Skip to main content
Log in

Composition of organic matter in sediments facing a river estuary (Tyrrhenian Sea): relationships with bacteria and microphytobenthic biomass

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The relationships between the biochemical composition of sediment organic matter and bacteria and microphytobenthic biomass distribution, were investigated along the coast of Northern Tuscany (Tyrrhenian Sea). Organic matter appeared to be of highly refractory composition. Among the three main biochemical classes, proteins were the major component (0.96 mg g-1 sediment d.w.) followed by total carbohydrates (0.81 mg g-1 sediment d.w.) and lipids (8.1 µg g-1 sediment d.w.). Bacterial number in surface sediments (0–2 cm) ranged from 1.7 to 24.5 × 108 cells g-1 of sediment dry weight showing a strong decrease with sediment depth. In surface sediments, significant correlations were found between bacterial biomass and protein concentration. Bacterial activity (measured by the frequency of dividing cells) was significantly related to lipid concentration. Bacterial and microphytobenthic biomass accounted for 3.1 and 18.1% respectively of the sediment organic carbon. In surface sediments bacterial lipids accounted, on average, for 27 % of total lipids, whereas bacterial proteins and carbohydrates accounted for 2.5 and 0.5% of total proteins and carbohydrates, respectively.

The benthic degradation process indicated that lipids were a highly degradable compound (about 35% in the top 10 cm). Carbohydrate decreased for 25.6% in the top 10 cm, whereas proteins increased with depth, thus indicating that this compound may resist to diagenetic decomposition.

These data suggest that specific organic compounds need to be measured rather than bulk carbon and nitrogen measurements in order to relate microbial biomass to the quality of organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertelli, G., M. Fabiano, R. Danovaro & S. Fraschetti, 1992. Bacteria and Macrofauna in different biocoenoses (Ligurian Sea). Atti IX Congr. A.I.O.L. 387–394.

  • Alongi, D. M., 1987. The distribution and composition of deep sea meiobenthos in a bathyal region of the western Coral Sea. Deep-Sea Res. 34: 1245–1254.

    Article  Google Scholar 

  • Alongi, D. M., 1990. Bacterial growth rates, production and estimates of detrital carbon utilization in deep-sea sediments of the Solomon and Coral Seas. Deep-Sea Res. 37: 731–746.

    Article  Google Scholar 

  • Alongi, D. M. & M. Pichon, 1988. Bathyal meiobenthos of the western Coral Sea: distribution and abundance in relation to microbial standing stocks and environmental factors. Deep-Sea Res. 35: 491–503.

    Article  Google Scholar 

  • Amon, R. M. W. & G. J. Herndl, 1991. Deposit feeding and sediment: I. Interrelationship between Holothuria tubulosa (Holothuroidea, Echinodermata) and the sediment microbial community. P.S.Z.N.I: Mar. Ecol. 12: 163–174.

    Google Scholar 

  • Barlocher, F., J. Gordon & J. R. Ireland, 1988. Organic composition of seafoam and its digestion by Corophium volutator (Pallas). J. exp. mar. Biol. Ecol. 115: 179–186.

    Article  Google Scholar 

  • Basford, D. & A. Eleftheriou, 1988. The benthic environment of the North Sea (56° to 61°N). J. mar. Biol. U.K. 68: 125–141.

    Google Scholar 

  • Bianchi, M. A. G. & A. J. M. Bianchi, 1982. Statistical sampling of bacterial strains and its use in bacterial diversity measurement. Microb. Ecol. 8: 61–69.

    Google Scholar 

  • Bianchi T. S. & J. S. Levinton, 1984. The importance of microalgae, bacteria and particulate organic matter in the somatic growth of Hydrobia totteni. J. mar. Res. 42: 431–443.

    Google Scholar 

  • Bligh, E. G. & W. Dyer, 1959. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    Google Scholar 

  • Bratbak, G., 1985. Bacterial volume and biomass estimations. Appl. Envir. Microbiol. 49: 1488–1493.

    Google Scholar 

  • Bretschko, G. & M. Leichtfried, 1987. The determination of organic matter in river sediments. Arch. Hydrobiol. Suppl. 68: 403–417.

    Google Scholar 

  • Buchanan, J. B., 1971. Sediment. In N. A. Holme & A. D. McIntyre (eds), Methods for the study of marine benthos, Blackwell, Oxford: 30–52.

    Google Scholar 

  • Buchanan, J. B. & M. R. Longbottom, 1970. The determination of organic matter in marine muds: the effect of the presence of coal and the routine determination of proteins. J. exp. mar. Biol. Ecol. 5: 158–169.

    Article  Google Scholar 

  • Calow, P., 1975. The feeding strategies of two fresh water gasteropods: Ancyclos fluviatilis Mull. and Planorbis contortui Linn. (Pulmonata) in terms of ingestion rates and absorption efficiencies. Oecologia (Berl.) 20: 33–4.

    Google Scholar 

  • Cammen, L. M., 1980. The significance of microbial carbon in the nutrition of the deposit-feeding polychaete Nereis succinea. Mar. Biol. 61: 9–20.

    Google Scholar 

  • Cammen, L. M., P. Rublee & J. Hobbie, 1978. The significance of microbial carbon in the nutrition of Nereis succinea and other aquatic deposit-feeders. Univ. North Carolina Sea Grant Publ. UNC-SG 78–12: 1–84.

  • Cough, M. A. & R. F. C. Mantoura, 1990. Advanced analytical methods for the characterization of macromolecular marine organic matter. In E. Hilf & D. Tuszynski (eds), Mass spectrometry of large non volatile molecules for marine organic chemistry. World Scientific, London.

    Google Scholar 

  • Craig, D., R. J. Ireland & F. Barlocher, 1985. Seasonal variation in the organic composition of seafoam. J. exp. mar. Biol. Ecol. 130: 71–80.

    Article  Google Scholar 

  • Christian, R. R. & R. L. Wetzel, 1978. Interaction between substrate, microbes, and consumers of Spartina detritus in estuaries. In M. L. Wiley (ed.), Estuarine interactions. Academic Press, New York: 377–402.

    Google Scholar 

  • Dale, N. G., 1974. Bacteria in intertidal sediments: Factors related to their distribution. Limnol. Oceanogr. 19: 509–517.

    Google Scholar 

  • Danovaro, R. & M. Fabiano, 1990. Batteri, pigmenti clorofilliani, lipidi, protidi e carboidrati nel sedimento. Data Rep. Istituto Scienze Ambientali Marine 32: 1–15.

    Google Scholar 

  • Danovaro, R., M. Fabiano & N. Della Croce, 1993. Labile organic matter and microbial biomasses in deep sea sediments (Eastern Mediterranean Sea). Deep-Sea Res. 40: 953–965.

    Article  Google Scholar 

  • Daumas, R., D. Sautriot & D. Calmet, 1983. Evolution des constituants labiles de la matièe organique dans les sédiments profonds de diverses marges continentales. D'Orgon à Misedor. C.N.R.S. Paris (ed.), Géochimie organique des sédiments marins: 99–150.

  • De Flaun, M. F. & L. M. Mayer, 1983. Relationships between bacteria and grain surface in intertidal sediments. Limnol. Oceanogr. 28: 873–881.

    Google Scholar 

  • Delille, D., L. D. Guidi & Cahet, 1990. Temporal variations of benthic bacterial microflora on the North Western Mediterranean continental shelf and slope P.S.Z.N.I. Mar. Ecol. 11: 105–115.

    Google Scholar 

  • Fabiano, M., G. Alabisio, G. Mercenaro & O. Mazzotti, 1992. Analysis of organic matter in the water facing the river Arno estuary. Revue Int. Ocean. Med. 105–106: 62–70.

    Google Scholar 

  • Fell, J. W., I. M. Master & S. Y. Newell, 1980. Laboratory model of potential role of fungi in the decomposition of red mangrove (Rhizophora mangle L.) leaf litter. In K. R. Tenore & B. C. Coull (eds), Marine Benthic Dynamics, University of South Carolina Press, Columbia S.C.: 347–372.

    Google Scholar 

  • Fichez, R., 1991. Composition and fate of organic matter in submarine cave sediments; implications for the biogeochemical cycle of organic carbon. Oceanol. Acta 14: 369–377.

    Google Scholar 

  • Fry, J. C., 1987. Detritus and microbial ecology in aquaculture. In: D. J. W. Moriarty & R. S. V. Pullin (eds), ICLARM Conference Proceedings. 14: 83–122.

  • Fry, J. C., 1988. Determination of biomass. In B. Austin, J. Wiley & Sons Ltd. (eds), Meth. aquat. Bact.: 27–72.

  • Gerchacov, S. M. & P. G. Hatcher, 1972. Improved technique for analysis of carbohydrates in sediments. Limnol. Oceanogr. 17: 938–943.

    Google Scholar 

  • Graf, G., R. Schulz, R. Peinert & L. A. Meyer-Reil, 1983. Benthic response to sedimentation events during autumn to spring at a shallow water station in Western Kiel Bay 1. Analysis of processes on a community level. Mar. Biol. 77: 235–246.

    Google Scholar 

  • Graf, G. & L. A. Meyer-Reil, 1985. Remineralization of organic substances on benthic surfaces in the intertidal reef area off Mactan, Cebu, Philippines. The Philippine Scientist 22: 42–46.

    Google Scholar 

  • Griffiths, R. P., S. S. Hayasaka, T. M. McNamara & R. Y. Morita, 1978. Relative microbial activity and bacteria concentrations in water and sediment samples taken in the Beaufort Sea. Can. J. Microbiol. 24: 1217–1226.

    PubMed  Google Scholar 

  • Hanson, R. B., 1980. Measuring microbial activity to assess detrital decay and utilization. In: K. R. Tenore & B. C. Coull (eds), Marine Benthic Dynamics, University of South Carolina Press, Columbia S.C.: 347–354.

    Google Scholar 

  • Harrison, P. D. & K. H. Mann, 1975. Detritus formation from celgrass (Zoostera marina): the relative effects of fragmentation, leaching and decay. Limnol. Oceanogr. 20: 924–934.

    Google Scholar 

  • Hartree, E. F., 1972. Determination of proteins: a modification of the Lowry method that give a linear photometric response. Anal.Biochem. 48: 422–427.

    PubMed  Google Scholar 

  • Herndl, G. L., P. Peduzzi & N. Fanuko, 1989. Benthic community metabolism and microbial dynamics in the Gulf of Trieste (Northern Adriatic Sea). Mar. Ecol. Prog. Ser., 53: 169–178.

    Google Scholar 

  • Herndl, G., J. Faganeli, N. Fanuko, P. Peduzzi & V. Turk, 1987. Role of bacteria in the carbon and nitrogen flow between water-column and sediment in a shallow marine bay (Bay of Piran, Northern Adriatic Sea). P. S.Z.N.I. Mar. Ecol. 8: 221–236.

    Google Scholar 

  • Johnson, R. G., 1977. Vertical variation in particulate organic matter in the upper twenty centimeters of marine sediments. J. Mar. Res. 35: 272–282.

    Google Scholar 

  • Jonge, V.E. De, 1980. Fluctuations in the organic carbon to chlorophyll a ratios for estuarine benthic diatom populations. Mar. Ecol. Prog. Ser. 2: 345–353.

    Google Scholar 

  • Jonge, V. E. De, 1985. Occurrence of "epipsammic" diatoms populations: a result of interaction between physical sorting of sediment and certains properties of diatom species. Estuar. coast. Shelf Sci. 21: 607–622.

    Google Scholar 

  • Jonge, V. E. De & Van Den Bergs, 1987. Experiments on resuspension of estuarine sediments controlling benthic diatoms. Estuar. coast. Shelf Sci. 24: 725–740.

    Google Scholar 

  • Khripounoff, A., P. Crassous, D. Desbruyeres & J.-R. Le Cox, 1985. Le flux organique particulaire et ses transformations à l'interface eau-sediment. In L. Laubier & C. Monniot (eds), Peuplements profonds du Golfe de Gascogne, IFREMER Publications, Brest, France: 101–118.

    Google Scholar 

  • Koop, K. & C. L. Griffiths, 1982. The relative significance of bacteria, meio- and macrofauna on an exposed sandy beach. Mar. Biol., 66: 295–300.

    Google Scholar 

  • Liu, D., 1976. Carbohydrates in lake Ontario sediments. In J. E. Nriagu (ed.), Environmental biogeochemistry, Ann Arbor Science: 1852–190.

  • Lopez, G. R., L. S. Levinton & L. B. Slobodkin, 1977. The effects of grazing by the detritivore Orchestia grillus on Spartina litter and its associated microbial community. Oecologia (Berl.), 20: 111–127.

    Google Scholar 

  • Lorenzen, C. & J. Jaffrey, 1980. Determination of chlorophyll in sea water. Unesco Technical Papers in Marine Science 35: 1–20.

    Google Scholar 

  • Luria, S. E., J. S. Gould & S. Singer, 1981. A view of life, 806 pp. Menlo Park California: Benjamin/Cummings Publishing Co. Inc.

    Google Scholar 

  • Marsh, J. B. & W. J. Weinstein, 1959. A simple charring method for determination of lipids. J. Lip. Res. 7: 574–576.

    Google Scholar 

  • Meyer-Reil, L. A., 1983. Benthic response to sedimentation events during autumn to spring at a shallow water station in the Western Kiel Bight. II Analysis of benthic bacterial populations. Mar. Biol. 77: 247–256.

    Google Scholar 

  • Meyer-Reil, L. A., R. Dawson, G. Liebenzeit & H. Tiedge, 1978. Fluctuation and interactions of bacterial activity in sandy beach sediments and overlying waters. Mar. Biol. 48: 161–171.

    Google Scholar 

  • Meyer-Reil, L. A., M. Bolter, R. Dawson, G. Liebenzeit, H. Szwerinski & K. Wolter, 1980: Interrelationships between microbiological and chemical parameters of sandy beach sediments, a summer aspect. Appl. Envir. Microbiol. 39: 797–802.

    Google Scholar 

  • Meyer-Reil, L. A., W. Shramm & G. Wefer, 1981. Microbiology of a tropical coral reef system (Mactan; Philippines). Kieler Meeresforsch., Sonderheft 5: 431–432.

    Google Scholar 

  • Mills, E. L., 1975. Benthic organisms and the structure of marine ecosystems. J. Fish. Res. Bd Can. 32: 1657–1663.

    Google Scholar 

  • Montagna, P. A., 1982. Sampling design and enumeration statistics for bacteria extracted from marine sediments. Appl. envir. Microbiol. 43: 1366–1372.

    Google Scholar 

  • Montagna, P. A., C. B. Coull, T. L. Herring & B. W. Dudley, 1983. The relationship between abundances of Meiofauna and their suspected microbial food (Diatoms and Bacteria). Estuar. coast. Shelf Sci. 17: 381–394.

    Google Scholar 

  • Newell, R. C., 1965. The role of detritus in the nutrition of marine deposit feeders, the prosobranch Hydrobia ulvae the bivalve Macoma baltica. Proc. Zool. Soc. Lond. 144: 25–45.

    Google Scholar 

  • Newell, R. C. & J. G. Field, 1983. The contribution of bacteria and detritus to carbon and nitrogen flow in a benthic community. Mar. Biol. Letters 4: 23–36.

    Google Scholar 

  • Oppenheimer, C. H. & C. E. ZoBell, 1952. The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J. mar. Res. 11: 10–18.

    Google Scholar 

  • Palumbo, R., Ferguson & P. A. Rublee, 1984. Size of suspended bacterial cells and association of heterotrophic activity with size fractions of particles in estuarine and coastal waters. Appl. envir. Microbiol. 48: 157–164.

    Google Scholar 

  • Parker, J. G., 1983. A comparison of methods used for the measurement of organic matter in marine sediment. Chem. Ecol. 1: 201–210.

    Google Scholar 

  • Plante-Cuny, M. R. & R. Plante, 1986. Benthic marine diatoms as food for benthic marine animals. In Proc. 8th Symp. Recent. Fos. Diatoms, M. Ricard & O. Koeltz (eds), Koenigstein: 525–537.

  • Plante, R., M. R. Plante-Cuny & J. P. Reys, 1986. Photosynthetic pigments of sandy sediments on the north Mediterranean coast: their spatial distribution and its effect on sampling strategies. Mar. Ecol. Prog. Ser. 34: 133–141.

    Google Scholar 

  • Rice, D. L., 1982. The detritus nitrogen problem: new observations and perspectives from organic geochemistry. Mar. Ecol. Prog. Ser. 9: 153–162.

    Google Scholar 

  • Rice, D. L. & K. R. Tenore, 1981. Dynamics of carbon and nitrogen during the decomposition of detritus derived from estuarine macrophytes. Estuar. coast. Shelf. Sc. 13: 681–690.

    Google Scholar 

  • Sandstrom, M. W., F. Tirendi & A. Nott, 1986. Direct determination of organic carbon in modern reef sediment and calcareous organisms after dissolution of carbonate. Mar. Geol. 70: 321–329.

    Article  Google Scholar 

  • Sargent, J. R., C. C. E. Hopkins, J. V. Seiring & A. Youngson, 1983. Partial characterization of organic material in surface sediments from Balsfjorden, nothern Norway, in relation to its origin and nutritional value for sediment-ingesting animals. Mar. Biol. 76: 87–94.

    Google Scholar 

  • Tacon, A. G. & P. N. Ferns, 1978/79: Activated sewage sludge, a potential animal foodstuff. I. Proximate and mineral content: seasonal variation. Agriculture Envir., Amsterdam (Elsevier) 4: 257–269.

    Google Scholar 

  • Tanoue, E. & N. Handa, 1987. Monosaccharide composition of marine particles and sediments from the Bering Sea and North Pacific. Oceanol. Acta 10: 91–99.

    Google Scholar 

  • Tenore, K. R., 1975. Detrital utilization by the polychaete Capitella capitata. J. mar. Res. 33: 261–274.

    Google Scholar 

  • Tenore, K. R., 1977. Differential availability of aged detritus from different sources to the polychaete, Capitella capitata. Mar. Biol. 44: 51–55.

    Google Scholar 

  • Tenore, K. R., L. Cammen, S. E. G. Findlay & N. Phillips, 1982. Perspectives of research on detritus: do factors controlling the availability of detritus to macroconsumers depend on its source? J. mar. Res. 40: 473–489.

    Google Scholar 

  • Tunnicliffe, V. & M. J. Risk, 1977. Relationships between the bivalve Macoma baltica and bacteria in inter-tidal sediments: Minas Basin, Bay of Fundy. J. mar. Res. 35: 499–507.

    Google Scholar 

  • Weise, W. & G. Reinheimer, 1979. Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine sediments. Microb. Ecol. 4: 175–188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabiano, M., Danovaro, R. Composition of organic matter in sediments facing a river estuary (Tyrrhenian Sea): relationships with bacteria and microphytobenthic biomass. Hydrobiologia 277, 71–84 (1994). https://doi.org/10.1007/BF00016755

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00016755

Key words

Navigation