Skip to main content
Log in

Distribution patterns of interstitial freshwater meiofauna over a range of spatial scales, with emphasis on alluvial river-aquifer systems

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Spatial distribution patterns of the interstitial meiobenthos are examined across a range of scales. A global interstitial highway model is presented with the alluvial aquifer system as its central core. Spatially discontinuous hypogean entities, such as karstic aquifers, springs, anchialine waters and the psammolittoral, have limited interconnections except through the alluvial aquifer system and are contiguous with epigean waters. The global interstitial highway is viewed as an evolutionary pathway and long-term dispersal route for meiobenthic forms. The distribution of interstitial animals in alluvial river-aquifer systems is examined at longitudinal (altitudinal), reach, floodplain, gravel bar, and vertical (depth) scales. Geomorphic and hydrogeologic features and interactions emerge as major determinants of the spatially heterogeneous nature of alluvial aquifers that structure the patchy distribution patterns of hypogean fauna across a range of scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Botosaneanu, L. & J. R. Holsinger, 1991. Some aspects concerning colonization of the subterranean relam-especially of subterranean water: a response to Rouch & Danielopol, 1987. Stygologia 6: 11–39.

    Google Scholar 

  • Bretschko, G., 1981. Vertical distribution of zoobenthos in an alpine brook of the RITRODAT-LUNZ study area. Verh. int. Ver. Limnol. 21: 873–876.

    Google Scholar 

  • Bretschko, G., 1985. Quantitative sampling of the fauna of gravel streams. Verh. int. Ver. Limnol. 22: 2049–2052.

    Google Scholar 

  • Chappuis, P. A., 1942. Eine neue Methode zur Untersuchung der Grundwasser-fauna. Acta Sci. Math. Nat. Kolozsvar. 6: 3–7.

    Google Scholar 

  • Coineau, N., 1986. Isopoda: Asellota: Janiroidea. In L. Botosaneanu (ed.), Stygofauna Mundi. E. J. Brill, Leiden: 465–472.

    Google Scholar 

  • Creuzé des Châtelliers, M., 1991. Geomorphological processes and discontinuities in the macrodistribution of the interstitial fauna: A working hypothesis. Verh. int. Ver. Limnol. 24: 1609–1612.

    Google Scholar 

  • Creuzé des Châtelliers, M. & D. Poinsart, 1991. Caractéristiques des aquifères alluviaux et diversité faunistique du sous-écoulement du Rhône. Hydrogéologie 3: 201–215.

    Google Scholar 

  • Creuzé des Châtelliers, M. & J. L. Reygrobellet, 1990. Interactions between geomorphological processes, benthic and hyporheic communities: First results on a by-passed canal of the French upper Rhône River. Regulated Rivers 5: 139–158.

    Google Scholar 

  • Danielopol, D. L., 1976. The distribution of the fauna in the interstitial habitats of riverine sediments of the Danube and the Piesting (Austria). Int. J. Speleol 8: 23–51.

    Google Scholar 

  • Danielopol, D. L. 1982. Phreatobiology reconsidered. Pol. Arch. Hydrobiol. 29: 375–386.

    Google Scholar 

  • Danielopol, D. L., 1991. Spatial distribution and dispersal of interstitial Crustacea in alluvial sediments of a backwater of the Danube at Vienna. Stygologia 6: 97–110.

    Google Scholar 

  • Danielopol, D. L. & P. Marmonier, 1992. Aspects of research on groundwater along the Rhône, Rhine and Danube. Regulated Rivers 7: 5–16.

    Google Scholar 

  • Delamare-Deboutteville, C., 1960. Biologie des eaux souterraines littorales et continentales. Hermann, Paris, 740 pp.

    Google Scholar 

  • Dole, M.-J., 1983. Le domaine aquatique souterrain de la plaine alluviale du Rhône à l'est de Lyon. 1. Diversité hydrologique et biocénotique de trois stations représentatives de la dynamique fluviale. Vie Milieu 33: 219–229.

    Google Scholar 

  • Dole, M.-J., 1985. Le domaine aquatique souterrain de la plaine alluviale du Rhône à l'est de Lyon. 2. Structure verticale des peuplements des niveaux supérieurs de la nappe. Stygologia 1: 270–291.

    Google Scholar 

  • Dole, M.-J. & D. Chessel, 1986. Stabilité physique et biologique des milieux interstitiels. Cas de deux stations du Haut-Rhône. Annls Limnol. 22: 69–81.

    Google Scholar 

  • Erlich, H. A., 1989. PCR Technology: priciples and applications for DNA amplification. Stockton Press, New York, 246 pp.

    Google Scholar 

  • Fleeger, J. W. & A. W. Decho, 1987. Spatial variability of interstitial meiofauna: A review. Stygologia 3: 35–54.

    Google Scholar 

  • Gibert, J., M.-J. Dole-Olivier, P. Marmonier & P. Vervier, 1990. Surface water-groundwater ecotones. In R. J. Naiman & H. Décamps (eds), The Ecology and Management of Aquatic- terrestrial Ecotones. Parthenon, Casterton Hall, England: 199–225.

    Google Scholar 

  • Holsinger, J. R., 1986. Zoogeographic patterns of North American subterranean amphipod crustaceans. In R. H. Gore & K. L. Heck (eds), Crustacean Biogeography. Balkema, Leiden: 85–106.

    Google Scholar 

  • Holsinger, J. R., 1988. Troglobites: The evolution of cave-dwelling organisms. Am. Sci. 76: 146–153.

    Google Scholar 

  • Holsinger, J. R., J. S. Mort & A. D. Recklies, 1983. The subterranean crustacean fauna of Castleguard Cave, Columbia Icefields, Alberta, Canada, and its zoogeographic significance. Arctic Alpine Res. 15: 543–549.

    Google Scholar 

  • Husmann, S., 1971. Ecological studies on freshwater meiobenthon in layers of sand and gravel. Smithson. Contr. Zool. 76: 161–169.

    Google Scholar 

  • Hutchinson, G. E., 1953. The concept of pattern in ecology. Proc. Acad. nat. Sci. Phila. 105: 1–12.

    Google Scholar 

  • Hutchinson, G. E., 1967. A treatise on limnology, Vol. II. Wiley, New York, 1115 pp.

    Google Scholar 

  • Innis, M. A., D. H. Gelfand, J. J. Sninsky & T. J. White, 1990. PCR protocols: A guide to methods and applications. Academic Press, New York, 482 pp.

    Google Scholar 

  • Kane, T. C., D. C. Culver & R. T. Jones, 1992. Genetic structure of morphologically differentiated populations of the amphipod Gammarus minus. Evolution 46: 272–278.

    Google Scholar 

  • Karaman, S., 1935. Die Fauna unterirdischen Gewässer Jugoslawiens. Verh. int. Ver. Limnol. 7: 46–73.

    Google Scholar 

  • Kocher, T. D. & T. J. White, 1989. Evolutionary analysis via PCR. In H. A. Erlich (ed.), PCR Technology: Principles and Applications for DNA Amplification. Stockton Press, New York: 137–147.

    Google Scholar 

  • Levin, S.A., 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.

    Google Scholar 

  • Manning, R. B., C. W. Hart & T. M. Illiffe, 1986. Mesozoic relicts in marine caves of Bermuda. Stygologia 2: 156–166.

    Google Scholar 

  • Marmonier, P. 1988. Biocénoses interstitielles et circulation des eaux dans le sous-écoulement d'un chenal aménagé du Haut-Rhône français. Th. Doct. Univ. Lyon I, 2 vols., 161 p. & 108 p.

  • Marmonier, P. & M.-J. Dole, 1986. Les amphipodes des sédiments d'un bras court-circuité du Rhône-Logique de répartition et réaction aux crues. Sciences de L'Eau 5: 461–486.

    Google Scholar 

  • Marmonier, P. & J. V. Ward, 1990. Superficial and interstitial Ostracoda of the South Platte river (Colorado, USA)— Systematics and biogeography. Stygologia 5: 225–239.

    Google Scholar 

  • Marmonier, P., M.-J. Dole-Olivier & M. Creuzé des Châtelliers, 1992. Spatial distribution of interstitial assemblages in the flood-plain of the Rhone River. Regulated rivers 7: 75–82.

    Google Scholar 

  • Niederreiter, R. & D. L. Danielopol, 1991. The use of mini- video-cameras for the description of groundwater habitats. Mitt. hydrogr. Dienst. Österr. 65/66: 85–89.

    Google Scholar 

  • Orghidan, T., 1959. Ein neuer Lebensraum des unterirdischen Wassers, das hyporheische Biotop. Arch. Hydrobiol. 55: 392–414.

    Google Scholar 

  • Palmer, M. A., 1990. Temporal and spatial dynamics of meiofauna within the hyporheic zone of Goose Creek, Virginia. J. N. Am. Benthol. Soc. 9: 17–25.

    Google Scholar 

  • Palmer, M. A., A. E. Bely & K. E. Berg, 1992. Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89: 182–194.

    Google Scholar 

  • Pearse, A. S., 1927. The migration of animals from the ocean into freshwater and land habitats. Am. Nat. 61: 466–476.

    Google Scholar 

  • Pennak, R. W., 1940. Ecology of the microscopic Metazoa inhabiting the sandy beaches of some Wisconsin lakes. Ecol. Monogr. 10: 537–615.

    Google Scholar 

  • Pennak, R. W., 1951. Comparative ecology of the interstitial fauna of fresh-water and marine beaches. Ann. Biol. 27: 449–480.

    Google Scholar 

  • Pennak, R. W., 1963. Ecological affinities and origins of free-living acelomate fresh-water invertebrates. In E. C. Dougherty et al. (eds), The Lower Metazoa. Univ. California Press, Berkeley: 435–451.

    Google Scholar 

  • Pennak, R. W., 1968. Historical origins and ramifications of interstitial investigations. Trans. am. Microsc. Soc. 87: 214–218.

    Google Scholar 

  • Pennak, R. W., 1988. Ecology of the freshwater meiofauna. In R. P. Higgins & H. Thiel (eds), Introduction to the Study of meiofauna. Smithsonian Inst. Press, Washington, D.C.: 39–60.

    Google Scholar 

  • Pennak, R. W. & J. V. Ward, 1986. Interstitial faunal communities of the hyporheic and adjacent groundwater biotopes of a Colorado mountain stream. Arch. Hydrobiol. Suppl. 74: 356–396.

    Google Scholar 

  • Rouch, R., 1988. Sur la répartition spatiale des Crustacés dans le sous-écoulement d'un ruisseau des Pyrénées. Annl. Limnol. 24: 213–234.

    Google Scholar 

  • Rouch, R. & D. L. Danielopol, 1987. L'origine de la faune aquatique souterraine, entre le paradigme du refuge et le modèle de la colonisation active. Stygologia 3: 345–372.

    Google Scholar 

  • Sambrook, J., E. F. Fritsch & T. Maniatis, 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 545 pp.

    Google Scholar 

  • Sassuchin, D. N., N. M. Kabanov & K. Neiswestnova-Shadina, 1927. Über die mikroskopische Pflanzen-und Tierwelt der Sandfläche der Okaufers bei Murom. Russ. Hydrobiol. Z. 6: 59–83.

    Google Scholar 

  • Schminke, H. K., 1981. Perspectives in the study of the zoogeography of interstitial crustacea: Bathynellacea (Syncarida) and Parastenocarididae (Copepoda). Int. J. Speleol. 11: 83–89.

    Google Scholar 

  • Schwoerbel, J., 1961. Über die Lebensbedingungen und die Besiedlung des hyporheischen lebensraumes. Arch. Hydrobiol. Suppl. 25: 182–214.

    Google Scholar 

  • Sogin, M. L., 1990. Amplification of ribosomal RNA genes for molecular evolution studies. In M. A. Innis et al. (eds), PCR Protocols: A Guide to Methods and Applications. Academic Press, New York: 307–314.

    Google Scholar 

  • Stanford, J. A. & J. V. Ward, 1988. The hyporheic habitat of river ecosystems. Nature 335: 64–66.

    Google Scholar 

  • Stock, J. H., 1986. Two new amphipod crustaceans of the genus Bahadzia from ‘blue holes’ in the Bahamas and some remarks on the origin of the insular stygofaunas of the Atlantic. J. Nat. Hist. 20: 921–933.

    Google Scholar 

  • Strommer, J. L. & L. A. Smock, 1989. Vertical distribution and abundance of invertebrates within the sandy substrate of a low-gradient headwater stream. Freshwat. Biol. 22: 263–274.

    Google Scholar 

  • Ward, J. V., 1989. The four-dimensional nature of lotic ecosystems. J. N. Am. Benthol. Soc. 8: 2–8.

    Google Scholar 

  • Ward, J. V., J. A. Stanford & N. J. Voelz, 1994. Spatial distribution patterns of Crustacea in the floodplain aquifer of an alluvial river. Hydrobiologia 287: 11–17.

    Google Scholar 

  • Ward, J. V. & N. J. Voelz, 1990. Gradient analysis of interstitial meiofauna along a longitudinal stream profile. Stygologia 5: 93–99.

    Google Scholar 

  • Ward, J. V. & N. J. Voelz, in press. Groundwater fauna of the South Platte river system, Colorado, USA. In J. Gibert, D. Danielopol & J. Stanford (eds), Groundwater Ecology. Academic Press, Orlando.

  • Ward, J. V., N. J. Voelz, & N. L. Poff, 1994b. Gradient analysis of zoobenthos community structure along a mountain stream continuum. Verh. int. Ver. Limnol. in press.

  • White, T., T. Burns, S. Lee & J. Taylor, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis (et al.) (eds), PCR Protocols: A Guide to Methods and Applications. Academic Press, New York: 315–322.

    Google Scholar 

  • Whitman, R. L. & W. J. Clark, 1984. Ecological studies of the sand-dwelling community of an east Texas stream. Freshwat. Invert. Biol. 3: 59–79.

    Google Scholar 

  • Wiens, J. A., 1989. Spatial scaling in ecology. Functional Ecol. 3: 385–397.

    Google Scholar 

  • Williams, D. D., 1989. Towards a biological and chemical definition of the hyporheic zone in two Canadian rivers. Freshwat. Biol. 22: 189–208.

    Google Scholar 

  • Williams, D. D. & H. B. N. Hynes, 1974. The occurrence of benthos deep in the substratum of a stream. Freshwat. Biol. 4: 233–256.

    Google Scholar 

  • Wiszniewski, J., 1934. Recherches écologiques sur le psammon. Arch. Hydrobiol. Ichthyol. 8: 149–272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Invited summary of Symposium on the ‘Biogeography of Subterranean Crustaceans: the Effects of Different Scales’. Prepared for print by D. C. Culver.

Invited summary of Symposium on the ‘Biogeography of Subterranean Crustaceans: the Effects of Different Scales’. Prepared for print by D. C. Culver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, J.V., Palmer, M.A. Distribution patterns of interstitial freshwater meiofauna over a range of spatial scales, with emphasis on alluvial river-aquifer systems. Hydrobiologia 287, 147–156 (1994). https://doi.org/10.1007/BF00006903

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006903

Key words

Navigation