Skip to main content
Log in

Microalgae as sources of pharmaceuticals and other biologically active compounds

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In the last decade the screening of microalgae, especially the cyanobacteria (blue-green algae), for antibiotics and pharmacologically active compounds has received ever increasing interest. A large number of antibiotic compounds, many with novel structures, have been isolated and characterised. Similarly many cyanobacteria have been shown to produce antiviral and antineoplastic compounds. A range of pharmacological activities have also been observed with extracts of microalgae, however the active principles are as yet unknown in most cases. Several of the bioactive compounds may find application in human or veterinary medicine or in agriculture. Others should find application as research tools or as structural models for the development of new drugs. The microalgae are particularly attractive as natural sources of bioactive molecules since these algae have the potential to produce these compounds in culture which enables the production of structurally complex molecules which are difficult or impossible to produce by chemical synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong JE, Janda KE, Alvarado B, Wright AE (1991) Cytotoxin production by a marine Lyngbya strain (cyanobacterium) in a large-scale laboratory bioreactor. J. appl. Phycol. 3: 277–282.

    CAS  Google Scholar 

  • Bagchi SN, Palod A, Chauhan VS (1990) Algicidal properties of a bloom-forming blue-green alga, Oscillatoria sp. J. bas. Microbiol. 30: 21–29.

    Google Scholar 

  • Baker JT (1984) Seaweeds in pharmaceutical studies and applications. Hydrobiologia 116/117: 29–40.

    Article  Google Scholar 

  • Barchi JJ, Moore RE, Furusawa E, Patterson GML (1983) Identification of cytotoxin from Tolypothrix byssoidea as tubercidin. Phytochem. 22: 2851–2852.

    Article  CAS  Google Scholar 

  • Barchi JJ, Moore RE, Patterson GML (1984) Acutiphycin and 20,21-didehydroacutiphycin, new antineoplastic agents from the cyanophyte Oscillatoria acutissima. J. am. Chem. Soc. 106: 8193–8197.

    Article  CAS  Google Scholar 

  • Bates SS, Defreitas ASW, Milley JE, Pocklington R, Quilliam MA, Smith JC, Worms J (1991) Controls on domoic acid production by the diatom Nitzschia pungens f multiseries in culture — nutrients and irradiance. Can. J. Fish. aquat. Sci. 48: 1136–1144.

    CAS  Google Scholar 

  • Bates SS, Worms J, Smith JC (1993) Effects of ammonium and nitrate on growth and domoic acid production by Nitschia pungens in batch culture. Can. J. Fish. aquat. Sci. 50: 1248–1254.

    CAS  Google Scholar 

  • Berdy J (1989) The discovery of new bioactive microbial metabolites: Screening and identification. In Bushell ME (ed.), Bioactive Metabolites from Microorganisms. Elsevier, Amsterdam, 3–25.

    Google Scholar 

  • Berland BR, Bonin DJ, Cornu AL (1972) The antibacterial substances of the marine alga Stichochrysis immobilis (Chrysophyta). J. Phycol. 8: 383–392.

    Article  CAS  Google Scholar 

  • Bloor S, England RR (1991) Elucidation and optimization of the medium constituents controlling antibiotic production by the cyanobacterium Nostoc muscorum. Enzyme Microb. Technol. 13: 76–81.

    Article  PubMed  CAS  Google Scholar 

  • Bonjouklian R, Smitka TA, Doolin LE, Molloy RM, Debono M, Shaffer SA, Moore RE, Stewart JB, Patterson GML (1991) Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis. Tetrahedron 47: 7739–7750.

    Article  CAS  Google Scholar 

  • Borowitzka LJ, Borowitzka MA (1989a) β-Carotene (Provitamin A) production with algae. In Vandamme EJ (ed.), Biotechnology of Vitamins, Pigments and Growth Factors. Elsevier Applied Science, London, 15–26.

    Google Scholar 

  • Borowitzka LJ, Borowitzka MA (1989b) Industrial production: methods and economics. In Cresswell RC, Rees TAV, Shah N (eds), Algal and Cyanobacterial Biotechnology. Longman Scientific, London, 294–316.

    Google Scholar 

  • Borowitzka MA (1988a) Vitamins and fine chemicals. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge University Press, Cambridge, 153–196.

    Google Scholar 

  • Borowitzka MA (1988b) Microalgae as sources of essential fatty acids. Aust. J. Biotechnol. 1: 58–62.

    CAS  Google Scholar 

  • Borowitzka MA (1992) Algal biotechnology products and processes: Matching science and economics. J. appl. Phycol. 4: 267–279.

    Article  Google Scholar 

  • Burkiewicz K (1987) Active substances in the media after algae cultivation. Acta Physiol. Plant. 9: 211–217.

    CAS  Google Scholar 

  • Carmeli S, Moore RE, Patterson GML (1990) Tolytoxin and new scytophycins from three species of Scytonema. Lloydia 55: 1533–1542.

    Google Scholar 

  • Carmichael WW (1986) Algal toxins. Adv. Bot. Res. 6: 47–101.

    Article  Google Scholar 

  • Carmichael WW (1992) A review: Cyanobacteria secondary metabolites — the cyanotoxins. J. appl. Bact. 72: 445–459.

    CAS  Google Scholar 

  • Chauhan VS, Marwah JB, Bagchi SN (1992) Effect of an antibiotic from Oscillatoria sp on phytoplankters, higher plants and mice. New Phytol. 120: 251–257.

    Article  CAS  Google Scholar 

  • Chen DZX, Boland MP, Smillie MA, Klix H, Ptak C, Andersen RJ, Holmes CFB (1993) Identification of protein phosphatase inhibitors of the microcystin class in the marine environment. Toxicon 31: 1407–1414.

    Article  PubMed  CAS  Google Scholar 

  • Chetsumon A, Fujieda K, Hirata K, Yagi K, Miura Y (1993a) Optimization of antibiotic production by the cyanobacterium Scytonema sp. TISTR 8208 immobilized on polyurethane foam. J. appl. Phycol. 5: 615–622.

    Article  CAS  Google Scholar 

  • Chetsumon A, Miyamoto K, Hirata K, Miura Y, Ikuta Y, Hamasaki A (1993b) Factors affecting antibiotic production in bioreactors with immobilized algal cells. Appl. Biochem. Biotechnol. 39: 573–586.

    Google Scholar 

  • Chrismadha T, Borowitzka MA (1994) Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. J. appl. Phycol. 6: 67–74.

    Article  Google Scholar 

  • Cohen Z, Cohen S (1991) Preparation of eicosapentaenoic acid (EPA) concentrate from Porphyridium cruentum. JAOCS 68: 16–19.

    CAS  Google Scholar 

  • Craig R, Reichelt BY, Reichelt JL (1988) Genetic engineering of micro-algae. In Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge University Press, Cambridge, 415–455.

    Google Scholar 

  • Davison A, Rousseau E, Dunn B (1993) Putative anticarcinogenic actions of carotenoids-nutritional implications. Can. J. Physiol. Pharmacol. 71: 732–745.

    PubMed  CAS  Google Scholar 

  • Dehro LH, Ward HB (1979) Antibacterial activity of freshwater green algae. Planta Med. 36: 375–378.

    Google Scholar 

  • De Cano MMS, De Mulé MCZ, De Caire GZ, De Halperin DR (1990) Inhibition of Candida albicans and Staphylococcus aureus by phenolic compounds from the terrestrial cyanobacterium Nostoc muscorum. J. appl. Phycol. 2: 79–81.

    Article  Google Scholar 

  • deSilva ED, Williams DE, Andersen RJ, Klix H, Holmes CFB, Allen TM (1992) Mutoporin, a potent protein phosphatase inhibitor isolated from the Papua New Guinea sponge Theonella swinhoei Gray. Tet. Lett. 33: 1561–1564.

    Article  Google Scholar 

  • DiNovi M, Trainor DA, Nakanishi K, Sanduja R, Alam M (1983) The structure of PB-1, an unusual toxin isolated from the red tide dinoflagellate Ptychodiscus brevis. Tet. Lett. 24: 855–858.

    Article  CAS  Google Scholar 

  • Douglas DJ, Bates SS (1992) Production of domoic acid, a neurotoxic amino acid, by an axenic culture of the marine diatom Nitzschia pungens f. multiseries Hasle. Can. J. Fish. aquat. Sci. 49: 85–90.

    Article  CAS  Google Scholar 

  • Duff DCB, Bruce DL, Antia NJ (1966) The antibacterial activity of marine planktonic algae. Can. J. Microbiol. 12: 877–884.

    PubMed  CAS  Google Scholar 

  • Dunahay TG, Jarvis EE, Zeiler KG, Roessler PG, Brown LM (1992) Genetic engineering of microalgae for fuel production — scientific note. Appl. Biochem. Biotechnol. 34/35: 331–339.

    Google Scholar 

  • Faulkner DJ, He HH, Unson MD, Bewley CA (1993) New metabolites from marine sponges: Are symbionts important? Gaz. Chim. Ital. 123: 301–307.

    CAS  Google Scholar 

  • Fenical W (1993) Chemical studies of marine bacteria: Developing a new resource. Chem. Rev. 93: 1673–1683.

    Article  CAS  Google Scholar 

  • Findlay JA, Patil AD (1984) Antibacterial constituents of the diatom Navicula delognei. Lloydia 47: 815–818.

    CAS  Google Scholar 

  • Gerwick WH, Roberts MA, Proteau PJ, Chen JL (1994) Screening cultured marine microalgae for anticancer-type activity. J. appl. Phycol. 6: 143–149.

    Article  CAS  Google Scholar 

  • Gleason FK (1986) Cyanobacterin herbicide. U.S. Patent Number 4,626,271.

  • Gleason FK, Case DE, Siprell KD, Magnuson TS (1986) Effect of the natural algicide, cyanobacterin, on a herbicide-resistant mutant of Anacystis nidulans R2. Plant Sci. 46: 5–10.

    Article  CAS  Google Scholar 

  • Glombitza KW, Koch M (1989) Secondary metabolites of pharmaceutical potential. In Cresswell RC, Rees TAV, Shah M (eds), Algal and Cyanobacterial Biotechnology. Longman Scientific & Technical, Harlow, 161–238.

    Google Scholar 

  • Gregson JM (1986) Isolation and structure determination of the puwainaphycins A-D. MSc Thesis, University of Hawaii, Honolulu, 54 pp.

  • Gromov BV, Vepritskiy AA, Titova NN, Mamkayeva KA, Alexandrova OV (1991) Production of the antibiotic cyanobacterin LU-1 by Nostoc lincka CALU 892 (Cyanobacterium). J. appl. Phycol. 3: 55–59.

    Article  CAS  Google Scholar 

  • Gross EM, Wolk CP, Juttner F (1991) Fischerellin, a new allelochemical from the freshwater cyanobacterium Fischerella muscicola. J. Phycol. 27: 686–692.

    Article  CAS  Google Scholar 

  • Gustafson KR, Cardellina JH, Fuller RW, Weislow OS, Kiser RF, Snader KM, Patterson KML, Boyd MR (1989) AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). J. Nat. Cancer Ins 81: 1254–1258.

    CAS  Google Scholar 

  • Harder R, Opperman A (1953) Über antibiotische Stoffe bei den Grünalgen Stichococcus bacillaris und Protosiphon botryoides. Arch. Mikrobiol. 19. 398–401.

    Article  PubMed  CAS  Google Scholar 

  • Hauman JH (1981) Is a plasmid(s) involved in the toxicity of Microcystis aeruginosa? In Carmichael WW (ed.), The water environment: algal toxins and health. Plenum Press, N.Y., 97–102.

    Google Scholar 

  • Helms GL, Moore RE, Niemczura WP, Patterson GML, Tomer KB, Gross ML (1988) Scytonemin A, a novel calcium antagonist from a blue-green alga J. Org. Chem. 53: 1298–1307.

    Article  CAS  Google Scholar 

  • Hille B (1975) The receptor for tetrodotoxin and saxitoxin: a structural hypothesis. Biophys. J. 15: 615–619.

    PubMed  CAS  Google Scholar 

  • Holmes CFB, Borland MP (1993) Inhibitors of protein phosphatase-1 and -2A; two of the major serine/threonone protein phosphatases involved in cellular regulation. Curr. Opinion Struct. Biol. 3: 934–943.

    Article  CAS  Google Scholar 

  • Hoppe HA (1979) Marine algae and their products and constituents in pharmacy. In Hoppe HA, Levring T, Tanaka Y (eds), Marine Algae in Pharmaceutical Science. Walter de Gruyter, Berlin - New York, 25–119.

    Google Scholar 

  • Ikawa M, Sasner JJ (1990) The chemistry and physiology of algal toxins. In Akatsuka I (ed.), Introduction to Applied Phycology. SPB Academic Publishing, The Hague, 27–65.

    Google Scholar 

  • Ishibashi M, Moore RE, Patterson GML, Xu C, Clardy J (1986) Scytophycins, cytotoxic and antimycotic agents from the cyanophyte Scytonema pseudohofmanni. J. Org. Chem. 51: 5300–5306.

    Article  CAS  Google Scholar 

  • Kellam SJ, Walker JM (1989) Antibacterial activity from marine microalgae. Br. Phycol. J. 24: 191–194.

    Google Scholar 

  • Kindle KL, Sodeinde OA (1994) Nuclear and chloroplast transformation in Chlamydomonas reinhardtii — Strategies for genetic manipulation and gene expression. J. appl. Phycol. 6: 231–238.

    Article  CAS  Google Scholar 

  • Knubel G, Larsen LK, Moore RE, Levine IA, Patterson GML (1990) Cytotoxic, antiviral indolocarbazoles from a blue-green alga belonging to the Nostocaceae. J. Antibiot. 43: 1236–1239.

    PubMed  CAS  Google Scholar 

  • Kobayashi A, Ishibashi M, Nakamura H, Ozumi Y, Yamasu T, Sasaki T, Hirata Y (1986) Amphidinolide-A, a novel antineoplastic macrolide from the marine dinoflagellate Amphidinium sp. Tet. Lett. 27: 5755–5758.

    Article  CAS  Google Scholar 

  • Kumar HD, Gorham PR (1975) Effects of acridine dyes and other substances on growth, lysis and toxicity of Anabaena flos-aquae NRC-44-1. Biochem. Physiol. Pflanzen 167: 473–487.

    CAS  Google Scholar 

  • Laguna MR, Villar R, Cadavid I, Calleja JM (1993a) Effects of extracts of Tetraselmis suecica and Isochrysis galbana on the central nervous system. Planta Med. 59: 207–214.

    PubMed  CAS  Google Scholar 

  • Laguna MR, Villar R, Calleja JM, Cadavid I (1993b) Effects of Chlorella stigmatophora extract on the central nervous system. Planta Med. 59: 125–130.

    PubMed  CAS  Google Scholar 

  • Lau AF, Siedlecki J, Anleitner J, Patterson GML, Caplan FR, Moore RE (1993) Inhibition of reverse transcriptase activity by extracts of cultured blue-green algae (Cyanophyta). Planta Med. 59: 148–151.

    PubMed  CAS  Google Scholar 

  • Laycock MV, de Freitas ASW, Wright JLC (1989) Glutamate agonists from marine algae. J. appl. Phycol. 1: 113–122.

    Article  Google Scholar 

  • Lee YK, Low CS (1991) Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture. Biotechnol. Bioengng 38: 995–1000.

    Article  CAS  Google Scholar 

  • Lincoln RA, Strupinski K, Walker JM (1990) Use of an isolated guinea-pig ileum assay to detect bioactive compounds in microalgal cultures. J. appl. Phycol. 2: 83–88.

    Article  Google Scholar 

  • Luu HA, Chen DZX, Magoon J, Worms J, Smith J, Holmes CFB (1993) Quantification of diarrhetic shellfish toxins and identification of novel protein phosphatase inhibitors in marine phytoplankton and mussels. Toxicon 31: 75–83.

    Article  PubMed  Google Scholar 

  • Moore RE, Patterson GML, Mynderse JS, Barchi J, Norton TR, Furusawa E, Furusawa S (1986) Toxins from cyanophytes belonging to the Scytonemataceae. Pure appl. Chem. 58: 263–271.

    CAS  Google Scholar 

  • Moore RE, Cheuk C, Yang XQG, Patterson GML, Bonjouklian R, Smitka TA, Mynderse JS, Foster RS, Jones ND, Swartzendruber JK, Deeter JB (1987) Hapalindoles, antibacterial and antimycotic alkaloids from the cyanophyte Hapalosiphon fontinalis. J. org. Chem. 52: 1036–1043.

    Article  CAS  Google Scholar 

  • Moore RE, Patterson ML, Carmichael WW (1988) New pharmaceuticals from cultured blue-green algae. In Fautin DG (ed.), Biomedical Importance of Marine Organisms. California Academy of Sciences, San Francisco, 143–150.

    Google Scholar 

  • Morton SL, Bomber JW (1994) Maximizing okadaic acid content from Prorocentrum hoffmannianum Faust. J. appl. Phycol. 6: 41–44.

    Article  CAS  Google Scholar 

  • Nagai H, Satake M, Yasumoto T (1990) Antimicrobial activities of polyether compounds of dinoflagellate origins. J. appl. Phycol. 2: 305–308.

    Article  CAS  Google Scholar 

  • Norton RS, Wells RJ (1982) A series of chiral polybrominated biindoles from the blue-green marine algae Rivularia firma. Application of 13C NMR spin-lattice relaxation data and data and 13C-1H coupling constants to structure elucidation. J. am. Chem. Soc. 104: 3628–3635.

    Article  CAS  Google Scholar 

  • Numata A, Takahashi C, Ito Y, Takada T, Kawai K, Usami Y, Matsumura E, Imachi M, Ito T, Hasegawa T (1993) Communesins, cytotoxic metabolites of a fungus isolated from a marine alga Tet. Lett. 34: 2355–2358.

    Article  CAS  Google Scholar 

  • Okuyama H (1992) Minimum requirements of n-3 and n-6 essential fatty acids for the function of the central nervous system and for the prevention of chronic disease. Proc. Soc exp. Biol. Med. 200: 174–176.

    PubMed  CAS  Google Scholar 

  • Okuzumi J, Nishino H, Murakoshi M, Iwashima A, Tanaka Y, Yamane T, Fujita Y, Takahashi T (1990) Inhibitory effects of fucoxanthin, a natural carotenoid, on N-myc expression and cell cycle progression in human malignant tumor cells. Cancer Lett. 55: 75–81.

    Article  PubMed  CAS  Google Scholar 

  • Patterson GML, Bolis CM (1993) Regulation of scytophycin accumulation in cultures of Scytonema ocellatum. 1. Physical factors. Appl. Microbiol. Biotech. 40: 375–381.

    Article  CAS  Google Scholar 

  • Patterson GML, Carmeli S (1992) Biological effects of tolytoxin (6-hydroxy-7- O-methylscytophycin B), a potent bioactive metabolite from cyanobacteria. Arch. Microbiol. 157: 406–410.

    Article  PubMed  CAS  Google Scholar 

  • Patterson GML, Baldwin CL, Bolis CM, Caplan FR, Karuso H, Larsen LK, Levine IA, Moore RE, Nelson CS, Tschappat KD, Tuang GD, Furusawa E, Furusawa S, Norton TR, Raybourne RB (1991) Antineoplastic activity of cultured blue-green algae (Cyanophyta). J. Phycol. 27: 530–536.

    Article  Google Scholar 

  • Patterson GML, Baker KK, Baldwin CL, Bolis CM, Caplan FR, Larsen LK, Levine IA, Moore RE, Nelson CS, Tschappat KD, Tuang GD, Boyd MR, Cardellina JH, Collins RP, Gustafson KR, Snader KM, Weislow OS, Lewin RA (1993a) Antiviral activity of cultured blue-green algae (Cyanophyta). J. Phycol. 29: 125–130.

    Google Scholar 

  • Patterson GML, Smith CD, Kimura LH, Britton BA, Carmeli S (1993b) Action of tolytoxin on cell morphology, cytoskeletal organization, and actin polymerization. Cell Motil. Cytoskel. 24: 39–48.

    Article  CAS  Google Scholar 

  • Pedersen M, DaSilva EJ (1973) Simple brominated phenols in the bluegreen alga Calothrix brevissima West. Planta 115: 83–96.

    Article  CAS  Google Scholar 

  • Pesando D (1990) Antibacterial and antifungal activities of marine algae. In Akatsuka I (ed.), Introduction to Applied Phycology. SPB Academic Publishing, The Hague, 3–26.

    Google Scholar 

  • Pesando D, Gnassia-Barelli M (1979a) Antifungal properties of some marine planktonic algae. In Hoppe HA, Levring T, Tanaka Y (eds), Marine Algae in Pharmaceutical Science. Walter de Gruyter, Berlin, 461–471.

    Google Scholar 

  • Pesando D, Gnassia-Garelli M (1979b); Partial characterization of a specific antibiotic, antifungal substance isolated from the marine diatom Chaetoceros lauderi Ralfs CC In Hoppe HA, Levring T, Tanaka Y (eds), Marine Algae in Pharmaceutical Science. Walter de Gruyter, Berlin, 447–459.

    Google Scholar 

  • Pesando D, Gnassia-Barelli M, Gueho E, Rinaudo M, Defaye J (1980) Isolement, étucle structurale et propriétés antibiotiques et antifongiques d'un comosant polysaccaridique de la diatomée marine Chaetoceras lauderi Ralfs. Oceanis. Fasc. Hors.-Sér.: 561–568.

  • Prakash A (1967) Growth and toxicity of a marine dinoflagellate Goniaulax tamarensis. J. Fish. Res. Bd Can. 24: 1589–1606.

    Google Scholar 

  • Proteau PJ, Gerwick WH, Garciapichel F, Castenholz RW (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49: 825–829.

    Article  PubMed  CAS  Google Scholar 

  • Ramamurthy VD (1970) Antibacterial activity of the marine bluegreen algae Trichodesmium erythraeum in the gastro-intestinal tract of the sea gull Larus brumicephalus. Mar. Biol. 6: 74–76.

    Article  Google Scholar 

  • Rapala J, Sivonen K, Luukkainen R, Niemelä SI (1993) Anatoxin-A concentration in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic Anabaena-strains — a laboratory study. J. appl. Phycol. 5: 581–591.

    Article  CAS  Google Scholar 

  • Reichelt JL, Borowitzka MA (1984) Antibiotics from algae: results of a large scale screening programme. Hydrobiologia 116/117: 158–168.

    Article  Google Scholar 

  • Rinehart KL, Shaw PD, Shield LS, Gloer JB, Harbour GC, Koker MES, Samain D, Schwartz RE, Tymiak AA, Weller DL, Carter GT, Munro MHG, Hughes RG, Renis HE, Swynenberg EB, Stringfellow DA, Vavra JJ, Coats JH, Zurenko GE, Kuentzel SL, Li LH, Bakus GJ, Brusca RC, Craft LL, Young DN, Connor JL (1981) Marine natural products as sources of antiviral, antimicrobial, and antineoplastic agents. Pure appl. Chem. 53: 795–817.

    CAS  Google Scholar 

  • Rinehart KL, Namikoshi M, Choi BW (1994) Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J. appl. Phycol. 6: 159–176.

    Article  CAS  Google Scholar 

  • Schmitz FJ, Bowden BF, Toth SI (1993) Antitumor and cytotoxic compounds from marine organisms. In Attaway DH, Zaborsky OR (eds), Marine Biotechnology, Vol 1. Plenum Publishing Corp, New York, 197–308.

  • Shaish A, Ben-Amotz A, Avron M (1991) Production and selection of high β-carotene mutants of Dunaliella bardawil (Chlorophyta). J. Phycol. 27: 652–656.

    Article  CAS  Google Scholar 

  • Sharma GM, Michaels L, Burkholder PR (1968) Goniodomin, a new antibiotic from a dinoflagellate. J. Antibiot. 21: 659–664.

    PubMed  CAS  Google Scholar 

  • Sieburth JM (1959) Acrylic acid, an ‘antibiotic’ principle in Phaeocystis blooms in Antarctic waters. Science 132: 676–677.

    Google Scholar 

  • Stewart JB, Bornemann V, Chen JL, Moore RE, Caplan FR, Karuso H, Larsen LK, Palterson GML (1988) Cytotoxic, fungicidal nucleosides from blue-green algae belonging to the Scytonemataceae. J. Antibiot. 41: 1048–1056.

    PubMed  CAS  Google Scholar 

  • Suffness M, Newman DJ, Snader K (1989) Discovery and development of antineoplastic agents from natural sources. In Scheuer PJ (ed.), Bioorganic Marine Chemistry. Springer Verlag, Berlin, 131–168.

    Google Scholar 

  • Sukenik A (1991) Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Bioresource Technol. 35: 263–269.

    Article  CAS  Google Scholar 

  • Taylor RF, Ikawa M, Sasner JJ, Thurberg FP, Andersen KK (1974) Occurrence of choline esters in the marine dinoflagellate Amphidinium carteri. J. Phycol. 10: 279–283.

    Article  CAS  Google Scholar 

  • Tredici MR, Materassi R (1992) From open ponds to vertical alveolar panels — The Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms. J. appl. Phycol. 4: 221–231.

    Article  Google Scholar 

  • Trick CG, Andersen RJ, Harrison PJ (1984) Environmental factors influencing the production of an antibacterial metabolite from the marine dinoflagellate, Prorocentrum minimum. Can. J. Fish. aquat. Sci. 41: 423–432.

    Article  CAS  Google Scholar 

  • Unson MD, Faulkner DJ (1993) Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia 49: 349–353.

    Article  CAS  Google Scholar 

  • Utkilen H, Gjølme N (1992) Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. Appl. Envir. Microbiol. 58: 1321–1325.

    CAS  Google Scholar 

  • van der Westhuizen AJ, Eloff JN (1983) Effect of culture age and pH of culture medium on the growth and toxicity of the blue-green algae Microcystis aeruginosa. Z. Pflanzenphysiol. 110: 157–163.

    Google Scholar 

  • Villar R, Laguna MR, Calleja JM, Cadavid I (1992) Effects of Phaeodactylum tricornutum and Dunaliella tertiolecta extracts on the central nervous system. Planta Med. 58: 405–409.

    PubMed  CAS  Google Scholar 

  • Viso AC, Pesando D, Baby C (1987) Antibacterial and antifungal properties of some marine diatoms. Bot. Mar. 30: 41–45.

    Article  Google Scholar 

  • Yamaguchi K, Murakami M, Okino T (1989) Screening of angiotensin-converting enzyme inhibitory activities in microalgae. J. appl. Phycol. 1: 271–275.

    Article  Google Scholar 

  • Zevenbergen JL, Rudrum M (1993) The role of polyunsaturated fatty acids in the prevention of chronic diseases. Fett Wissensch. Technol. 95: 456–460.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borowitzka, M.A. Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7, 3–15 (1995). https://doi.org/10.1007/BF00003544

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00003544

Key words

Navigation