Skip to main content

Applications of Swarm Intelligent and Deep Learning Algorithms for Image-Based Cancer Recognition

  • Chapter
  • First Online:
Artificial Intelligence in Healthcare

Part of the book series: Advanced Technologies and Societal Change ((ATSC))

Abstract

In this book chapter, the authors aim to deliver in-depth details about the applications of deep learning and swarm intelligent algorithms for image-based cancer recognition and diagnosis. In this study, we first describe the overview of popular architectures of deep learning and swarm intelligent algorithms used for cancer recognition. In deep learning, we talk about convolutional neural networks, fully connected convolutional networks, and auto-encoders. In swarm intelligent algorithms, we talk about architecture of genetic algorithms. Secondly, this study presents a brief survey about the research exploiting deep learning and swarm intelligent algorithms for cancer recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramasubramaniam, K., Singh, A.: Machine learning using R. second ed. Acta Press (2018)

    Google Scholar 

  2. Haenssle, H.A., Fink, C., Schneiderbauera, R., Toberer, F., Buhl, T., Blum, A., Kalloo, A., Hassen, A.B.H., Thomas, L., Enk, A., Uhlmann, L.: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 derma- tologists. Ann. Oncol. 1836–42 (2018). https://doi.org/10.1093/annonc/mdy166

  3. Dorj, U.-O., Lee, K.-K., Choi, J.-Y., Lee1, M.: The skin cancer classification using deep convolutional neural network. Multimedia Tools and Applica- tions pp. 9909–24 (2018). https://doi.org/10.1007/s11042-018-5714-1

  4. Marks, R.: Epidemiology of melanoma, clinical and experimental dermatology. Clin. Dermatol. 459–63 (2000). https://doi.org/10.1046/j.1365-2230.2000.00693.x

  5. Fass, L.: Imaging and cancer: a review. Mol. Oncol. 2, 115–152 (2008)

    Article  Google Scholar 

  6. Doi, K.: Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 31, 198–211 (2007)

    Article  Google Scholar 

  7. IrfanView. [link]. https://www.irfanview.net/

  8. Tushar Bhardwaj, Sharma, S.C.: An autonomic resource provisioning framework for efficient data collection in cloudlet-enabled wireless body area networks: a fuzzy-based proactive approach, Soft Computing (2018)

    Google Scholar 

  9. Tushar Bhardwaj, S.C. Sharma.: Fuzzy logic-based elasticity controller for autonomic resource provisioning in parallel scientific applications: a cloud computing perspective. Comput. Elect. Eng. 70, 1049–1073 (2018)

    Google Scholar 

  10. Tushar Bhardwaj, S.C.Sharma.: Cloud-WBAN: an experimental framework for cloud-enabled wireless body area network with efficient virtual resource utilization. Sustain. Comput. Inform. Syst. 20, 14–33 (2018)

    Google Scholar 

  11. Bhanot, K., Peddoju, S.K., Tushar Bhardwaj.: A model to find optimal percentage of training and testing data for efficient ECG analysis using neural network. Int. J. Syst. Assur. Eng. Manag. (2015). doi: https://doi.org/10.1007/s13198-015-0398-7

  12. Yin, F.F., Giger, M.L., Vyborny, C.J., Schmidt, R.A.: Computerized detection of masses in digital mammograms: automated alignment of breast images and its effect on bilateral-subtraction technique. Med. Phys. 21, 445–452 (1994)

    Article  Google Scholar 

  13. Beller, M., Stotzka, R., Müller, T., Gemmeke, H.: An example-based system to support the segmentation of stellate lesions. Bildverarb. Med. 2005, 475–479 (2005)

    Google Scholar 

  14. te Brake, G.M., Karssemeijer, N., Hendriks, J.H.: An automatic method to discriminate malignant masses from normal tissue in digital mammograms1. Phys. Med. Biol. 45, 2843 (2000)

    Google Scholar 

  15. Eltonsy, N.H., Tourassi, G.D., Elmaghraby, A.S.: A concentric morphology model for the detection of masses in mammography. IEEE Trans. Med. Imag. 26, 880–889 (2007)

    Article  Google Scholar 

  16. Wei, J., Sahiner, B., Hadjiiski, L.M., Chan, H.P., Petrick, N., Helvie, M.A., Roubidoux, M.A., Ge, J., Zhou, C.: Computer-aided detection of breast masses on full field digital mammograms. Med. Phys. 32, 2827–2838 (2005)

    Article  Google Scholar 

  17. Tushar Bhardwaj, Pandit, M.R., Sharma, T.K.: “A Safer Cloud”, Data Isolation and Security by Tus-Man Protocol. Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28–30, 2012. Advances in Intelligent Systems and Computing, vol 236. Springer, New Delhi (2014)

    Google Scholar 

  18. Hawkins, S.H., Korecki, J.N., Balagurunathan, Y., Gu, Y., Kumar, V., Basu, S., Hall, L.O., Goldgof, D.B., Gatenby, R.A., Gillies, R.J.: Predicting outcomes of nonsmall cell lung cancer using CT image features. IEEE Access 2, 1418–1426 (2014)

    Article  Google Scholar 

  19. Kavitha Kadarla, S.C. Sharma, Tushar Bhardwaj, Ajay Chaudhary.: A simulation study of response times in cloud environment for iot-based healthcare workloads. 14th IEEE International Conference on Mobile Ad Hoc and Sensor Systems (MASS-2017), vol. 00, pp. 678–683 (2017). doi:https://doi.org/10.1109/MASS.2017.65

  20. Aerts, H.J., Velazquez, E.R., Leijenaar, R.T., Parmar, C., Grossmann, P., Cavalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D.: Decoding tumour phe- notype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 1–8 4006 (2014)

    Google Scholar 

  21. Balagurunathan, Y., Gu, Y., Wang, H., Kumar, V., Grove, O., Hawkins, S., Kim, J., Goldgof, D.B., Hall, L.O., Gatenby, R.A.: Reproducibility and prognosis of quantitative features extracted from CT images, Transl. Oncol. 7, 72–87 (2014)

    Google Scholar 

  22. Tushar Bhardwaj, Himanshu Upadhyay, Subhash Chander Sharma.: Autonomic resource provisioning framework for service-based cloud applications: a queuing- model based approach. IEEE 10th International Conference on Cloud Computing, Data Science & Engineering (CONFLUENCE-2020). 29th−31st Jan 2020, India

    Google Scholar 

  23. Han, F., Wang, H., Zhang, G., Han, H., Song, B., Li, L., Moore, W., Lu, H., Zhao, H., Liang, Z.: Texture feature analysis for computer-aided diagnosis on pulmonary nodules. J. Digit. Imaging 28, 99–115 (2015)

    Article  Google Scholar 

  24. Pandit, M.R., Tushar Bhardwaj, Khatri, V.: Steps towards web ubiquitous computing. Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28–30, 2012. Advances in Intelligent Systems and Computing, vol. 236. Springer, New Delhi (2014)

    Google Scholar 

  25. Barata, C., Marques, J.S., Celebi, M.E.: Improving dermoscopy image analysis using color constancy. Proceedings of 2014 IEEE International Conference on Image Processing (ICIP), pp. 3527–3531 (2014)

    Google Scholar 

  26. Barata, C., Marques, J.S., Rozeira, J.: A system for the detection of pigment network in dermoscopy images using directional filters. IEEE Trans. Biomed. Eng. 59, 2744–2754 (2012)

    Article  Google Scholar 

  27. Tushar Bhardwaj, S.C.Sharma.: An efficient elasticity mechanism for server-based pervasive healthcare applications in cloud environment. 19th IEEE International Conference on High Performance Computing and Communications Workshops (HPCCWS 2017), Bangkok, Thailand

    Google Scholar 

  28. Bi, W.L., Hosny, A., Schabath, M.B., Giger, M.L., Birkbak, N.J., Mehrtash, A., Allison, T., Arnaout, O., Abbosh, C., Dunn, I.F., Mak, R.H.: Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J. Clinic. 69(2), 127–157 (2019)

    Google Scholar 

  29. Barata, C., Ruela, M., Mendonça, T., Marques, J.S.: A bag-of-features approach for the classification of melanomas in dermoscopy images: the role of color and texture descriptors. In Computer Vision Techniques For the Diagnosis of Skin Cancer, Springer, pp. 49–69 (2014)

    Google Scholar 

  30. Tushar Bhardwaj, Himanshu Upadhyay, Subhash Chander Sharma.: Framework for quality ranking of components in cloud computing: regressive rank. IEEE 10th International Conference on Cloud Computing, Data Science & Engineering (CONFLUENCE-2020). 29th−31st Jan 2020, India

    Google Scholar 

  31. Sadeghi, M., Lee, T.K., McLean, D., Lui, H., Atkins, M.S.: Detection and analysis of irregular streaks in dermoscopic images of skin lesions. IEEE Trans. Med. Imaging 32, 849–861 (2013)

    Article  Google Scholar 

  32. Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shotton, J., Thomas, O.M., Das, T., Jena, R., Price, S.J.: Decision forests for tissue-specific seg- mentation of high-grade gliomas in multi-channel MR. In Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, pp. 369–376 (2012)

    Google Scholar 

  33. Tushar Bhardwaj, Himanshu Upadhyay, Subhash Chander Sharma.: Autonomic resource allocation mechanism for service-based cloud applications. IEEE International Conference on Computing, Communication, and Intelligent Systems (ICCCIS-2019). 18th−19th Oct 2019, India

    Google Scholar 

  34. Meier, R., Bauer, S., Slotboom, J., Wiest, R., Reyes, M.: A hybrid model for multi-modal brain tumor segmentation, Multimod. Brain Tumor Segm. 31 (2013)

    Google Scholar 

  35. Pinto, S., Pereira, H., Correia, J., Oliveira, D.M., Rasteiro, C.A.: Silva, Brain tumour segmentation based on extremely randomized forest with high-level features. Proceedings of the 37th Annual International Conference on IEEE Engineering in Medicine and Biology Society (EMBC, 2015), pp. 3037–3040

    Google Scholar 

  36. Tushar Bhardwaj, Himanshu Upadhyay, Subhash Chander Sharma.: An Autonomic Resource Allocation Framework for Service-based Cloud Applications: A Proactive Approach. 4th International Conference on Soft Computing: Theories and Applications (SoCTA - 2019). Advances in Intelligent Systems and Computing (AISC) Springer. Scopus Indexed. 27th−29th Dec 2019, India

    Google Scholar 

  37. Tustison, N.J., Shrinidhi, K., Wintermark, M., Durst, C.R., Kandel, B.M., Gee, J.C., Grossman, M.C., Avants, B.B.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13, 209–225 (2015)

    Article  Google Scholar 

  38. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)

    Article  Google Scholar 

  39. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–4 4 4 (2015)

    Google Scholar 

  40. Sharif, M., Amin, J., Raza, M., Yasmin, M., Satapathy, S.C.: An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recogn. Lett. 129, 150–157 (2020)

    Article  Google Scholar 

  41. Chithambaram, T., Perumal, K.: Brain Tumor Segmentation using Genetic Algorithm and ANN Techniques. IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI-2017) (2017)

    Google Scholar 

  42. Chakraborty Amrita, Kar, A.K.: Swarm Intelligence: A Review of Algorithms. In Nature-Inspired Computing and Optimization: Theory and Applications (ed. Patnaik Srikanta and Yang, X.-S. and N. K.) 475–494 (Springer International Publishing, 2017). doi:https://doi.org/10.1007/978-3-319-50920-4_19

  43. Tushar Bhardwaj.: End-to-End Data Security for Multi-Tenant Cloud Environment. J. Comput. Technol. Applic. ISSN: 2229–6964, (2014)

    Google Scholar 

  44. Tushar Bhardwaj, Mohit Kumar, S.C.Sharma.: Megh: a private cloud provisioning various IaaS and SaaS. Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol. 584. Springer, Singapore (2016)

    Google Scholar 

  45. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network (2015). arXiv preprint arXiv:1505.00853

  46. Particle swarm optimization. en.wikipedia.org at https://en.wikipedia.org/wiki/Particle_swarm_optimization

  47. Tushar Bhardwaj, Sharma T.K., Pandit M.R.: Social Engineering Prevention by Detecting Malicious URLs Using Artificial Bee Colony Algorithm. Proceedings of the Third International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 258. Springer, New Delhi (2014)

    Google Scholar 

  48. Tarun Kumar Sharma, Millie Pant, Tushar Bhardwaj. PSO Ingrained Artificial Bee Colony Algorithm for Solving Continuous Optimization Problems. In Proceedings of IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE 2011), Malaysia, pp. 108–112

    Google Scholar 

  49. Introduction to Particle Swarm Optimization. mnemstudio.org. at http://www.mnemstudio.org/particle-swarm-introduction.htm

  50. Genetic algorithm. en.wikipedia.org at https://en.wikipedia.org/wiki/Genetic_algorithm

  51. Bridge, D.: Genetic Algorithms at http://www.cs.ucc.ie/~dgb/courses/tai/notes/handout12.pdf

  52. Ant colony optimization algorithms. en.wikipedia.org at https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms

  53. Tushar Bhardwaj, S.C.Sharma.: Internet of Things: route search optimization applying ant colony algorithm and theory of computation. Proceedings of Fourth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol. 335. Springer, New Delhi (2015)

    Google Scholar 

  54. Binti Saidin, N. F. et al.: Using ant colony optimization (ACO) on kinetic modeling of the acetoin production in lactococcus lactis C7. Stud. Comput. Intell. 477, 25–35 (2013)

    Google Scholar 

  55. Saha, S.: A comprehensive guide to convolutional neural networks — the ELI5 way. Medium (2018). at https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

  56. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  57. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic seg- mentation. Proceedings of the IEEE International Conference on Computer Vi- sion, 1520–1528 (2015)

    Google Scholar 

  58. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In Proceedings of European Conference on Computer Vision, Springer, pp. 184–199 (2014)

    Google Scholar 

  59. Jain, V., Seung, S.: Natural image denoising with convolutional networks. Adv. Neural Inf. Process. Syst. 21, 769–776 (2009)

    Google Scholar 

  60. What is a fully convolution network?. Artificial Intelligence Stack Exchange. at https://ai.stackexchange.com/questions/21810/what-is-a-fully-convolution-network

  61. Bishop, C.M.: Neural Networks For Pattern Recognition, Oxford University Press (1995)

    Google Scholar 

  62. Ng, Sparse autoencoder, CS294A Lect. Notes 72, 1–19 (2011)

    Google Scholar 

  63. Autoencoder Tutorial. edureka.co at https://www.edureka.co/blog/autoencoders-tutorial/

  64. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240–1251 (2016)

    Article  Google Scholar 

  65. Gao, X.W., Hui, R., Tian, Z.: Classification of CT brain images based on deep learning networks. Comput. Methods Programs Biomed. 138, 49–56 (2017)

    Article  Google Scholar 

  66. Kamble, T., Rane, P.: Brain Tumor segmentation using swarm intelligence approach. Intern. J. Sci. Eng. Res. 4 (2013)

    Google Scholar 

  67. Zhao, X., Wu, Y., Song, G., Li, Z., Zhang, Y., Fan, Y.: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018)

    Article  Google Scholar 

  68. Wang, L.: Early diagnosis of breast cancer. Sensors (Switzerland) 17, (2017)

    Google Scholar 

  69. Chen, H.L., et al.: Support vector machine based diagnostic system for breast cancer using swarm intelligence. J. Med. Syst. 36, 2505–2519 (2012)

    Article  Google Scholar 

  70. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopathological image classification using Convolutional Neural Networks. 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, pp. 2560–2567 (2016). Doi: https://doi.org/10.1109/IJCNN.2016.7727519

  71. Zamani, H., Nadimi-Shahraki, M.-H.: Swarm intelligence approach for breast cancer diagnosis. Intern. J. Comput. Applic. 151(1), 40–44 (2016). https://doi.org/10.5120/ijca2016911667

    Article  Google Scholar 

  72. Machraoui, A.N., Cherni, M.A., Sayadi, M.: Ant colony optimization algorithm for breast cancer cells classification. In International Conference on Electrical Engineering and Software Applications, ICEESA 2013 (2013). doi:https://doi.org/10.1109/ICEESA.2013.6578445

  73. Velusamy, P., Karantharaj, P., Prabakar, S.: New scheme for breast cancer detection and staging using ant colony algorithm. Int. J. Biomed. Eng. Technol. 27, 86 (2018)

    Article  Google Scholar 

  74. Tan, T.Y., Zhang, L., Lim, C.P.: Intelligent skin cancer diagnosis using improved particle swarm optimization and deep learning models. Appl. Soft Comput. J. 84 (2019)

    Google Scholar 

  75. Mahbod, R., Ecker, I.: Ellinger, skin lesion classification using hybrid deep neural networks. (2017). arXiv preprint arXiv:1702.08434

  76. Sabouri, P., GholamHosseini, H.: Lesion border detection using deep learning. 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, pp. 1416−1421 (2016). doi: https://doi.org/10.1109/CEC.2016.7743955

  77. Aswin, R.B., Jaleel, J.A., Salim, S.: Hybrid genetic algorithm—artificial neural network classifier for skin cancer detection. In 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies, ICCICCT 2014 1304–1309 (Institute of Electrical and Electronics Engineers Inc., 2014). doi:https://doi.org/10.1109/ICCICCT.2014.6993162

  78. Zghal, N.S., Kallel, I.K.: An effective approach for the diagnosis of melanoma using the sparse auto-encoder for features detection and the SVM for classification. In 2020 International Conference on Advanced Technologies for Signal and Image Processing, ATSIP 2020 (Institute of Electrical and Electronics Engineers Inc., 2020). doi:https://doi.org/10.1109/ATSIP49331.2020.9231611

  79. Asuntha, A., Singh, N., Srinivasan, A., Professor, A.: PSO, Genetic Optimization and SVM Algorithm used for Lung Cancer Detection. Available online www.jocpr.com J. Chem. Pharmac. Res. 8, 351–359 (2016)

  80. Dou, Q., Chen, H., Yu, L., Qin, J., Heng, P.-A.: Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Trans. Biomed. Eng. 64, 1558–1567 (2017)

    Article  Google Scholar 

  81. Al-Hegami, A., Bin-Ghodel, A.: A particle swarm based approach for classification of cancer based on CT scan. Int. J. Comput. Applic. 178 (2019)

    Google Scholar 

  82. Hussein, S., Gillies, R., Cao, K., Song, Q., Bagci, U.: TumorNet: lung nodule characterization using multi-view convolutional neural network with gaussian process. In Proceedings of IEEE 14th International Symposium on Biomedical Imaging (ISBI), pp. 1007–1010 (2017)

    Google Scholar 

  83. Best, M.G., et al.: Swarm intelligence-enhanced detection of non-small-cell lung cancer using Tumor-educated platelets. Cancer Cell 32, 238-252.e9 (2017)

    Article  Google Scholar 

  84. Thangavel, K., Manavalan, R.: Soft computing models based feature selection for TRUS prostate cancer image classification. Soft. Comput. 18, 1165–1176 (2014)

    Article  Google Scholar 

  85. Abbasi, A.A., et al.: Detecting prostate cancer using deep learning convolution neural network with transfer learning approach. Cogn. Neurodyn. 14, 523–533 (2020)

    Article  Google Scholar 

  86. Hou, Q., et al.: RankProd combined with genetic algorithm optimized artificial neural network establishes a diagnostic and prognostic prediction model that revealed C1QTNF3 as a biomarker for prostate cancer. EBioMedicine 32, 234–244 (2018)

    Article  Google Scholar 

  87. Wang, Y., Zheng, B., Gao, D., Wang, J.: Fully convolutional neural networks for prostate cancer detection using multi-parametric magnetic resonance images: an initial investigation. 24th International Conference on Pattern Recognition (ICPR) (2018). doi:https://doi.org/10.0/Linux-x86_64

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhardwaj, T., Mittal, R., Upadhyay, H., Lagos, L. (2022). Applications of Swarm Intelligent and Deep Learning Algorithms for Image-Based Cancer Recognition. In: Garg, L., Basterrech, S., Banerjee, C., Sharma, T.K. (eds) Artificial Intelligence in Healthcare. Advanced Technologies and Societal Change. Springer, Singapore. https://doi.org/10.1007/978-981-16-6265-2_9

Download citation

Publish with us

Policies and ethics