Skip to main content
Log in

A model for short-term control of the bacterioplankton by substrate and grazing

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Substrate supply and grazing are the factors with the greatest potential for short-term control of planktonic bacterial density and productivity. A model was developed based on Monod kinetics, where growth rates are limited by food supply in a saturation type equation. In the model, substrate, bacteria, heterotrophic flagellates and zooplankton are state variables linked by trophic transfer and expressed as carbon. The steady state assumption allows calculation of equations indicating the following: (l) bacterial density is determined primarily by the ratio of substrate input to grazing rate; (2) bacterial production is balanced by a combination of losses due to maintenance, death and grazing, and occurs at a rate determined by the rate of substrate input and the growth yield; (3) ambient substrate concentration is directly related to grazing rate.

Sensitivity analysis of the model on a computer demonstrates some differences between grazer-controlled and substrate-controlled bacterial systems, and predictions of the model are listed for possible validation in natural systems. The model is potentially useful in evaluating the ‘link vs. sink’ question, as it provides a framework for investigating energy flow through the microbial food web as a function of controlling factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, P. & T. Fenchel, 1985. Bacterivory by microheterotrophic flagellates in seawater samples. Limnol. Oceanogr. 30: 198–202.

    Article  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Bell, Russell T., 1986. Thymidine incorporation as a measure of bacterial production in lakes. Acta Univ. Upsaliensis 43, 1986.

    Google Scholar 

  • Billén, G., C. Joiris, J. Wijnant & G. Gillain, 1980. Concentration and microbiological utilization of small organic molecules in the Scheldt Estuary, the Belgian coastal zone of the North Sea and the English Channel. Est. Coastal Mar. Sci. 11: 279–294.

    Google Scholar 

  • Ducklow, H. W., 1983. Production and fate of bacteria in the oceans. Bioscience 33: 494–501.

    Article  Google Scholar 

  • Ducklow, H. W., D. A. Purdie, P. J. LeB. Williams & J. M. Davies, 1986. Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science 232: 865–867.

    CAS  PubMed  Google Scholar 

  • Fenchel, T., 1982. Ecology of heterotrophic microflagellates. IV Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35–42.

    Google Scholar 

  • Fenchel, T., 1986. The ecology of heterotrophic microflagellates. Adv. in Microbial Ecol. 9: 57–97.

    Google Scholar 

  • Fuhrman, J. A. & F. Azam, 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Envir. Microb. 39: 1085–1095.

    Google Scholar 

  • Graham, J. M. & R. P. Canale, 1982. Experimental and modeling studies of a four-trophic level predator-prey system. Microb. Ecol. 8: 217–232.

    Article  Google Scholar 

  • Herbert, D., R. Elsworth & R. C. Telling, 1956. The continuous culture of bacteria: a theoretical and experimental study. J. Gen. Microbiol. 14: 601–622.

    PubMed  CAS  Google Scholar 

  • Laake, M., A. B. Dahle, K. Eberlein & K. Rein, 1983. A modelling approach to the interplay of carbohydrates, bacteria and nonpigmented flagellates in a controlled ecosystem experiment with Skeletonema costatum. Mar. Ecol. Prog. Ser. 14: 71–79.

    Google Scholar 

  • Larsson, U. & A. Hagstrom, 1982. Fractionated phytoplankton primary production, exudate release and bacterial production in a Baltic eutrophication gradient. Mar. Biol. 67: 57–70.

    Article  Google Scholar 

  • Monod, J., 1949. The growth of bacterial cultures. Ann. Rev. Microbiol. 3: 371–394.

    Article  CAS  Google Scholar 

  • Newell, S. Y. & R. D. Fallon, 1982. Bacterial productivity in the water column and sediments of the Georgia (USA) coastal zone: Estimates via direct counting and parallel measurement of thymidine incorporation. Microb. Ecol. 8: 33–46.

    Article  Google Scholar 

  • Novitsky, J. A. & R. Y. Morita, 1978. Possible strategy for the survival of marine bacteria under starvation conditions. Marine Biol. 48: 289–295.

    Article  Google Scholar 

  • Pirt, S. J., 1965. The maintenance energy of bacteria in growing cultures. Proc. Roy. Soc. B 163: 224–231.

    Article  CAS  Google Scholar 

  • Pirt, S. J., 1982. Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch. Microbiol. 133: 300–302.

    Article  PubMed  CAS  Google Scholar 

  • Pomeroy, L. R., 1984. Microbial processes in the sea: diversity in nature and science. p. 1–24. In: P. J. LeB. Williams (ed.) Heterotrophic activity in the sea. Plenum.

  • Pomeroy, L. R. & D. Deibel, 1986. Temperature regulation of bacterial activity during the spring bloom in Newfoundland coastal waters. Science 233: 359–361.

    PubMed  Google Scholar 

  • Sanders, R. W. & K. G. Porter, 1986. Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion. Appl. and Envir. Microb. 52: 101–107.

    CAS  Google Scholar 

  • Servais, P., G. Billén & J. V. Rego, 1985. Rate of bacterial mortality in aquatic environments. Appl. and Envir. Microb. 49: 1448–1454.

    CAS  Google Scholar 

  • Sherr, B. & E. Sherr, 1983. Enumeration of heterotrophic microprotozoa by epifluorescence microscopy. Est. Coast. Shelf Sci. 16: 1–7.

    Article  Google Scholar 

  • Sherr, B., E. B. Sherr & S. Y. Newell, 1984. Abundance and productivity of heterotrophic nanoplankton in Georgia coastal waters. J. of Plankton Res. 6: 195–202.

    Google Scholar 

  • Sieburth, J. M., R. D. Brooks, R. V. Gessner, C. D. Thomas & J. L. Tootle, 1974. Microbial colonization of marine plant surfaces as observed by scanning electron microscopy. p. 418–432. In: R. R. Colwell and R. Y. Morita (eds.), Effect of the Ocean environment on microbial activities. Univ. Park Press, Baltimore.

    Google Scholar 

  • Stevenson, L. H., 1978. A case for bacterial dormancy in aquatic systems. Microb. Ecol. 4: 127–133.

    Article  Google Scholar 

  • Thingstad, T. F. & B. Pengerud, 1985. Fate and effect of allochthonous organic material in aquatic ecosystems. An analysis based on chemostat theory. Mar. Ecol. Prog. Ser. 21: 47–62.

    Google Scholar 

  • Wiknar, J., A. Andersson, S. Normark & A. Hagstrom, 1986. Use of genetically marked minicells as a probe in measurement of predation on bacteria in aquatic environments. Appl. and Envir. Microb. 52: 4–8.

    Google Scholar 

  • Wilcox, D. L. & J. W. MacCluer, 1979. Coevolution in predator-prey systems: a saturation kinetic model. The Amer. Naturalist 113: 163–183.

    Article  Google Scholar 

  • Williams, F. M., 1980. On understanding predator-prey interactions. pp. 349–375 in: Ellwood, D. C., J. N. Hedger, M. J. Latham, J. M. Lynch and J. H. Slater (eds.). Contemporary Microbial Ecology. Academic Press, London.

    Google Scholar 

  • Wright, R. T. & R. B. Coffin, 1983. “Planktonic bacteria in estuaries and coastal waters of northern Massachusetts: spatial and temporal distribution.” Mar. Ecol. Prog. Ser. 11: 205–216.

    Google Scholar 

  • Wright, R. T., 1984. “Dynamics of pools of dissolved organic carbon.” in: Hobbie, J. E. and P. L. Williams, (eds.). Heterotrophic activity in the sea. Proc. of NATO ARI, Cascais, Portugal, 1981. Plenum Publ. Co.

    Google Scholar 

  • Wright, R. T. & R. B. Coffin, 1984a. “Factors affecting bacterioplankton density and productivity in salt marsh estuaries.” in: Klug, M. J. and C. A. Reddy (eds.). Current Perspectives in Microbial Ecology. (Proceedings of the Third International Symposium on Microbial Ecology, Mich. State Univ., Aug., 1983) Am. Soc. of Microbiology.

  • Wright, R. T. & R. B. Coffin, 1984b. “Measurements of bacterial production and microzooplankton grazing on bacterioplankton in an estuarine-coastal water system of northern Massachusetts.” Microbial Ecology 10: 137–149.

    Article  Google Scholar 

  • Wright, R. T. In press. Methods for Evaluating the interaction of substrate and grazing as factors controlling planktonic bacteria. Archiv. für Hydrob.

  • Wright, R. T. & R. B. Coffin. In Press. Dynamics of planktonic bacteria and heterotrophic microflagellates in the Parker estuary, Northern Massachusetts. Continental Shelf Research.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, R.T. A model for short-term control of the bacterioplankton by substrate and grazing. Hydrobiologia 159, 111–117 (1988). https://doi.org/10.1007/BF00007372

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007372

Keywords

Navigation