Skip to main content
Log in

An integrated approach to hydropower impact assessment

II. Submerged macrophytes in some Norwegian hydro-electric lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The submerged aquatic vegetation of 17 Norwegian lakes is described and related to the environmental impacts that result from hydro-electric power (HEP) use of these lakes. Largely based upon physiognomical features, three main community types are discerned. These are denoted as (a) shallow-water, (b) mid-depth, and (c) deep-water community, respectively. The aquatic macrophytes are classified into a plant strategy framework. This classification suggests that these macrophytes frequently exhibit combined traits of the ‘S’ (stress-tolerating), ‘R’ (ruderal), and ‘C’ (competitive) strategies. A plant-strategy index for the lakes is derived from the species classification and related to their HEP use.

Broadly, the response features of hydrolake vegetation are: (1) a decline in species richness; (2) the gradual disappearance of the shallow-water and mid-depth communities; (3) a conspicuous absence of vascular submerged macrophytes in storage hydrolakes when lake levels change more than 7 m annually, and; (4) an increased incidence of species possessing plant strategies of the ruderal (R) type. The implications of these results for an environmental impact assessment of hydropower schemes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almquist, E., 1929. Upplands flora och vegetation. Acta Phytogeogr. Suec. 1: 1–624.

    Google Scholar 

  • Austin, M. P., 1985. Continuum concept, ordination methods, and niche theory. Annu. Rev. Ecol. Syst. 16: 39–61.

    Google Scholar 

  • Boston, H. L., 1986. A discussion of the adaptations for carbon acquisition in relation to the growth strategy of aquatic isoetids. Aquat. Bot. 26: 259–270.

    Google Scholar 

  • Brown, J. M. A., 1975. Ecology of macrophytes. In Jolly, V. H. & J. M. A. Brown (eds), New Zealand Lakes. Auckland University Press, Auckland: 244–262.

    Google Scholar 

  • Canfield, D. E., K. A. Langeland, S. B. Linda & W. T. Haller, 1985. Relations between water transparency and maximum depth of macrophyte colonization in lakes. J. Aquat. Plant Manage. 23: 25–28.

    Google Scholar 

  • Chambers, P. A. & J. Kalff, 1985. Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Can. J. Fish. Aquat. Sci. 42: 701–709.

    Google Scholar 

  • Collins, L. W. & G. E. Likens, 1969. The effects of altitude on the distribution of aquatic plants in some lakes of New Hampshire, USA, Verh. int. Ver. Limnol. 17: 154–172.

    Google Scholar 

  • Davis, G. J. & M. M. Brinson, 1980. Responses of submersed vascular plant communities to environmental change. Report FWS/OBS-79/33, US Department of Interior, Washington D.C., 79 pp.

    Google Scholar 

  • Grime, J. P., 1979. Plant Strategies and Vegetation Processes. Wiley, Chichester, 222 pp.

    Google Scholar 

  • Grubb, P. J., 1985. Plant populations and vegetation in relation to habitat, disturbance and competition: problems of generalization. In White, J. (ed.), The Population Structure of Vegetation. Junk, Dordrecht: 595–621.

    Google Scholar 

  • Henriques, P. R., 1987. Aquatic macrophytes. In Henriques, P. R. (ed.), Aquatic Biology and Hydroelectric Power Development in New Zealand. Oxford University Press, Oxford: 207–222.

    Google Scholar 

  • Hinneri, S., 1976. On the ecology and phenotypic plasticity of vascular hydrophytes in a sulphate-rich, acidotrophic freshwater reservoir, SW coast of Finland. Ann. Bot. Fenn. 13: 97–105.

    Google Scholar 

  • Hultén, E., 1971. Atlas över växternas utbredning i Norden. 2nd. ed. Generalstabens litografiska anstalts förlag, Stockholm, 531 pp.

    Google Scholar 

  • Huston, M., 1979. A general hypothesis of species diversity. Am. Nat. 113: 81–101.

    Google Scholar 

  • Hutchinson, G. E., 1975. A Treatise on Limnology. 3. Limnological Botany. Wiley, New York, 660 pp.

    Google Scholar 

  • Hvoslef, S. & B. Rørslett, 1986. Makrovegetasjon i norske innsjøer. I. Avgrensning av vannvegetasjon og regional forekomst. K. Norske Vidensk. Selsk. Mus. Rapp. Bot. Ser. 1986 (2): 60–75 [in Norwegian].

  • Jensén, S., 1977. An objective method for sampling the macrophyte vegetation in lakes. Vegetatio 33: 107–118.

    Google Scholar 

  • Johnstone, I. M., 1986. Macrophyte management: an integrated perspective. New Zeal. J. Mar. Freshwat. Res. 20: 599–614.

    Google Scholar 

  • Keeley, J. E., 1982. Distribution of diurnal acid metabolism in the genus Isoetes. Am. J. Bot. 69: 254–257.

    Google Scholar 

  • Lohammar, G., 1965. The vegetation of Swedish lakes. Acta Phytogeogr. Suec. 50: 28–48.

    Google Scholar 

  • Maberly, S. C. & D. H. N. Spence, 1983. Photosynthetic inorganic carbon use by freshwater plants. J. Ecol. 71: 705–724.

    Google Scholar 

  • Mäkirinta, U., 1978. En neues ökomorphologisches lebensformen-system der aquatischen makrophyten. Phytocoenologia 4: 446–470.

    Google Scholar 

  • Nicklasson, A., 1979. Konsekvenser ur naturvårdssynspunkt av vattenståndsförändringar i oligotrofa sydsvenska sjöar. Statens Naturvårdsverk, Stockholm, PM 1185 (1979), 123 pp. [in Swedish, with English summary].

  • Nilsson, C., 1981. Dynamics of the shore vegetation of a North Swedish hydro-electric reservoir during a 5-year period. Acta Phytogeogr. Suec. 69: 1–94.

    Google Scholar 

  • Pip, E. & K. Simmons, 1986. Aquatic angiosperms at unusual depths in Shoal Lake, Manitoba-Ontario. Can. Field-Nat. 100: 354–358.

    Google Scholar 

  • Prins, H. B. A., J. F. H. Snel, R. J. Helder & P. E. Zanstra, 1980. Photosynthetic HCO3 utilization and OH excretion in aquatic angiosperms. Plant Physiol. 66: 818–822.

    Google Scholar 

  • Quennerstedt, N., 1958. Effects of water level fluctuation on lake vegetation. Verh. int. Ver. Limnol. 13: 901–906.

    Google Scholar 

  • Roelofs, J. G. M., 1983. Impact of acidification and eutrophication on macrophyte communities in soft waters in the Netherlands. I. Field observations. Aquat. Bot. 17: 139–155.

    Google Scholar 

  • Roelofs, J. G. M., J. A. A. R. Schuurkes & A. J. M. Smits, 1984. Impact of acidification and eutrophication on macrophyte communities in soft waters in the Netherlands. II. Experimental studies. Aquat. Bot. 18: 389–411.

    Google Scholar 

  • Rørslett, B., 1977. Spredning av vasspest (Elodea canadensis Michx.) på Østlandet fram til 1976. Blyttia 35: 61–66 [in Norwegian].

    Google Scholar 

  • Rørslett, B., 1984. Environmental factors and aquatic macrophyte response in regulated lakes — a statistical approach. Aquat. Bot. 19: 199–220.

    Google Scholar 

  • Rørslett, B., 1985a. Death of submerged macrophytes — actual field observations and some implications. Aquat. Bot. 22: 7–19.

    Google Scholar 

  • Rørslett, B., 1985b. Regulation impact on submerged macrophytes in the oligotrophic lakes of Setesdal, South Norway. Verh. int. Ver. Limnol. 22: 2927–2936.

    Google Scholar 

  • Rørslett, B., 1987a. Statistics of the underwater light field: an empirical model. Int. Revue ges. Hydrobiol. 72: 1–25.

    Google Scholar 

  • Rørslett, B., 1987b. A generalized spatial niche model for aquatic macrophytes. Aquat. Bot. 29: 63–81.

    Google Scholar 

  • Rørslett, B., 1987c. Niche statistics of submerged macrophytes in Tyrifjord, a large oligotrophic Norwegian lake. Arch. Hydrobiol. 110: 283–308.

    Google Scholar 

  • Rørslett, B., 1988a. Aquatic weed problems in a hydroelectric river: the R. Otra, Norway. Regul. Rivers. 2: 25–37.

    Google Scholar 

  • Rørslett, B., 1988b. An integrated approach to hydropower impact assessment. I. Environmental features of some Norwegian hydro-electric lakes. Hydrobiologia 164: 39–66.

    Google Scholar 

  • Rørslett, B. & M. Agami, 1987. Downslope limits of aquatic macrophytes: a test of the transient niche hypothesis. Aquat. Bot. 29: 83–95.

    Google Scholar 

  • Rørslett, B. & S. Hvoslef, 1986. Makrovegetasjon i norske innsjøer. II. Empiriske art-areal relasjoner. K. Norske Vidensk. Selsk. Mus. Rapp. Bot. Ser. 1986 (2): 76–87 [in Norwegian].

  • Rørslett, B., D. Berge & S. W. Johansen, 1986. Lake enrichment by submersed macrophytes: a Norwegian whole-lake experience with Elodea canadensis. Aquat. Bot. 26: 325–340.

    Google Scholar 

  • Rørslett, B., N. W. Green & K. Kvalvågnæs, 1978. Stereophotography as a tool in aquatic biology. Aquat. Bot. 4: 73–81.

    Google Scholar 

  • Rykiel, E. J., 1985. Towards a definition of ecological disturbance. Austr. J. Ecol. 10: 361–365.

    Google Scholar 

  • Samuelsson, G., 1934. Die Verbreitung der höheren Wasserpflanzen in Nordeuropa (Fennoskandia und Dänemark). Acta Phytogeogr. Suec. 6: 1–211.

    Google Scholar 

  • Sand-Jensen, K. & D. M. Gordon, 1986. Variable HCO3 affinity of Elodea canadensis Michaux in response to different HCO3 and CO2 concentrations during growth. Oecologia (Berl.) 70: 426–432.

    Google Scholar 

  • Sand-Jensen, K. & L. Rasmussen, 1978. Macrophytes and chemistry of acidic streams from lignite mining areas. Bot. Tidsskr. 72: 105–112.

    Google Scholar 

  • Seddon, B., 1972. Aquatic macrophytes as limnological indicators. Freshwat. Biol. 2: 107–130.

    Google Scholar 

  • Sheldon, R. B. & C. W. Boylen, 1977. Maximum depths inhabited by aquatic vascular plants. Am. Midl. Nat. 97: 248–254.

    Google Scholar 

  • Singer, R., D. A. Roberts & C. W. Boylen, 1983. The macrophytic community of an acidic lake in Adironack (New York, USA): a new depth record for aquatic angiosperms. Aquat. Bot. 16: 49–58.

    Google Scholar 

  • Smith, B. P., P. S. Maitland & S. M. Pennock, 1987. A comparative study of water level regimes and littoral benthic communities in Scottish lochs. Biol. Cons. 39: 291–316.

    Google Scholar 

  • Spence, D. H. N., 1967. Factors controlling the distribution of freshwater macrophytes with particular reference to the lochs of Scotland. J. Ecol. 55: 147–170.

    Google Scholar 

  • Spence, D. H. N., 1982. The zonation of plants in freshwater lakes. Adv. Ecol. Res. 12: 37–125.

    Google Scholar 

  • Spiewakowski, E. R., J. Piasecki & M. Wielicka, 1985. Morphological and anatomical changes in the petioles of Nymphaea alba L. and Nuphar luteum (L.) Sm. caused by oscillations of the water level in lakes. Acta Soc. Bot. Pol. 54: 351–359.

    Google Scholar 

  • Spiewakowski, E. R., M. Wielicka & J. Piasecki, 1987. Anatomical-morphological changes in Glyceria aquatica (L.) Wahlb. and Phalaris arundinacea L. growing in the zone inudated by the Kwiecko lake. Acta Soc. Bot. Pol. 56: 147–154.

    Google Scholar 

  • Ter Break, C. J. F. & C. W. N. Looman, 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65: 3–11.

    Google Scholar 

  • Wassén, G., 1966. Gardiken. Vegetation und Flora eines lappländischen Seeufers. K.Sv.Vetenskapsakad. Avh. Naturskyddsärend 22: 1–142.

    Google Scholar 

  • Wetzel, R. G., E. S. Brammer & C. Forsberg, 1984. Photosynthesis of submersed macrophytes in acidified lakes. I. Carbon fluxes and recycling of CO2 in Juncus bulbosus L. Aquat. Bot. 19: 329–342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rørslett, B. An integrated approach to hydropower impact assessment. Hydrobiologia 175, 65–82 (1989). https://doi.org/10.1007/BF00008476

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008476

Key words

Navigation