Skip to main content
Log in

The major ion chemistry of some southern African saline systems

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Africa south of about 23° S has few natural athalassic lakes, saline or freshwater. South Africa, however, is rich in temporary pans, many of which are saline, while permanent saline springs occur along the coastal strip of the Namib Desert in Namibia. This paper examines the chemistry of the major ions in 67 Namibian waters, 47 of which have not previously been reported in the literature, and compares them with 66 South African waters, five of which have not previously been reported, and with saline lakes in East Africa.

The highest value for total dissolved solids in South African waters was 276 g l−1 (Koekiespan, south-western Cape) and the highest for Namibian waters were 160 g l−1 (Hosabes, a small spring on a gypsous crust) and 302 g l−1 (a salt pan at Oranjemund at the mouth of the Orange River). The dominant ions in fresh waters in the region are Ca2+ and HCO inf3 /CO 2−inf3 in the interior and in Namibia, and Na2+ and Cl+ on the south and east coasts. Regardless of the geochemistry of their substrata, the dominant ions in the saline waters throughout the region are Na+ and Cl. Thus differential precipitation of CaCO3 and CaSO4, as a result of evaporative concentration at high salinities, appears to be the determinant of the proportions of the major ions in these systems.

The permanent springs on gypsous crusts along the coast of Namibia, although dominated by Na+ and Cl ions, contain considerable quantities of both Ca2+ and SO 2−4 ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashton, P. J. & F. R. Schoeman, 1983. Limnological studies on the Pretoria Salt Pan, a hypersaline maar lake. 1. Morphometry, physical and chemical features. Hydrobiologia 99: 61–73.

    Article  Google Scholar 

  • Ashton, P. J. & F. R. Schoeman, 1988. Thermal stratification and the stability of meromixis in the Pretoria Salt Pan, South Africa. Hydrobiologia 158: 253–265.

    Google Scholar 

  • Ashton, P. J. & F. R. Schoeman, 1984. A preliminary limnological investigation of twelve southern African geothermal waters. J. limnol. Soc. sthn Afr. 10: 50–56.

    Google Scholar 

  • Berry, H., 1972. Flamingo breeding on Etosha Pan, South West Africa, during 1971. Madoqua series 1, 5: 5–31.

    Google Scholar 

  • Bond, G. W., 1946. A geochemical survey of the underground water supplies of the Union of South Africa with particular reference to their utilisation in power production and industry. S. A. Dept of Mines Geological Survey Memoir no. 41. Government Printer, Pretoria, 216 pp.

    Google Scholar 

  • Bosman, H. H. & P. L. Kempster, 1985. Precipitation chemistry of Roodeplaat Dam catchment. Water S.A. 11: 157–164.

    Google Scholar 

  • Broch, E. S. & W. Yake, 1969. Modification of Maucha's ionic diagram to include ionic concentrations. Limnol. Oceanogr. 14: 933–935.

    Google Scholar 

  • Cornish, P. M., 1987. World streamwater chemistry and the relative importance of sodium in the Australian environment. Search 18: 89–91.

    Google Scholar 

  • Day, J. A., 1990. Environmental correlates of aquatic faunal distribution in the Namib Desert. In: Seely, M. K. (ed.), Namib ecology: 25 years of Namib research. Transvaal Mus. Monograph 7: 99–108.

  • Day, J. A. & J. M. King, in press. Geographical patterns, and their origins, in the dominance of major ions in South African rivers. S. Afr. J. Sci.

  • Day, J. A. & M. K. Seely, 1988. Physical and chemical conditions in an hypersaline spring in the Namib Desert. Hydrobiologia 160: 141–153.

    Google Scholar 

  • de Bruiyn, H., 1972. Pans in the western Orange Free State. Ann. geol. Surv. S. Afr. 9: 121–124.

    Google Scholar 

  • Gevers, T. W., O. Hart & H. Martin, 1963. Thermal waters along the Swakop River, South West Africa. Trans. geol. Soc. S. Afr. 66: 157–189.

    Google Scholar 

  • Gibbs, R. J., 1970. Mechanisms controlling world water chemistry. Science 170: 1088–1090.

    Google Scholar 

  • Grobbelaar, J. U., 1976. Some limnological properties of an ephemeral waterbody at Sossus Vlei, Namib Desert, South West Africa. J. limn. Soc. sthn Afr. 2: 51–54.

    Google Scholar 

  • Grobbelaar, J. U. & M. K. Seely, 1980. The composition of water collected from the Kuiseb River, Namib Desert, at Gobabeb. J. limn. Soc. sthn Afr. 6: 46–48.

    Google Scholar 

  • Hoffmann, J. R. H., 1979. Die chemiese samestelling van warmwaterbronne in Suid- en Suidwes-Afrika. National Institute for Water Research, Special Report no. WAT 56. South African Council for Scientific and Industrial Research, Pretoria, 21 pp.

    Google Scholar 

  • Hutchinson, G. E., G. E. Pickford & J. F. M. Schuurman, 1932. A contribution to the hydrobiology of pans and other inland waters of South Africa. Arch. Hydrobiol. 24: 1–154.

    Google Scholar 

  • Jones, B. F., H. P. Eugster & S. L. Rettig, 1977. Hydrochemistry of the Lake Magadi basin, Kenya. Geochim. Cosmochim. Acta 41: 53–72.

    Article  Google Scholar 

  • Kilham, P., 1990. Mechanisms controlling the chemical composition of lakes and rivers: data from Africa. Limnol. Oceanogr. 35: 80–83.

    Google Scholar 

  • Kilham, P. & P. L. Cloke, 1990. The evolution of saline lake waters: gradual and rapid biogeochemical pathways in the Basotu Lake District, Tanzania. Hydrobiologia 197: 35–50.

    Google Scholar 

  • Kok, D. B. & J. U. Grobbelaar, 1980. Chemical properties of waterholes in the Kuiseb River Canyon, Namib Desert. J. limn. Soc. sthn Afr. 6: 82–84.

    Google Scholar 

  • Kok, D. B. & J. U. Grobbelaar, 1985. Notes on the availability and chemical composition of water from the gravel plains of the Namib-Naukluft Park. J. limn. Soc. sthn Afr. 11: 66–70.

    Google Scholar 

  • Lancaster, I. N., 1978. The pans of the southern Kalahari, Botswana. Geogr. J. 144: 80–98.

    Google Scholar 

  • Lancaster, I. N., 1979. Evidence for a widespread late Pleistocene humic period in the Kalahari. Nature 279: 145–146.

    Google Scholar 

  • Lancaster, J., I. N. Lancaster & M. K. Seely, 1984. Climate of the central Namib Desert. Madoqua 14: 5–61.

    Google Scholar 

  • Martin, H., 1963. Suggested theory for the origin and a brief description of some gypsous deposits of South West Africa. Trans. Proc. Geol. Soc. S. Afr. 66: 345–350.

    Google Scholar 

  • Martin, H., 1965. The precambrian geology of South-West Africa and Namaqualand. Precambrian Research Unit, University of Cape Town.

  • Mitchell, S. A. & M. T. Seaman, 1988. Observations on the coexistence of fresh and saltwater invertebrates in an inland saltworks. J. limnol. Soc. sthn Afr. 14: 121–123.

    Google Scholar 

  • Musil, C. F., J. O. Grunow & C. H. Bornman, 1973. Classification and ordination of aquatic macrophytes in the Pongolo River pans, Natal. Bothalia 11: 181–190.

    Google Scholar 

  • Prior, B., 1978. Properties of two halophilic bacteria from a salt pan. Water S.A. 4: 119–124.

    Google Scholar 

  • Schoeman, F. R. & P. J. Ashton, 1982. The diatom flora of the Pretoria Salt Pan, Transvaal, Republic of South Africa. Bacillaria 5: 63–99.

    Google Scholar 

  • Seaman, M. T., P. J. Ashton & W. D. Williams, 1991. Inland salt waters of southern Africa. Hydrobiologia 210: 75–91.

    Google Scholar 

  • Shannon, L. V., 1985. The Benguela ecosystem. Part 1. Evolution of the Benguela, physical features and processes. Oceanogr. mar. Biol. Ann. Rev. 23: 105–182.

    Google Scholar 

  • Shaw, P. A., 1988. Lakes and pans. In: B. P. Moon & D. F. Dardis (eds), The geomorphology of southern Africa. Southern Book Publishers, Johannesburg.

    Google Scholar 

  • Silberbauer, M. J. & J. M. King, 1991. The water chemistry of selected wetlands in the south-western Cape Province, South Africa. sthn Afr. J. aquat. Sci. 17: 82–88.

    Google Scholar 

  • Symoens, J.-J., 1968. La minéralisation des eaux naturelles. Exploration hydrobiologique du bassin de lac Bangweolo et du Luapula. 2: 1–199.

    Google Scholar 

  • Talling, J. F. & I. B. Talling, 1965. The chemical composition of African lake waters. Int. Revue ges. Hydrobiol. 50: 421–463.

    Google Scholar 

  • Tankard, A. J., M. P. A. Jackson, K. A. Eriksson, D. K. Hobday, D. R. Hunter & W. E. L. Minter, 1982. Crustal evolution of South Africa. Springer-Verlag.

  • Truswell, J. F., 1970. An introduction to the historical geology of South Africa. Purnell.

  • Tyson, P. D., 1986. Climatic change and variability in southern Africa. Oxford University Press.

  • van der Merwe, C. R., 1962. Soil groups and subgroups of South Africa. Science Bulletin no. 356, Chemistry Series no. 165. South African Department of Agricultural Technical Services.

  • Van Vliet, H. R., P. L. Kempster, D. P. Sartory, F. A. Gerber & I. J. Schoonraad, 1988. Analytical methods manual. Hydrological Research Institute Report no. TR136. South African Department of Water Affairs, Pretoria.

    Google Scholar 

  • Watson, A., 1979. Gypsum crusts in deserts. J. arid Envir. 2: 3–20.

    Google Scholar 

  • Weir, J. S., 1966. Seasonal variation in alkalinity in pans in central Africa. Hydrobiologia 32: 69–80.

    Google Scholar 

  • Weir, J. S., 1969. Studies on central African pans. III. Fauna and Physico-chemical environment of some ephemeral pools. Hydrobiologia 33: 93–116.

    Article  Google Scholar 

  • Williams, W. D., 1964. A contribution to lake typology in Victoria, Australia. Verh. int. Ver. Limnol. 15: 158–163.

    Google Scholar 

  • Wood, R. B. & J. F. Tailing, 1988. Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia 158: 29–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, J.A. The major ion chemistry of some southern African saline systems. Hydrobiologia 267, 37–59 (1993). https://doi.org/10.1007/BF00018790

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018790

Key words

Navigation