farabet, C.C., others.: Convolutional networks and applications in vision. In: ISCAS. IEEE, pp. 253–256 (2010)

    Google Scholar 

  86. Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., et al.: Deep learning applications and challenges in big data analytics. J. Big Data 2, 1–21 (2015). doi: https://doi.org/10.1186/s40537-014-0007-7

  87. Srinivas, S., Sarvadevabhatla, R.K., Mopuri, K.R., et al.: A taxonomy of deep convolutional neural nets for computer vision. Front Robot AI 2, 1–13 (2016). https://doi.org/10.3389/frobt.2015.00036

    Article  Google Scholar 

  88. Liu, W., Wang, Z., Liu, X., et al.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017). https://doi.org/10.1016/j.neucom.2016.12.038

    Article  Google Scholar 

  89. Zhang, Q., Zhang, M., Chen, T., et al.: Recent advances in convolutional neural network acceleration. Neurocomputing 323, 37–51 (2019). https://doi.org/10.1016/j.neucom.2018.09.038

    Article  Google Scholar 

  90. LeCun, Y., Boser, B., Denker, J.S., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)

    Google Scholar 

  91. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962). doi: https://doi.org/10.1113/jphysiol.1962.sp006837

  92. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. (1959). doi: https://doi.org/10.1113/jphysiol.1959.sp006308

  93. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968). doi: https://doi.org/10.1113/jphysiol.1968.sp008455

  94. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  95. https://en.wikipedia.org/wiki/Brain_simulation

  96. Hebb, D.: The organization of behavior. Wiley, New York, NY (1949)

    Google Scholar 

  97. Rosenblatt, F.: The perceptron, a perceiving and recognizing automaton project para. Cornell Aeronautical Laboratory (1957)

    Google Scholar 

  98. Widrow, B., Hoff, M.E.: Adaptive switching circuits. Technical Report, Stanford University, California, Stanford Electronics Labs (1960)

    Book  Google Scholar 

  99. Ivakhnenko, A.G.: The group method of data of handling; a rival of the method of stochastic approximation. Soviet Autom. Control 13, 43–55 (1968)

    Google Scholar 

  100. Minsky, M., Papert, S.: Perceptrons. MIT Press (1969)

    MATH  Google Scholar 

  101. Werbos, P.: Beyond regression: new tools for prediction and analysis in the behavioral sciences (Ph.D. thesis), Harvard University, Harvard, MA, United States (1974)

    Google Scholar 

  102. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybernet. 36, 193–202 (1980)

    Article  MATH  Google Scholar 

  103. Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  104. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  MATH  Google Scholar 

  105. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)

    Article  Google Scholar 

  106. Hochreiter, S.: Untersuchungen zu Dynamischen Neuronalen Netzen, p. 91. Technische Universität München, Diploma (1991)

    Google Scholar 

  107. Schmidhuber, J.: Learning complex, extended sequences using the principle of history compression. Neural Comput. 4, 234–242 (1992)

    Article  Google Scholar 

  108. Wang, D., Terman, D.: Locally excitatory globally inhibitory oscillator networks. IEEE Trans. Neural Netw. 6, 283–286 (1995)

    Article  Google Scholar 

  109. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  110. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006). https://doi.org/10.1126/science.1127647

    Article  MathSciNet  MATH  Google Scholar 

  111. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep Convolutional Neural Networks. Curran Associates, Inc. (2012a)

    Google Scholar 

  112. Le Cun, Y.: Generalization and network design strategies. Technical report CRG-TR-89–4, Connectionism in perspective. University of Toronto Connectionist Research Group, Toronto, ON (1989)

    Google Scholar 

  113. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balodi, A., Mangla, N., Hombalimath, A., Manjula, H.T. (2022). Analytics and Big Data in the Health Domain. In: Garg, L., Basterrech, S., Banerjee, C., Sharma, T.K. (eds) Artificial Intelligence in Healthcare. Advanced Technologies and Societal Change. Springer, Singapore. https://doi.org/10.1007/978-981-16-6265-2_6

Download citation

Publish with us

Policies and ethics