Skip to main content
Log in

The use of periphyton communities for nutrient removal from polluted streams

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The results of experiments on the efficiency of periphyton communities for nutrient removal from polluted streams in a continuous flow-through are given. The artifical stream (5 m × 0.7 m × 0.5 m) was made of wood, with silon (a kind of nylon) screens, as a substratum for periphyton growth. The elimination of nutrients was monitored by ammonium, nitrite, nitrate and orthophosphate analyses. In addition, the elimination of organics and the decrease in trophic state were determined. During two field experiments a marked elimination of nitrogen and phosphorus was demonstrated. The maximum efficiency of ammonium and orthophosphate removal was 80% and 70%, respectively. Organic removal reached 35% (C.O.D.Mn-Kubel) and 54% (B.O.D.5). Inorganic and organic nutrient elimination caused significant changes in periphyton community structure in the outflow portion of the through, evaluated by the saprobic index and the similarity coefficient. The experiments confirmed that periphyton communities are a useful means of nutrient removal from polluted streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bienfang, P. K., 1975. Steady state analysis of nitrate-ammonium assimilation by phytoplankton. Limnol. Oceanogr. 20: 402–411.

    Google Scholar 

  • Borchardt, J. A. & H. S. Azad, 1968. Biological extraction of nutrients. J. Water Pollut. Contr. Fed. 40: 1739–1754.

    Google Scholar 

  • Bothwell, M. L., 1983. All-weather troughs for periphyton studies. Water Res. 17: 1735–1741.

    Google Scholar 

  • Bothwell, M. L. & J. G. Stockner, 1980. Influence of secondarily treated kraft mill effluent on the accumulation rate of attached algae in experimental continuous-flow troughs. Can. J. Fish. Aquat. Sci. 37: 248–254.

    Google Scholar 

  • Bothwell, M. L. & S. Jasper, 1983. A light and dark trough methodology for measuring rates of lotic periphyton settlement and net growth. Develop. Hydrobiol. 17: 253–265.

    Google Scholar 

  • Caperon, J. & J. Meyer, 1972. Nitrogen-limited growth of marine phytoplankton. II. Uptake kinetics and their role in nutrient limited growth of phytoplankton. Deep Sea Res. 19: 619–632.

    Google Scholar 

  • Clark, J. R., J. H. Rodgers, Jr., K. L. Dickson & J. Cairns, Jr., 1980. Using artifical streams to evaluate perturbation effects on Aufwuchs structure and function. Water Resour. Bull. 16: 100–104.

    Google Scholar 

  • Eppley, R. W., J. L. Coastworth & L. Solórzano, 1969. Studies of nitrate reductase in marine phytoplankton. Limnol. Oceanogr. 14: 194–205.

    Google Scholar 

  • Hemens, J. & G. J. Stander, 1970. Nutrient removal from sewage effluents by algal activity. In: Advances in Water Pollution Research, Proc. of the 4th Internat. Conf., Prague, Pergamon Press, Oxford: 701–715.

    Google Scholar 

  • Hofmann, P., M. Havránek, J. Čuta, J. Chalupa, V. Maděra, J. Hamáčková & M. Kohout, 1965. Standard Methods of Chemical Analysis of Water. SNTL Praha, 449 pp. (in Czech).

  • Horáková, M., P. Lischke & A. Grünwald, 1986. Chemical and Physical Methods of Water Analysis. SNTL Praha & Alfa Bratislava, 392 pp. (in Czech).

  • Horner, R. R., E. B. Welch & R. B. Veenstra, 1983. Development of nuisance periphytic algae in laboratory streams in relation to enrichment and velocity. Develop. Hydrobiol. 17: 121–134.

    Google Scholar 

  • Lavoie, A. & J. de la Noüe, 1985. Hyperconcentrated cultures of Scenedesmus obliquus. A new approach for wastewater biological tertiary treatment? Water Res. 19: 1437–1442.

    Google Scholar 

  • Lee, G. F., 1973. Role of phosphorus in eutrophication and diffuse source control. Water Res. 7: 111–128.

    Google Scholar 

  • Lowe, R. L., 1974. Environmental requirements and pollution tolerance of freshwater diatoms. Environmental Monitor. Series. EPA-670/4–74–005, U.S. EPA, Cincinnati, Ohio, 334 pp.

    Google Scholar 

  • Mackenthun, K. M. & C. D. McNabb, 1961. Stabilization pond studies in Wisconsin. J. Water Pollut. Contr. Fed. 33: 1234–1251.

    Google Scholar 

  • Matulová, D., 1979. Toxicity of surfactants, heavy metals and their mixtures on algae and bacteria. Works & Studies No. 153, Water Res. Inst., Prague, 158 pp. (in Czech).

    Google Scholar 

  • Matusiak, K., 1976. Studies on the purification of waste water from nitrogen fertilizer industry by intensive algal cultures. I. Growth of Chlorella vulgaris in wastes. Acta microbiol. pol. 25: 233–242.

    Google Scholar 

  • Mc Carthy, J. J. & R. W. Eppley, 1972. A comparison of chemical, isotopic, and enzymatic methods for measuring nitrogen assimilation of marine phytoplankton. Limnol. Oceanogr. 17: 371–382.

    Google Scholar 

  • Mc Intire, C. D., 1968. Structural characteristics of benthic algal communities in laboratory streams. Ecology 49. 520–537.

    Google Scholar 

  • Meier, P. G. & D. W. Dilks, 1984. Periphytic oxygen production in outdoor experimental channels. Water Res. 18: 1137–1142.

    Google Scholar 

  • Morris, I. & P. J. Syrett, 1963. The development of nitrate reductase in Chlorella and its repression by ammonium. Arch. Microbiol. 47: 32–41.

    Google Scholar 

  • Neel, J. K., J. H. McDermott & C. A. Monday, 1961. Experimental lagooning of raw sewage at Fayette, Missouri. J. Water Pollut. Cont. Fed. 33: 603–641.

    Google Scholar 

  • Noüe, J., de la, A. Lavoie & P. Walsh, 1983. Hyperintensive wastewater tertiary treatment by flocculated activated algal sludge. In: Commercial Applications and Implications of Biotechnology, Proc. Internat. Conf., London: 1005–1015.

  • Odum, E. P., 1971. Fundamentals of Ecology. W. B. Saunders Company, Philadelphia, London, Toronto, 574 pp.

    Google Scholar 

  • Pano, A. & E. J. Middlebrooks, 1982. Ammonia nitrogen removal in facultative wastewater stabilization ponds. J. Water Pollut. Cont. Fed. 54: 344–351.

    Google Scholar 

  • Pantle, R. & H. Buck, 1955. Die biologische Überwachung der Gewässer und die Darstellung der Ergebnisse. Gas- und Wasserfach 96: 1–604.

    Google Scholar 

  • Przytocka-Jusiak, M., M. Blaszczyk, E. Kosiňska & A. Blisz-Konarzewska, 1984. Removal of nitrogen from industrial wastewaters with the use of algal rotating discs and denitrification packed bed reactors. Water Res. 18: 1077–1082.

    Google Scholar 

  • Rodgers, J. H., Jr., K. L. Dickson & J. Cairns, Jr., 1978. A chamber for in situ evaluation of periphtyon productivity in lotic systems. Arch. Hydrobiol. 84: 389–398.

    Google Scholar 

  • Shannon, E. E. & P. L. Brezonik, 1972. Relationship between lake trophic state and nitrogen and phosphorus loading rates. Environ. Sci. Technol. 6: 719–725.

    Google Scholar 

  • Skadovskij, S. N., 1961. Periphyton community in the function of bioeliminator. Moscow Univ. Press, 363 pp. (in Russian).

  • Sládeček, V., 1973. System of water quality from the biological point of view. Ergebn. Limnol. 7: 1–218.

    Google Scholar 

  • Sládeček, V., 1976. Determination of the saprobic index. Method. Instruction of Ministry of Forestry and Water Mgmt. No. 11: 1–181. (in Czech).

  • Sládeček, V., 1983. Rotifers as indicators of water quality. Hydrobiologia 100: 169–201.

    Google Scholar 

  • Sládeček, V., M. Zelinka, J. Rothschein & V. Moravcová, 1981. Biological analysis of surface waters. Commentary to the Czechoslovak State Norm 83 0532, Part 6: Determination of the saprobic index. Vyd. úřadu pro normalizaci a měření, Praha, 186 pp. (in Czech).

    Google Scholar 

  • Sládečková, A., P. Marvan & J. Vymazal, 1983. The utilization of periphyton in waterworks pre-treatment for nutrient removal from enriched influents. Develop. Hydrobiol. 17: 299–303.

    Google Scholar 

  • Smrchek, J. C., J. Cairns, Jr., K. L. Dickson, P. H. King, C. W. Randall, J. Crowe, D. Huber & J. W. Olwer, 1976. The effects of various tertiary treatment nutrient removal schemes on periphyton communities in model laboratory system. Bull. No. 86, Virginia Water Resour. Res. Center, Blacksburg, Virginia, 124 pp.

    Google Scholar 

  • Stross, R. G., 1963. Nitrate preference in Haematococcus as controlled by strain, age of inoculum, and pH of the medium. Can. J. Microbiol. 9: 33–40.

    Google Scholar 

  • Toetz, D. W., 1981. Effect of pH, phosphate and ammonia on the rate of uptake of nitrate and ammonia by freshwater phytoplankton. Hydrobiologia 76: 23–26.

    Google Scholar 

  • Vymazal, J., 1983. Elimination of bacteria in the bioeliminator. In: J. Häusler (ed.), Persistance of Microorganisms in Water Environment. Proc. Conf., Bratislava: 97–100 (in Czech).

  • Whittford, L. A., 1960. The current effect and growth of freshwater algae. Trans. Am. micr. Soc. 79: 302–309.

    Google Scholar 

  • Whittford, L. A. & G. J. Schumacher, 1961. Effect of current on mineral uptake and respiration of freshwater algae. Limnol. Oceanogr. 6: 423–425.

    Google Scholar 

  • Whittford, L. A. & G. J. Schumacher, 1964. Effect of current on respiration and mineral uptake in Spirogyra and Oedogonium. Ecology 45: 168–170.

    Google Scholar 

  • Zevenboom, W. & L. R. Mur, 1981. Ammonium-limited growth and uptake by Oscillatoria agardhii in chemostat cultures. Arch. Microbiol. 129: 61–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vymazal, J. The use of periphyton communities for nutrient removal from polluted streams. Hydrobiologia 166, 225–237 (1988). https://doi.org/10.1007/BF00008132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008132

Key words

Navigation