Skip to main content
Log in

Microbial-feeding nematodes and protozoa in soil: Their effectson microbial activity and nitrogen mineralization in decomposition hotspots and the rhizosphere

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Food web studies from a range of ecosystems have demonstrated that the fauna contributes about 30% of total net nitrogen mineralization. This results mainly from the activities of microbial-feeding microfauna (nematodes and protozoa). Microbial and microfaunal activity is concentrated at spatially discrete and heterogeneously distributed organic substrates, including the rhizosphere. The dynamics of microfauna and their effect on nutrient cycling and microbial processes at these sites is reviewed. The potential manipulation of microfauna, either as an experimental tool to further understand soil microbial ecology or as a practical means of managing nutrient flows in agroecosystems, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, B J and Mitchell, M J 1980 Role of nematode-bacterial interactions in heterotrophic systems with emphasis on sewage sludge decomposition. Oikos 35, 404–410.

    Google Scholar 

  • Anderson, J M 1987 Interactions between invertebrates and microorganisms: noise or necessity for soil processes. In Ecology of Microbial Communities. Eds. MFletcher, T R GGray and J GJones. pp 125–145. Cambridge University Press, Cambridge.

    Google Scholar 

  • Andren, O, Paustian, K and Rosswall, T 1988 Soil biotic interactions in the functioning of agroecosystems. Agric. Ecosyst. Environ. 24, 57–67.

    Article  Google Scholar 

  • Baldock, B M 1986 A method for enumerating protozoa in a variety of freshwater habitats. Microb. Ecol. 12, 187–191.

    Article  Google Scholar 

  • Bamforth, S S 1985 The role of protozoa in litters and soils. J. Protozool 32, 404–409.

    Google Scholar 

  • Beare, M H, Parmelee, R W, Hendrix, P F, Cheng, W, Coleman, D C and Crossley, D AJr 1992 Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol. Monogr. 62, 569–591.

    Article  Google Scholar 

  • Beck, L 1989 Lebensraum Buchenwaldboden 1. Bodenfauna und streuabbau-eine Ubersicht. Verh. Ges. Okol. 17, 47–54.

    Google Scholar 

  • Bouwman, L A 1988 Densities of bacterivorous nematodes in conventional and integrated arable farming explained with microcosm experiments. Nematologica 34, 16.

    Google Scholar 

  • Bryant, R J, Woods, L E, Coleman, D C, Fairbanks, B C, McClellan, J F and Cole, C V 1982 Interactions of bacterial and amoebal populations in soil microcosms with fluctuating moisture content. Appl. Environ. Microbiol. 43, 747–752.

    PubMed  Google Scholar 

  • Campbell, B D and Grime, J P 1989 A comparative study of plant responsiveness to the duration of episodes of mineral nutrient enhancement. New Phytol. 112, 261–267.

    Article  Google Scholar 

  • Caron, D A, Davis, P G and Sieburth, J McN 1989 Factors resposible for the differences in cultural estimates and direct microscopical counts of populations of bacterivorous nanoflagellates. Microb. Ecol. 18, 89–104.

    Article  Google Scholar 

  • Cayrol, J-C, Frankowski, J-P and Quiles, C 1981 Recherches sur les possibilities d'utilisation des nematodes libres pour inoculer les terres de gobetage au moyen de bacteries inductrices de la fructification. Bulletin de la Federation nationale des Syndicetes Agricoles de Cultivateurs de Champignons NS 11, 301–312.

    Google Scholar 

  • Chakraborty, S 1985 Population dynamics of amoebae in soils suppressive and non-suppressive to wheat take-all. Soil Biol. Biochem. 15, 661–664.

    Article  Google Scholar 

  • Chakraborty, S, Theodorou, G and Bowen, G D 1985 The reduction of root colonization by mycorrhizal fungi by mycophagous amoebae. Can. J. Microbiol. 31, 295–297.

    Article  Google Scholar 

  • Christensen, H, Griffiths, B S and Christensen, S 1992 Bacterial incorporation of tritiated thymidine and populations of bacteriophagous fauna in the rhizosphere of wheat. Soil Biol. Biochem. 24, 703–709.

    Article  Google Scholar 

  • Christensen, S, Griffiths, B S, Ekelund, F and Ronn, R 1992 Huge increase in bacterivores on freshly killed barley roots. FEMS Microbiol. Ecol. 86, 303–310.

    Article  Google Scholar 

  • Clarholm, M 1989 Effects of plant-bacterial-amoebal interactions on plant uptake of nitrogen under field conditions. Biol. Fertil. Soils 8, 373–378.

    Article  Google Scholar 

  • Coleman, D C, Anderson, R V, Cole, C V, Elliott, E T, Woods, L and Campion, M K 1978 Trophic interactions in soils as they affect energy and nutrient dynamics. IV. Flows of metabolic and biomass carbon. Microb. Ecol. 4, 373–380.

    Article  CAS  Google Scholar 

  • Crawford, J W, Ritz, K and Young, I M 1993 Quantification of fungal morphology, gaseous transport and microbial dynamics in soil: an integrated framework utilising fractal geometry. Geoderma 56, 157–172.

    Article  Google Scholar 

  • Darbyshire, J F and Greaves, M P 1967 Protozoa and bacteria in the rhizosphere of Sinapis alba L., Trifolium repens L. and Lolium perenne L. Can. J. Microbiol. 13, 1057–1068.

    PubMed  CAS  Google Scholar 

  • Demeure, Y, Freckman, D W and VanGundy, S D 1979 Anhydrobiotic coiling of nematodes in soil. J. Nematol. 11, 189–195.

    CAS  PubMed  Google Scholar 

  • DeRuiter, P C, Moore, J C, Zwart, K B, Bouwman, L A, Hassink, J, Bloem, J, DeVos, J A, Marinissen, J C Y, Didden, W A M, Lebbink, G and Brussaard, L 1993 Simulation of nitrogen mineralization in the below-ground food webs of two winter wheat fields. J. Appl. Ecol. 30, 95–106.

    Article  Google Scholar 

  • Elliott, E T, Hunt, H W and Walter, D E 1988 Detrital food-web interactions in North American grassland ecosystems. Agric. Ecosyst. Environ. 24, 41–56.

    Article  Google Scholar 

  • Foissner, W 1987 Soil Protozoa: Fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to the literature. Prog. Protistol. 2, 69–212.

    Google Scholar 

  • Freckman, D W 1988 Bacterivorous nematodes and organic matter decomposition. Agric. Ecosyst. Environ. 24, 195–217.

    Article  Google Scholar 

  • Freckman, D W and Baldwin, J G 1988 Nematoda. In Soil Biology Guide. Ed. D LDindal. pp 155–200. John Wiley and Sons, London.

    Google Scholar 

  • Grewel, P S 1991 Effects of Caenorhabditis elegans (Nematoda: Rhabditidae) on the spread of the bacterium Pseudomonas tolaasii in mushrooms (Agaricus bisporus). Ann. Appl. Biol. 118, 47–55.

    Google Scholar 

  • Grewel, P S and Wright, D J 1992 Migration of Caenorhabditis elegans (Nematoda:Rhabditidae) larvae towards bacteria and the nature of the bacterial stimulus. Fund. Appl. Nematol. 15, 159–166.

    Google Scholar 

  • Griffiths, B S 1986 Mineralization of nitrogen and phosphorus by mixed cultures of the ciliate protozoan Colpoda steinii, the nematode Rhabditis sp. and the bacterium Pseudomonas fluorescens. Soil Biol. Biochem. 18, 637–641.

    Article  CAS  Google Scholar 

  • Griffiths, B S 1990 A comparison of microbial feeding nematodes and protozoa in the rhizosphere of different plants. Biol. Fertil. Soils 9, 83–88.

    Article  Google Scholar 

  • Griffiths, B S 1994 Soil Nutrient Flow. In Soil Protozoa Ed. J FDarbyshire. pp 65–91. CAB International, Wallingford, Oxon.

    Google Scholar 

  • Griffiths, B S and Caul, S 1993 Migration of bacterial-feeding nematodes, but not protozoa, to decomposing grass residues. Biol. Fertil. Soils 15, 201–207.

    Article  Google Scholar 

  • Griffiths, B S and Robinson, D 1992 Root-induced nitrogen mineralization: A nitrogen balance model. Plant and Soil 139, 253–263.

    Article  CAS  Google Scholar 

  • Griffiths, B S, Ritz, K and Wheatley, R E 1994 Nematodes as indicators of enhanced microbiological activity in a Scottish organic farming system. Soil Use Manag. 10, 20–24.

    Google Scholar 

  • Griffiths, B S, Young, I M and Boag, B 1991 Nematodes associated with the rhizosphere of barley (Hordeum vulgare). Pedobiologia 35, 265–272.

    Google Scholar 

  • Griffiths B S, Van Vuuren M M I and Robinson D 1994 Microbial grazer populations in a 15N-labelled organic residue and the uptake of residue-N by wheat. Europ. J. Agron. (In press).

  • Griffiths, B S, Ekelund, F, Ronn, R and Christensen, S 1993 Protozoa and nematodes on decomposing barley roots. Soil Biol. Biochem. 25, 1293–1295.

    Article  Google Scholar 

  • Griffiths, B S, Welschen, R, VanArendonk, J J C M and Lambers, H 1992 The effect of nitrate-nitrogen supply on bacteria and bacterial-feeding fauna in the rhizosphere of different grass species. Oecologia 91, 253–259.

    Article  Google Scholar 

  • Guirande C, Bonnel, L and Abirached, M 1990 Landspreading of pig manures. IV. Effect on soil nematodes. In Effluents from Livestock. Ed. J K RGasser. pp 109–119. Applied Science Publishers Ltd., London.

    Google Scholar 

  • Heath, G W and Arnold, M K 1966 Studies in leaf litter breakdown. Part II. Breakdown rate of ‘sun’ and ‘shade’ leaves. Pedobiologia 6, 238–242.

    Google Scholar 

  • Heal O W and Felton M J 1970 Soil amoebae: their food and their reaction to microflora exudates. In Animal Populations in Relation to their Food resources. Ed. A Watson. British Ecological Society Symposium 10, 145–162.

  • Henderson, V E and Katznelson, H 1961 The effect of plant roots on the nematode population of the soil. Can. J. Microbiol 7, 163–167.

    Article  PubMed  CAS  Google Scholar 

  • Hofman, T W and s'Jacob, J J 1989 Distribution and dynamics of mycophagous and microbivorous nematodes in potato fields and their relationship to some food sources. Ann. Appl. Biology 115, 291–298.

    Google Scholar 

  • Hunt, H W, Coleman, D C, Ingham, E R, Ingham, R E, Elliott, E T, Moore, J C, Rose, S L, Reid, C P P and Morley, C R 1987 The detrital food web in a shortgrass parairie. Biol. Fertil. Soils 3, 57–68.

    Article  Google Scholar 

  • Ingham, E R 1985 Review of the effects of 12 selected biocides on target and non-target soil organisms. Crop Protect. 4, 3–32.

    Article  CAS  Google Scholar 

  • Ingham, E R and Coleman, D C 1984 Effects of streptomycin, cycloheximide, fungizone, captan, carbofuran, cygon and PCNB on soil microorganisms. Microb. Ecol. 10, 345–358.

    Article  CAS  Google Scholar 

  • Ingham, E R, Coleman, D C and Moore, J C 1989 An analysis of foodweb structure and function in a shortgrass prairie, a mountain meadow, and a lodgepole pine forest. Biol. Fertil. Soils 8, 29–37.

    Article  Google Scholar 

  • Ingham, E R, Trofymow, J A, Ames, R N, Hunt, H W, Morley, C R, Moore, J C and Coleman, D C 1986 Trophic interactions and nitrogen cycling in a semi-arid grassland soil. I. Seasonal dynamics of the natural populations, their interactions and effects on nitrogen cycling. J. Appl. Ecol. 23, 597–614.

    Article  Google Scholar 

  • Ingham, R E and Detling, J K 1990 Effects of root-feeding nematodes on aboveground net primary production in a North American grassland. Plant and Soil 121, 279–281.

    Article  Google Scholar 

  • Ingham, R E, Trofymow, J A, Ingham, E R and Coleman, D C 1985a Interactions of bacteria, fungi and their nematode grazers: effects on nutrient cycling and plant growth. Ecol. Monogr. 55, 119–140.

    Article  Google Scholar 

  • Ingham, R E, Anderson, R V, Gould, W D and Coleman, D C 1985b Vertical distribution of nematodes in a short grass prairie. Pedobiologia 28, 155–160.

    Google Scholar 

  • Jones, D L and Darrah, P R 1992 Re-sorption of organic components by roots of Zea mays L. and its consequences in the rhizosphere. 1. Re-sorption of 14C labelled glucose, mannose and citric acid. Plant and Soil 143, 259–266.

    Article  CAS  Google Scholar 

  • Kuikman, P J, VanElsas, J D, Jansen, A G, Burgers, S L G E and VanVeen, J A 1990 Population dynamics and activity of bacteria and protozoa in relation to their spatial distribution in soil. Soil Biol. Biochem. 22, 1063–1073.

    Article  Google Scholar 

  • Levrat, P, Pussard, M and Alabouvette, C 1989 Action d'Acanthamoeba castellanii (Protozoa, Amoebida) sur la production de siderophores par la bacteria Pseudomonas putida. C.R. Acad. Sci. 308, series III, 161–164.

    Google Scholar 

  • Lousier, J D and Bamforth, S S 1988 Soil protozoa. In Soil Biology Guide. Ed. D LDinal. pp 97–136. John Wiley and Sons, London.

    Google Scholar 

  • Lynch, J M (Ed.) 1990 The Rhizosphere. John Wiley and Sons, Chichester. 458 p.

    Google Scholar 

  • Mojtahedi, H, Santo, G S and Ingham, R E 1993 Suppression of Meloidogyne chitwoodi with Sudangrass cultivars as green manure. J. Nematol. 25, 303–311.

    CAS  PubMed  Google Scholar 

  • Opperman, M H, Wood, M and Harris, P J 1989 Changes in microbial populations following the application of cattle slurry to soil at two temperatures. Soil Biol. Biochem. 21, 263–268.

    Article  Google Scholar 

  • Opperman, M H, Wood, M, Harris, P J and Cherrett, C P 1993 Nematode and nitrate dynamics in soils treated with cattle slurry. Soil Biol. Biochem. 25, 19–24.

    Article  Google Scholar 

  • Parker, L W, Freckman, D W, Steinberger, V, Driggers, L and Whitford, W G 1984 Effects of simulated rainfall and litter quantities on desert soil biota: soil respiration, microflora and protozoa. Pedobiologia 27, 185–195.

    Google Scholar 

  • Parmelee, R W, Beare, M H and Blair, J M 1989 Decomposition and nitrogen dynamics of surface weed residues in no-tillage agroecosystems under drought conditions: influence of resource quality on the decomposer community. Soil Biol. Biochem. 21, 97–103.

    Article  Google Scholar 

  • Persson T 1983 Influence of soil animals on nitrogen mineralization in a northern Scots pine forest. In Trends in soil biology. Eds. Ph Lebrun, H M Andre, A de Medts, C Gregoire-Wibo and G Wauthy. pp 117–126. Proc. of VIII Intl. Colloquium of Soil Zoology, Louvain-la-Neuve, Belgium. Imprimeur Dieu-Brichart.

  • Petersen, S O, Henriksen, K and Blackburn, T H 1991 Coupled nitrification-denitrification associated with liquid manure in a gel-stabilised model system. Biol. Fertil. Soils 12, 19–27.

    Article  CAS  Google Scholar 

  • Poinar, G OJr 1979 Nematodes for biological control of insects. CRC Press, Boca Raton, Florida, 277 p.

    Google Scholar 

  • Pradhan, G B, Senapati, B K and Dash, M C 1988 Relationship of soil nematode populations to Carbon: Nitrogen in tropical habitats and their role in decomposition of litter amendments. Rev. Ecol. Biol. Sol 25, 59–76.

    Google Scholar 

  • Pussard, M and Delay, F 1985 Population dynamics of soil free living amoeba (Amoebida, Protozoa). I. Evaluation of the degree of activity in microcosms and preliminary observations on the population dynamics of some species. Protistologica 21, 5–16.

    Google Scholar 

  • Robertson, W M, Birch, A N E, Fellows, L E and Geoghegan, I E 1992 Control of Meloidogyne javanica, M. incognita and Globodera rostochiensis by fructose, glucose, sucrose and mannose. Nematologica 38, 342.

    Google Scholar 

  • Rosswall, T and Paustian, K 1984 Cycling of nitrogen in modern agricultural systems. Plant and Soil 76, 3–21.

    Article  CAS  Google Scholar 

  • Russom, Z, Odihirin, R A and Matute, M M 1993 Comparison of population density of plant parasitic and free-living nematodes in earthworm casts and adjacent soil of fallow and cultivated land in South Eastern Nigeria. Ann. Appl. Biol. 123, 331–336.

    Article  Google Scholar 

  • Santos, P F, Phillips, J and Whitford, W G 1981 The role of mites and nematodes in early stages of buried litter decomposition in a desert. Ecology 62, 664–669.

    Article  Google Scholar 

  • Schaefer, M 1989 Die Bodentiere eines Kalkbuchenwaldes: ein Okosystemforschungsprojekt (zur Funktion der Fauna in einem mullbuchenwald 1). Verh. Ges. Okol. 17, 203–212.

    Google Scholar 

  • Sohlenius, B 1968 Influence of microorganisms and temperature upon some Rhabditid nematodes. Pedobiologia 8, 137–145.

    Google Scholar 

  • Sohlenius, B 1990 Influence of cropping system and nitrogen input on soil fauna and microorganisms in a Swedish arable soil. Biol. Fertil. Soils 9, 168–173.

    Article  Google Scholar 

  • Sohlenius, B 1993 Chaotic or deterministic development of nematode populations in pine forest humus incubated in the laboratory. Biol. Fertil. Soils 16, 262–268.

    Article  Google Scholar 

  • Sohlenius, B and Bostrom, S 1984 Colonisation, population development and metabolic activity of nematodes in buried barley straw. Pedobiologia 26, 67–78.

    Google Scholar 

  • Sohlenius, B and Sandor, A 1987 Vertical distribution of nematodes in arable soil under grass (Festuca pratensis) and barley (Hordeum vulgare). Biol. Fertil. Soils 3, 19–25.

    Article  Google Scholar 

  • Steinberger, Y, Freckman, D W, Parker, L W and Whitford, W G 1984 Effects of simulated rainfall and litter quantities on desert soil biota: nematodes and microarthropods. Pedobiologia 26, 267–274.

    Google Scholar 

  • Stout, J D 1980 The role of protozoa in nutrient cycling and energy flow. Advan. Microb. Ecol. 4 1–50.

    Google Scholar 

  • Stout, J D and Heal, O W 1967 Protozoa. In Soil Biology. Eds. ABurgess and FRaw. pp 149–196. Academic Press, London.

    Google Scholar 

  • Sundin, P, Valeur, A, Olsson, S and Odham, G 1990 Interactions between bacteria-feeding nematodes and bacteria in the rape rhizosphere: effects on root exudation and distribution of bacteria. FEMS Microb. Ecol. 73, 13–22.

    Article  Google Scholar 

  • Tajowski, K, Santruckova, H, Hanel, L, Balik, V and Lukesova, A 1992 Decomposition of faecal pellets of the millpede Glomeris hexasticha (Diplopoda) in forest soil. Pedobiologia 36, 146–158.

    Google Scholar 

  • VanNoordwijk, M, DeRuiter, P C, Zwart, K B, Bloem, J, Moore, J C, VanFaassen, H G and Burgers, S L G E 1993 Synlocation of biological activity, roots, cracks and recent organic inputs in a sugar-beet field. Geoderma 56, 265–276.

    Article  Google Scholar 

  • Vargas, R 1990 Soil microbiology advances: protozoa and their importance in nitrogen mineralization. Agron. Costarricense 14, 121–143.

    Google Scholar 

  • Vargas, R and Hattori, T 1986 Protozoan predation of bacterial cells in soil aggregates. FEMS Microb. Ecol. 38, 233–242.

    Article  Google Scholar 

  • Verhoef, H A and Brussaard, L 1990 Decomposition and nitrogen mineralization in natural and agroecosystems: The contribution of soil animals. Biogeochemistry 11, 175–211.

    Google Scholar 

  • Visser, S 1985 Role of the soil invertebrates in determining the composition of soil microbial communities. In Ecological Interactions in Soil. Eds. A HFitter, D JRead and M BUsher. pp 297–317, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Wasilewski, L and Bienkowski, P 1985 Experimental study on the occurrence and activity of soil nematodes in decomposition of plant material. Pedobiologia 28, 41–57.

    Google Scholar 

  • Wasilewska, L, Paplinska, E and Zielinski, J 1981 The role of nematodes in decomposition of plant material in a rye-field. Pedobiologia 21, 182–191.

    Google Scholar 

  • Weekers, P H H, Bodelier, P L E, Wijen, J P H and Vogels, G D 1993 Effects of grazing by the free-living soil amoebae Acanthamoeba castellanii, Acanthamoeba polyphaga and Hartmanella vermiformis on various bacteria. Appl. Environ. Microbiol. 59, 2317–2319.

    PubMed  Google Scholar 

  • Wright, D H and Coleman, D C 1988 Soil faunal vs. fertilization effects on plant nutrition: results of a biocide experiment. Biol. Fertil. Soils 7, 46–52.

    Article  Google Scholar 

  • Yeates, G W 1981 Soil nematode populations depressed in the presence of earthworms. Pedobiologia 22, 191–195.

    Google Scholar 

  • Zwart, K B and Brussaard, L 1991 Soil fauna and cereal crops. In The Ecology of Temperate Cereal Fields. Eds. L GFirbank, NCarter, J FDarbyshire and G RPotts. pp 139–168. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Zwart, K B, Kuikman, P J and VanVeen, J A 1994 Rhizosphere protozoa: Their significance in nutrient dynamics. In Soil Protozoa. Ed. J FDarbyshire. pp 93–121 CAB International, Wallingford, Oxon.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, B.S. Microbial-feeding nematodes and protozoa in soil: Their effectson microbial activity and nitrogen mineralization in decomposition hotspots and the rhizosphere. Plant Soil 164, 25–33 (1994). https://doi.org/10.1007/BF00010107

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00010107

Key words

Navigation