Skip to main content
Log in

Hyporheic biofilms — a potential food source for interstitial animals

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Glass-beads (diam. = 250 µm) were buried 10 cm deep in the sediment of a stream. After an exposure of eight weeks, bacterial densities on the beads varied between 2.7 × 105 and 2.4 × 107/cm2, and the length of the fungal mycelium between 0.2 and 5.3 mm/cm2. Bacterial densities did not show any correlation with the DOC content of the water, but were positively correlated with respiration on the beads. Fungal mycelium was negatively correlated with water temperature. Acid hydrolysis of stream-exposed beads released sugars and amino acids, whose combined carbon content exceeded that of the microbial cells by a factor of at least 4. Gut extracts of Gammarus tigrinus and Tipula caloptera released amino acids and sugars from stream-exposed beads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bärlocher, F., 1987. Aquatic hyphomycete spora in 10 streams of New Brunswick and Nova Scotia. Can. J. Bot. 65: 76–79.

    Article  Google Scholar 

  • Bärlocher, F., P. G. Tibbo & S. H. Christie, 1988. Formation of phenol-protein complexes and their use by two stream invertebrates. Hydrobiologia, in press.

  • Bott, T. L., L. A. Kaplan & F. T. Kuserk, 1984. Benthic bacterial biomass supported by streamwater dissolved organic matter. Microb. Ecol. 10: 335–344.

    Article  CAS  Google Scholar 

  • Crocker, M. T. & J. L. Meyer, 1987. Interstitial dissolved organic carbon in sediments of a southern Appalachian headwater stream. J. N. Am. Benthol. Soc. 6: 159–167.

    Article  Google Scholar 

  • Edwards, R. T., 1987. Sestonic bacteria as a food source for filtering invertebrates in two southeastern blackwater rivers. Limnol. Oceanogr. 32: 221–234.

    Article  CAS  Google Scholar 

  • Geesey, G. G., R. Mutch & J. W. Costerton, 1978. Sessile bacteria: An important component of the microbial population in small mountain streams. Limnol. Oceanogr. 23: 1214–1223.

    CAS  Google Scholar 

  • Geesey, G. G., W. T. Richardson,H. G. Yeomans, R. T. Irvin & J. W. Costeron, 1977. Microscopic examination of natural sessile bacterial populations from an alpine stream. Can. J. Microbiol. 23: 1733–1736.

    Article  PubMed  CAS  Google Scholar 

  • Harborne, J. B., 1984. Phytochemical methods. Chapman & Hall, London.

    Google Scholar 

  • Hynes, H.B. N., 1983. Groundwater and stream ecology. Hydrobiologia 100: 93–99.

    Article  Google Scholar 

  • Kaplan, L. A. & T. L. Bott, 1983. Microbial heterotrophic utilization of dissolved organic matter in a Piedpont stream. Freshwat. Biol. 13: 363–377.

    Article  Google Scholar 

  • Kaplan, L. A. & T. L. Bott, 1985. Acclimation of stream-bed heterotrophic microflora: metabilic responses to dissolved organic matter. Freshwat. Biol. 15: 479–492.

    Article  CAS  Google Scholar 

  • Lee, D. R. & J. A. Cherry, 1978. A field exercise on groundwater flow using seepage meters and minipiezometers..J. Geol. Educ. 27: 6–10.

    Google Scholar 

  • Lock, M. A., 1981. River epilithon — a light and organic energy transducer. In Lock, M. A. & D. D. Williams (eds), Perspectives in running water ecology. Plenum Press, New York: 3–40.

    Google Scholar 

  • Lock, M. A., R. R. Wallace, J. W. Costerton, R. M. Ventullo & S. E. Charlton, 1984. River epilithon: toward a structural-functional model. Oikos 42: 10–22.

    Google Scholar 

  • Martin, M. M. & J. S. Martin, 1984. Surfactants: their role in preventing the precipitation of proteins by tannins in insect guts. Oecologia (Berl) 61: 342–345.

    Article  Google Scholar 

  • Martin, M. M., J. S. Martin, J. J. Kukor & R. W. Merritt, 1980. The digestion of protein and carbohydrate by the stream detritivore, Tipula abdominalus (Diptera, Tipulidae). Oecologia (Berl) 46: 360–364.

    Google Scholar 

  • Meyer, J. L., R. T. Edwards & R. Risley,1987. Bacterial growth on dissolved organic carbon from a blackwater river. Microb. Ecol. 13: 13–29.

    Article  CAS  Google Scholar 

  • Mickleburgh, S., M. A. Lock & T. E. Ford, 1984. Spatial uptake of dissolved organic carbon in river beds. Hydrobiologia 108: 115–119.

    Article  CAS  Google Scholar 

  • Nelson, N., 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. biol. Chem. 153: 375–380.

    CAS  Google Scholar 

  • Rosen, H., 1957. A modified ninhydrin colorimetric analysis for amino acids. Arch. Bioch. Biophys. 67: 10–15.

    Article  CAS  Google Scholar 

  • Rounick, J. S. & M. J. Winterbourn, 1983. The formation, structure and utilization of stone surface organic layers in two New Zealand streams. Freshwat. Biol. 13: 57–72.

    Article  CAS  Google Scholar 

  • Rutherford, J. E. & H. B. N. Hynes, 1987. Dissolved organic carbon in streams and groundwater. Hydrobiologia 154: 33–48.

    Article  CAS  Google Scholar 

  • Somogyi, M., 1952. Notes on sugar determination. J. biol. Chem. 195: 19–23.

    CAS  Google Scholar 

  • Williams, D. D., 1981. Migrations and distributions of stream benthos. In Lock, M. A. & D. D. Williams (eds), Perspectives in running water ecology. Plenum Press, New York: 155–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barlocher, F., H. Murdoch, J. Hyporheic biofilms — a potential food source for interstitial animals. Hydrobiologia 184, 61–67 (1989). https://doi.org/10.1007/BF00014302

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00014302

Key words

Navigation